簡易檢索 / 詳目顯示

研究生: 陳泰佑
Chen, Tai-You
論文名稱: 三─五氮族與氧化鋅系氣體感測器之研究
Study of III-V Nitride and ZnO Based Gas Sensors
指導教授: 劉文超
Liu, Wen-Chau
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 78
中文關鍵詞: 氣體感測器蕭特基氧化鋅奈米
外文關鍵詞: gas sensor, Schottky, ZnO, nano, Pd, Pt
相關次數: 點閱:84下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們研製一系列高性能化合物半導體式之氣體感測器,包含蕭特基二極體、異質場效電晶體及電阻式元件。由於鈀和鉑分別對氫氣和氨氣具有良好的觸媒活性,可用來當作感測金屬。氮化鎵和氮化鋁鎵具有比矽材料較大的能隙,可用來當作感測平台。此外,水熱法成長之一維結構氧化鋅奈米柱相較於氧化鋅薄膜具有高比表面積,有利於氣體吸附,並利用鈀奈米粒子修飾氧化鋅奈米柱,使其大幅提升感測能力。我們探討這些感測器在不同溫度下對不同濃度的氫氣和氨氣之相關感測電性、偵測效能和動態表現。
    首先,我們研製一具電漿表面處理之鈀/氮化鎵蕭特基二極體式氫氣感測器。此元件展現良好的感測性能,包含高靈敏度、高選擇性、大蕭特基能障變化量、寬廣的溫度操作區間及快速響應時間。探討順向及反向電壓的感測特性比較,並提出一個簡單的模型來詮釋經由電將表面處理之元件的氫氣感測表現。從實驗結果得知,較粗糙的鈀表面對於氫氣吸附特性具有極大的影響。
    其次,研究鉑/氮化鋁鎵/氮化鎵蕭特基二極體之氨氣感測特性。提出直接解離和三點接觸機制解釋氨氣分子解離、氫原子擴散、氨氣/氧/鉑接觸及電偶極層的形成造成蕭特基能障的有效減少。並在不同氨氣濃度與溫度之環境下,分析本感測器之氨氣感測行為;此元件適合在高溫下操作,因高溫有助於氨氣解離擴散,。
    第三,利用氮化鋁鎵/氮化鎵異質結構及鉑觸媒閘極電極,研製場效電晶體來偵測氨氣靈敏度。對此元件而言,成長10 nm厚的鉑金屬層主要是通入氣體時,易使三點接觸位於金半接面處形成一極化層,使蕭特基能障降低飽和電流上升。我們探討並分析此感測元件在不同溫度下的電流–電壓特性,發現到截止區的氨氣偵測靈敏度具有劇烈的變化。最後針對氨氣誘導效應對於電晶體之電性參數諸如:門檻電壓、轉導、汲極電流之導通/截止比例做完整探討。
    第四,提出以氧化鋅奈米柱製作成電阻式氨氣感測器,並討論氧化鋅材料在不同生長條件下所成長氧化鋅奈米柱的特性(水溶液濃度、種晶層厚度、酸鹼值和成長溫度)。利用指叉電極和氧化鋅奈米柱的結合製作一高靈敏度的氨氣感測器,探討指叉電極間距的改變對氨氣感測能力的影響。
    最後,探討氧化鋅奈米柱經由鈀奈米粒子修飾的氨氣感測特性。因氧化鋅奈米柱有大比表面積,有利於氣體的吸附和奈米粒子的還原,使得提升其元件感測能力。氧化鋅奈米柱利用一低溫水熱法成長在一藍寶石基板上,並藉由含浸法將鈀奈米粒子還原在氧化鋅奈米柱上,可觀察到鈀奈米粒子均勻的分佈在氧化鋅奈米柱表面。溫度在250oC,暴露在1000 ppm的氨氣氛圍下,具有鈀奈米粒子修飾之元件的最高靈敏度約310.2倍,而未修飾的元件約87倍。我們探討並分析此感測元件在不同溫度下的氨氣感測特性。

    In this dissertation, a series of high-performance compound semiconductor based hydrogen sensors, including Schottky diodes, heterostructure field-effect transistors, and resistors, are fabricated and studied. Pd and Pt are used as sensing metals due to their excellent catalytic activity towards hydrogen and ammonia gases, respectively. GaN and AlGaN materials are served as sensing platforms because of their larger band gap than that of Si-based materials. In addition, hydrothermal growth of one-dimensional (1-D) ZnO nanorods-based device possesses higher surface to volume ratio (SV) than thin film-based device. It is beneficial to the adsorption of gas. Moreover, Pd nanoparticles-decorated ZnO nanorods could significant enhance the sensing response. We present the related electric characteristics, detection performance, and dynamic behaviors of these sensors measured under different hydrogen and ammonia concentrations at different temperatures.
