| 研究生: |
林士廷 Lin, Shih-Ting |
|---|---|
| 論文名稱: |
有機發光二極體光源之偏極化研究 The study of polarized Organic Light-emitting Diodes |
| 指導教授: |
周維揚
Chou, Wei-Yang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 有機發光二極體 、偏極化光 |
| 外文關鍵詞: | POLARIZED, OLED |
| 相關次數: | 點閱:62 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在OLED研發工作方面,有機電激發光元件已成功的應用於平面顯示器,其色彩的飽和度以及耗電力及製程都遠優於一般的顯示器為了使有機發光二極體能發出偏極化光,則必須將其分子作有序性的排列,本論文研究排列有機發光分子,並利用摻雜的方式使得有機配向層具載子傳導的特性或是直接的使用導電性高分子在其上作離子束轟擊、摩擦配向或光配向來當做配向層以排列有機發光分子,而排列良好的有機發光分子具有發出極化光的特性,本文利用了光激螢光法來檢測其排列之螢光偏振性質,以及做了各種不同結構的有機發光元件,期望能將其偏振效果達到最佳化。在論文之中摩擦配向方面其亮度偏振比到達了接近3的程度,而離子束配向所產生的亮度偏振比可達到5以上,而在發偏極化光之有機發光二極體正好可以用來作為液晶面板的背光源,取代傳統LCD面板內部的背光模組,使液晶顯示器具有更便宜更輕薄短小提高其可攜性以及商業價值。我們以分子束磊晶儀以及熱蒸鍍機成長分子排列有序之有機發光薄膜,藉由調整最佳參數成長有機薄膜,使有機分子能夠以最佳狀態排列成長在配向層上,進而研究配向技術以及配向層對有機分子排列的情形,使其有機分子之配向研究更具有商業及學術研究之價值。
In 1995, Dyreklev et al. first demonstrated that an organic electroluminescence (EL) device based on aligned conjugated polymers that emitted polarized light. They realized that such devices would be particularly useful as backlights for conventional LCDs. The orientation of organic molecular aligned by an alignment layer in organic light emitting diode can radiate polarized light. The purpose of this paper is to study the alignment of organic molecules, the conductibility of the alignment layer contributed by doping poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), and ion-beam processed or rubbed PEDOT:PSS as alignment layer. Homogenous alignment of 4,4’-Bis[2-9(-ethyl-3-carbazoyl)vinylenyl]-1,1’-biphenyl films on thin layers of ion-beam-processed or rubbed PEDOT:PSS allows the construction of light-emitting diodes that emit polarized blue light (em = 455 nm). The ion-beam-processed or rubbed PEDOT:PSS acts as an effective hole-injecting alignment layer. Using the epitaxial growth film of 4,4’-Bis[2-9(-ethyl-3-carbazoyl)vinylenyl]-1,1’-biphenyl, we fabricated EL devices consisting of indium-tin-oxide anode, hole-injecting layer of ion-beam processed or rubbed PEDOT:PSS, emissive layer of 4,4’-Bis[2-9(-ethyl-3-carbazoyl)vinylenyl]-1,1’-biphenyl, and Ca/Al cathode. Polarized photoluminescence spectra demonstrated that the long axis of 4,4’-Bis[2-9(-ethyl-3-carbazoyl)vinylenyl]-1,1’-biphenyl molecule was oriented along the ion-beam or rubbing direction. Owing to the orientation of 4,4’-Bis[2-9(-ethyl-3-carbazoyl)vinylenyl]-1,1’-biphenyl molecules, EL polarized in the rubbing or ion-beam direction was observed in the device. The maximum EL polarization ratio of 5.4:1 and 2.7:1was achieved for the devices aligned by ion-beam and rubbing methods, respectively.
[1] S. T. Wu, D. K Yang, Reflective Liquid Crystal Display. John Wiley,New York, P. 14, 2000.
[2] S. S. Zumdahl, Chemistry. New Wun Ching Developmental Publishing, P. 222, 2003.
[3] M. Wohlgenannt, K. Tandon, “Formation cross-sections of singlet and triplet excitons
in π-conjugated polymers”, Nature 409, 494, 2001.
[4] Sadiku, Elements of Electromagnetics, Oxford, New York, P. 500, 1998.
[5] H. Yanagi, T. Morikawa, “Self-waveguide blue light emission in p-sexiphenyl crystals epitaxially grown by mask-shadowing”, Appl. Phys. Lett. 75, 187, 1999.
[6] H. Yanagia, S. Okamoto, “Orientation-controlled organic electroluminescence of p-sexiphenyl films”, Appl. Phys. Lett. 71, 2563, 1997.
[7] M. Grell, D. Donal and C. Bradley, ”Polarized Luminescence from Oriented Molecular Materials”, Adv. Mater. 11, 895, 1999.
[8] P. Lorrain, Electromagnetic Fields and Wave, Jwang Yuan, Taipei, P. 428, 1972.
[9] G. R. Fowles, Introduction to Modern Optics, Rinehart, New York, P. 242, 1972.
[10] J. P. Doyle, P. Chaudhari, “Ion beam alignment for liquid crystal display fabrication”
Science 206, 467, 2003.
[11] J. Prost, The Physics of Liquid Crystals, Oxford, New York, P. 12, 1993.
[12] D. D. C. Bradley, M. Grell and C. Giebeler, “Electrochemical determination of the ionization potential and electron affinity of poly(9,9-dioctylfluorene)”, Appl. Phys. Lett. 73, 2453, 1998.
[13] C.A. Chen, S. W. Culligan, “Organic polarized Light-Emitting Diodes via Forster Energy Transfer Using Mondisperse Conjugated Oligomers”, Adv. Mater. 16, 783,
2004.
[14] M. Grell, M. Reducter, “Monodomain alignment of thermotropic fluorene copolymers”, Liquid Crystals 26, 1403, 1999.
[15] S. A. Benning, “Polarized electroluminescence of a discotic mesogenic compound”, Liquid Crystals 31, 201, 2004.
[16] X. L. Chen, Z. B. Reactively, “Sputter-Deposited Titanium Oxide Coatings with Parallel Penniform Microstructure”, Adv. Mater. 12, 343, 2000.
[17] J. J. Sakurai, Modern Quantum Mechanics, Menlo Park, New York, P. 158, 1994.
[18] H. Tokuhisa, T. Tsutsuia, “Polarized electroluminescence from smectic mesophase”, Appl. Phys. Lett. 72, 2639, 1998.
[19] Y. G. Andrew, C. A. Chen and J. O. Jane, “Monodisperse Glassy-Nematic Conjugated Oligomers with Chemically Tunable Polarized Light Emission”, Chem Mater.15, 4352, 2003.
[20] A. Meisel, T. Miteva and G. Glaser, “Influence of the dopant concentration on the morphology of holetransporting alignment layers based on a polyimide matrix”, Polymer. 43, 5235, 2002.
[21] A. Yariv, Optical Electronics in Modern Communications, Oxford, New York, P.17, 1997.