    First, Pd/GaN Schottky diode-type hydrogen sensors with and without plasma surface treatment are studied and demonstrated. The studied device exhibits significant sensing performance, including high sensing response, large Schottky barrier height variation, widespread temperature operation regime, and fast transient response time. A comparative study between forward and reverse biases is presented. A simple detection model is proposed to elucidate the hydrogen sensing behavior of devices with plasma surface treatment. A rougher Pd surface exhibits considerable influences on the hydrogen adsorption properties.
    Second, ammonia-sensing characteristics of a Pt/AlGaN/GaN-based Schottky diode are studied. The related ammonia-sensing mechanisms, direct dissociation of ammonia gas and triple-point model, are presented to explain the effects of dissociation of ammonia molecules, diffusion of hydrogen atoms, boundaries between NH3, O2, and Pt metal, and formation of dipolar layer, thus reducing the effective Schottky barrier height. The temperature-dependent NH3 sensing behaviors are investigated for the studied device. The studied device is suitable for high temperature operation because the temperature effect would facilitate dissociation and diffusion of gases.
    Third, field-effect transistors based on AlGaN/GaN heterostructures are fabricated with catalytically active platinum (Pt) gate electrodes to induce the sensitivity of ammonia gas. For the studied device, a 10 nm-thick Pt metal grain is grown. When the target gas is introduced, a polarized layer is formed at Pt/AlGaN interface due to the triple-point contact (Pt, NH3, and O-, O2, or O2-), which leads to the reduction of Schottky barrier height and the increased of saturation current. Comprehensive analysis on the electrical properties at different temperatures is presented. A drastic change of ammonia detection sensitivity is observed in the cut-off region. Ammonia-induced effects on electrical parameters of a field-effect transistor (FET), such as threshold voltage, transconductance, and on-off current ratio are investigated.
    Fourth, ZnO nanorods (NRs)-based resistance-type ammonia sensor are mentioned and studied. Different growth conditions of ZnO NRs are discussed, such as precursor concentration, thickness of ZnO seedlayer, pH value, and growth temperature. A combination of interdigitated electrodes and 1-D ZnO NRs has been used to make an ammonia sensor with a high degree of sensitivity. We are going to study the effect of varying the electrode spacing on the sensing performance.
    Finally, the NH3 sensing properties of ZnO NRs decorated with Pd nanoparticles are investigated. The large surface-to-volume ratio of ZnO nanostructures is favorable for the adsorption of analytes and reduction of nanoparticles. This leads to the improved sensor performance. ZnO NRs were synthesized through a hydrothermal route on a sapphire substrate. Pd nanoparticles were reduced on the surface of ZnO NRs using an impregnation approach. It was observed that. the nano-sized Pd particles (~5 nm) were uniformly distributed on the surface of ZnO NRs. A maximum NH3 sensing response of 310.2 was found when the device was exposed to a 1000 ppm NH3/air gas at 250oC. The as-grown ZnO nanorods, however, illustrated the maximum sensing response only of 87. The temperature-dependent NH3 sensing properties of the studied device were also systematically investigated.

    Abstract Table Lists Figure Captions Chapter 1. Introduction 1-1. Literature Review …………………………………………………………………… 1 1-2. Thesis Organizations …………………………………………………………… 3 Chapter 2. Study of Pd/GaN Schottky-Type Hydrogen Sensors With Cl2 Plasma Surface Treatments 2-1. Introduction ……………………………………...……………………………... 4 2-2. Device Structure and Fabrication ……………………….. 5 2-3. Experimental Results and Discussion ……………….. 6 2-3-1. Hydrogen-Sensing Mechanism ...……………………………… 6 2-3-2. Material Analyses ...………………………………………...………… 7 2-3-3. Electrical Properties ………...………………………………………. 7 2-3-4. Hydrogen Detection Performance ……………………………. 10 2-3-5. Dynamic Responses and Selectivity …………..... 11 2-3-6. Analysis of Hydrogen Adsorption Reaction …. 13 2-4. Summary ………………………………………………………...…………....... 14 Chapter 3. Ammonia Sensing Characteristics of a Pt/AlGaN/GaN Schottky Diode 3-1. Introduction ………………………………………………………………………….… 16 3-2. Device Structure and Fabrication ………………….…. 17 3-3. Experimental Results and Discussion ………………… 18 3-3-1. Ammonia-Sensing Mechanism …………………………………………. 18 3-3-2. Electrical Properties ………………………………………………….… 19 3-3-3. Transient-State Responses ……………………………………….. 22 3-4. Summary ………………………………………………………………........……… 23 Chapter 4. Investigation of an Ammonia Gas Sensor Based on a Pt/AlGaN/GaN Heterostructure Field-Effect Transistor 4-1. Introduction ……………………………………………………………....……… 24 4-2. Device Structure and Fabrication ……………….……. 25 4-3. Experimental Results and Discussion ………………… 26 4-3-1. Ammonia Detection Mechanism ………..………………………… 26 4-3-2. Ammonia-Sensing Characteristics …………………………… 27 4-3-3. Transient Analyses …………….………………………………………….. 31 4-4. Summary ………………………………………………………........……………… 32 Chapter 5. Characteristics of ZnO Nanorods-Based Ammonia Gas Sensors With a Cross-Linked Configuration 5-1. Introduction ………………………………………………………………....…… 34 5-2. Device Structure and Fabrication ……………….……. 35 5-2-1. Material Source ………………..……………………………………...…. 35 5-2-2. Growth of ZnO and Device Fabrication ………….. 36 5-2-3. Characterization ……………….. ……………………………………... 37 5-3. Experimental Results and Discussion …………….. 37 5-3-1. Ammonia-Sensing Mechanism …………………………………………… 37 5-3-2. Material and Structure Analyses ……………………….. 38 5-3-3. Ammonia-adsorption and -desorption Characteristics …..…………….........................................….. 39 5-3-4. Transient Responses ..…..……………………………………………… 43 5-3-5. Repetition and Selectivity …..………………………..…… 44 5-4. Summary ……………………………………………………………........………… 45 Chapter 6. ZnO Nanorods-Based Hydrogen Sensors by an Impregnation Approach of Pd Nanoparticles 6-1. Introduction ……………………….………………………………...…………… 46 6-2. Device Structure and Fabrication ….…………………. 47 6-3. Experimental Results and Discussion …………... 48 6-3-1. Hydrogen-Sensing Mechanism ..……………………….………… 48 6-3-2. Material and Structure Analyses .….….……………… 49 6-3-3. Hydrogen-Sensing Characteristics ………….……….. 50 6-3-4. Transient Responses ..…..………………..…………....…… 52 6-4. Summary ……………………………………………………………….….......…… 53 Chapter 7. Conclusion and Prospect 7-1. Conclusion …………………………………………………….………..…….... 54 7-2. Prospect ………………………………………………………….…………....….. 56 References ……………………………………………………………..……..…...…...... 58 Tables Figures Publication List

    1. N. Yamazoe, “Toward innovations of gas sensor technology,” Sens. Actuators B, vol. 108, pp. 2-14, 2005.
    2. R. C. Weast, Handbook of Chemistry and Physics, CRC Press, Cleveland, pp. D-107, 1976.
    3. C. Christofides and A. Mandelis, “Solid-state sensors for trace hydrogen gas detection,” J. Appl. Phys., vol. 68, no. 6, pp. R1-R30, 1990.
    4. S. R. Morrison, “Semiconductor Gas Sensors,” Sens. Actuators, vol. 2, pp. 329-341, 1982.
    5. S. T. Cho, K. Najafi, C. E. Lowman, and K. D. Wise, “An ultra sensitive silicon pressure-based microflow sensor,” IEEE Trans. Electron Devices, vol. 39, no. 4, pp. 825-835, 1992.
    6. P. Tobias, A. Baranzahi, A. L. Spetz, O. Kordina, E. Janzen, and I. Lundstrom “Fast chemical sensing with metal-insulator silicon carbide structures,” IEEE Electron Device Lett., vol. 18, no. 6, pp. 287-289, 1997.
    7. S. Manahan, Environmental chemistry. 2004: CRC.
    8. P. Warneck, “Chemistry of the natural atmosphere,” 1988: Academic Press.
    9. N. Campbell and J. Reece, Biology, 7th 2005, San Francisco, Pearson Education.
    10. S. Lee, Y. Lee, C. Shim, N. Choi, B. Joo, K. Song, J. Huh, and D. Lee, “Three electrodes gas sensor based on ITO thin film,” Sens. Actuators B-Chem., vol. 93(1-3), pp. 31-35, 2003.
    11. B. Timmer. W. Olthuis, and A. Berg, “Ammonia sensors and their applications—a review,” Sens. Actuators B-Chem., vol. 107(2), pp. 666-677, 2005.
    12. Y. Takao, K. Miyazaki, Y. Shimizu, and M. Egasshira, “High ammonia sensitive semiconductor gas sensors with double-layer structure and interface electrodes,” J. Electrochem. Soc., vol. 141, pp. 1028-1034, 1994.
    13. Y. Shimizu, A. Jono, T. Hyodo, M. Egashira, “Preparation of large mesoporous SnO2 power for gas sensor application,” Sens. Actuators B-Chem., vol. 108, pp. 56-61, 2005.
    14. M. Stankova, X. Vilanova, E. Llobel, J. Calderer, C. Bittencourt, J. J. Pireaux, and X. Correig, “Influence of the annealing and operating temperatures on the gas-sensing properties of rf sputtered WO3 thin-film sensors,” Sens. Actuators B-Chem., vol. 105, pp. 271-277, 2005.
    15. C. S. Rout, M. Hegde, A. Govindaraj, and C. N. R. Rao, “Ammonia sensors based on metal oxide nanostructures,” Nanotechnology, vol. 18, pp. 205504(9pp), 2007.
    16. C. S. Rout, G. U. Kulkarni, and C. N. R. Rao, “Room temperature hydrogen and hydrocarbon sensors based on single nanowires of metal oxides,” J. Phys. D-Appl. Phys., vol. 40, pp. 2777-2782, 2007.
    17. H. Miyazaki, T. Hyodo, Y. Shimizu, and M. Egashira, “Hydrogen-sensing properties of anodically oxidized TiO2 film sensors effects of preparation and pretreatment conditions,” Sens. Actuators B, vol. 108, pp. 467-472, 2005.
    18. T. Hyodo, N. Nishida, Y. Shimizu, and M. Egashira, “Preparation and gas-sensing properties of thermally stable mesoporous SnO2,” Sens. Actuators B, vol. 83, pp. 209-215, 2002.
    19. H. Bai and G. Shi, “Gas sensors based on conducting polymers,” Sensors, vol. 7, pp. 267-307, 2007.
    20. E. Maciak and Z. Opilski, “Transition metal oxides covered Pd film for optical H2 gas detection,” Thin Solid Films, vol. 515, pp. 8351-8355, 2007.
    21. A. M. Laith, T. Henry D, W. Wojtek, K. Richard B, and K. Z. Kourosh, “Polypyrrole nanofiber surface acoustic wave gas sensors,” Sens. Actuators B, vol. 134, pp. 826-831, 2008.
    22. T. H. Chou, Y. K. Fang, Y. T. Chiang, K. C. Lin, C. I. Lin, C. H. Kao, and H. Y. Lin, “The Pd/TiO2/n-LTPS Thin-Film Schottky Diode on Glass Substrate for Hydrogen Sensing Applications,” IEEE Electron Device Lett., vol. 29, no. 11, pp. 1232-1235, 2008.
    23. S. Y. Chiu, H. W. Huang, T. H. Huang, K. C. Liang, K. P. Liu, J. H. Tsai, and W. S. Lour, “Comprehensive study of Pd/GaN metal-semiconductor-metal hydrogen sensors with symmetrically bi-directional sensing performance,” Sens. Actuators B, vol. 138, pp. 422-427, 2009.
    24. H. Nienhaus, H. S. Bergh, B. Gergen, A. Majumdar, W. H. Weinberg, and E. W. McFarland, “Selective H atom sensors using ultrathin Ag/Si Schottky diodes,” Appl. Phys. Lett., vol. 74, pp. 4046-4048, 1999.
    25. J. R. Huang, W. C. Hsu, Y. J. Chen, T. B. Wang, K. W. Lin, H. I. Chen, and W. C. Liu, “Comparison of hydrogen sensing characteristics for Pd/GaN and Pd/Al0.3Ga0.7As Schottky diodes,” Sens. Actuators B, vol. 117, pp. 151-158, 2006.
    26. P. Salomonsson, E. Jobson, B. Haggendal, J. Nytomt, C. Carlsson, M. Glavmo, and A. Baranzahi, “Response of metal-oxide-silicon carbide sensors to simulated and real exhaust gases,” Sens. Actuators B, vol. 43, pp. 52-59, 1997.
    27. I. Lundstrom, “Hydrogen sensitive MOS-structures part1: principles and applications,” Sens. Actuators, vol. 1, pp. 403-426, 1981.
    28. H. Y. Nie and Y. Nannichi, “Pd-on-GaAs Schottky contact: Its barrier height and response to hydrogen,” Jpn. J. Appl. Phys., vol. 30, pp. 906-913, 1991.
    29. L. M. Lechuga, A. Calle, D. Golmayo, P. Tejedor, and F. Briones, “A new hydrogen sensor based on a Pt/GaAs Schottky diode,” Sens. Actuators B, vol. 4, pp. 515-518, 1991.
    30. W. P. Kang and Y. Gürbüz, “Comparison and analysis of Pd- and Pt-GaAs Schottky diodes for hydrogen detection,” J. Appl. Phys., vol. 75, pp. 8175-8181, 1994.
    31. W. C. Liu, H. J. Pan, H. I. Chen, K. W. Lin, and C. K. Wang, “Comparative hydrogen-sensing study of Pd/GaAs and Pd/InP metal-oxide-semiconductor Schottky diodes,” Jpn. J. Appl. Phys., vol. 40, pp. 6254-6259, 2001.
    32. A. Salehi, A. Nikfarjam, and D.J. Kalantari, “Pd/porous-GaAs Schottky contact for hydrogen sensing application,” Sens Actuators B, vol. 113, pp. 419-427, 2006.
    33. S. Y. Cheng, “A hydrogen sensitive Pd/GaAs Schottky diode sensor,” Mater. Chem. Phys., vol. 78, pp. 525-528, 2003.
    34. W. C. Liu, H. J. Pan, H. I. Chen, K. W. Lin, S. Y. Cheng, and K. H. Yu, “Hydrogen-sensitive characteristics of a novel Pd/InP MOS Schottky diode hydrogen sensor,” IEEE Trans. Electron Devices, vol. 48, pp. 1938-1944, 2001.
    35. H. J. Pan, K. W. Lin, K. H. Yu, C. C. Cheng, K. B. Thei, W. C. Liu, and H. I. Chen, “Highly hydrogen-sensitive Pd/InP metal-oxide-semiconductor Schottky diode hydrogen sensor,” IEEE Electron. Lett., vol. 38, pp. 92-94, 2002.
    36. H. I. Chen, Y. I. Chou, and C. Y. Chu, “A novel high-sensitive Pd/InP hydrogen sensor fabricated by electroless plating,” Sens. Actuators B, vol. 85, pp. 10-18, 2002.
    37. H. I. Chen and Y. I. Chou, “A comparative study of hydrogen sensing performance between electroless plated and thermal evaporated Pd/InP Schottky diodes,” Semicond. Sci. Technol., vol. 18, pp. 104-110, 2003.
    38. H. I. Chen, Y. I Chou, and C. K. Hsiung, “Comprehensive study of adsorption kinetics for hydrogen sensing with an electroless-plated Pd-InP Schottky diode,” Sens. Actuators B, vol. 92, pp. 6-16, 2003.
    39. H. I. Chen and Y. I. Chou, “Evaluation of the perfection of the Pd-InP Schottky interface from the energy viewpoint of hydrogen adsorbates,” Semicond. Sci. Technol., vol. 19, pp. 39-44, 2004.
    40. Y. I. Chou, C. M. Chen, W. C. Liu, and H. I. Chen, “A novel Pd-InP Schottky hydrogen sensor fabricated by electrophoretic deposition with Pd nanoparticles,” IEEE Electron Device Lett., vol. 26, pp. 62-65, 2005.
    41. T. Kimura, H. Hasegawa, T. Sato, and T. Hashizume, “Sensing mechanism of InP hydrogen sensors using Pt Schottky diodes formed by electrochemical process,” Jpn. J. Appl. Phys., vol. 45, pp. 3414-3422, 2006.
    42. W. C. Liu, K. W Lin, H. I. Chen, C. K. Wang, C. C. Cheng, S. Y. Cheng, and C. T. Lu, “A new Pt/Oxide/In0.49Ga0.51P MOS Schottky diode hydrogen sensor,” IEEE Electron Device Lett., vol. 23, pp. 640-642, 2002.
    43. K. W. Lin, H. I. Chen, H. M. Chuang, C. Y. Chen, and W. C. Liu, “A hydrogen sensing Pd/InGaP metal-semiconductor (MS) Schottky diode hydrogen sensor,” Semicond. Sci. Technol., vol. 18, pp. 615-619, 2003.
    44. K. W. Lin, H. I. Chen, C. C. Cheng, H. M. Chuang, C. T. Lu, and W. C. Liu, “Characteristics of a new Pt/oxide/In0.49Ga0.51P hydrogen-sensing Schottky diode,” Sens. Actuators B, vol. 94, pp. 145-151, 2003.
    45. K. W. Lin, H. I. Chen, H. M. Chuang, C. Y. Chen, C. T. Lu, C. C. Cheng, and W. C. Liu, “Characteristics of Pd/InGaP Schottky diodes hydrogen sensors,” IEEE Sensors J., vol. 4, pp. 72-79, 2004.
    46. C. T. Lu, K. W. Lin, H. I. Chen, H. M. Chuang, C. Y. Chen, and W. C. Liu, “A new Pd-Oxide-Al0.3Ga0.7As MOS hydrogen sensor,” IEEE Electron Device Lett., vol. 24, pp. 390-392, 2003.
    47. Y. Y. Tsai, K. W. Lin, C. T. Lu, H. I. Chen, H. M. Chuang, C. Y. Chen, C. C. Cheng, and W. C. Liu, “Investigation of hydrogen-sensing properties of Pd/AlGaAs-based Schottky diodes,” IEEE Trans. Electron Devices, vol. 50, pp. 2532-2539, 2003.
    48. C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, C. T. Lu, and W. C. Liu, “Hydrogen sensing characteristics of a Pt-oxide-Al0.3Ga0.7As MOS Schottky diode,” Sens. Actuators B, vol. 99, pp. 425-430, 2004.
    49. C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, W. H. Hsu, H. M. Chuang, C. Y. Chen, and W. C. Liu, “Hydrogen sensing characteristics of Pd- and Pt-Al0.3Ga0.7As metal–semiconductor (MS) Schottky diodes,” Semicond. Sci. Technol., vol. 19, pp. 778-782, 2004.
    50. C. W. Hung, H. L. Lin, H. I. Chen, Y. Y. Tsai, P. H. Lai, S. I. Fu, and W. C. Liu, “A novel Pt/In0.52Al0.48As Schottky diode-type hydrogen sensor,” IEEE Electron Device Lett., vol. 27, pp. 951-954, 2006.
    51. C. W. Hung, T. H. Tsai, Y. Y. Tsai, K. W. Lin, H. I. Chen, T. P. Chen, and W. C. Liu, “A hydrogen sensor based on an InAlAs material with a Pt catalytic thin film,” Phys. Scr., vol. T129, pp. 345-348, 2007.
    52. C. W. Hung, T. H. Tsai, H. I. Chen, Y. Y. Tsai, T. P. Chen, L. Y. Chen, K. Y. Chu, and W. C. Liu, “Temperature-dependent hydrogen sensing characteristics of a new Pt/InAlAs Schottky diode-type sensor,” Sens. Actuators B, vol. 128, pp. 574-580, 2008.
    53. J. Schalwig, G. Müller, U. Karrer, M. Eickhoff, O. Ambacher, M. Stutzmann, L. Görgens, and G. Dollinger, “Hydrogen response mechanism of Pt-GaN Schottky diodes,” Appl. Phys. Lett., vol. 80, pp. 1222-1224, 2002.
    54. B. S. Kang, S. Kim, F. Ren, B. P. Gila, C. R. Abernathy, and S. J. Pearton, “Comparison of MOS and Schottky W/Pt-GaN diodes for hydrogen detection,” Sens. Actuators B, vol. 104, pp. 232-236, 2005.
    55. T. H. Tsai, J. R. Huang, K. W. Lin, C. W. Hung, H. I. Chen, and W. C. Liu, “Improved hydrogen sensing properties of a Pt/SiO2/GaN Schottky diode,” Electrochem. Solid State Lett., vol. 10, pp. J158-J160, 2007.
    56. J. R. Huang, W. C. Hsu, H. I. Chen, and W. C. Liu, “Comparative study of hydrogen sensing characteristics of a Pd/GaN Schottky diodes,“ Sens Actuators B, vol. 123, pp. 1040-1048, 2007.
    57. J. Song, W. Lu, J. S. Flynn, and G. R. Brandes, “AlGaN/GaN Schottky diode hydrogen sensor performance at high temperatures with different catalytic metals,” Solid-State Electron., vol. 49, pp. 1330-1334, 2005.
    58. H. Hasegawa and M. Akazawa, “Hydrogen sensing characteristics and mechanism of Pd/AlGaN/GaN Schottky diodes subjected to oxygen gettering,” J. Vac. Sci. Technol. B, vol. 25, pp. 1495-1503, 2007.
    59. H. T. Wang, T. J. Anderson, B. S. Kang, F. Ren, C. Li, Z. N. Low, J. Lin, B. P. Gila, S. J. Pearton, A. Osinsky, and A. Dabiran, “Stable hydrogen sensors from AlGaN/GaN heterostructure diodes with TiB2-based Ohmic contacts,” Appl. Phys. Lett., vol. 90, pp. 252109, 2007.
    60. M. Miyoshi, Y. Kuraoka, K. Asai, T. Shibata, and M. Tanaka, “Electrical characterization of Pt/AlGaN/GaN Schottky diodes grown using AlN template and their application to hydrogen gas sensors,” J. Vac. Sci. Technol. B, vol. 25, pp. 1231-1235, 2007.
    61. H. Hasegawa and M. Akazawa, “Mechanism and control of current transport in GaN and AlGaN Schottky barriers for chemical sensor applications,” Appl. Surf. Sci., vol. 254, pp. 3653-3666, 2008.
    62. J. Li, W. R. Donaldson, and T. Y. Hsiang, “Very fast metal-semiconductor-metal ultraviolet photodetectors on GaN with submicro finger width,” IEEE Photonics Technol. Lett., vol. 15, pp. 1141-1143, 2003.
    63. M. Mosca, J. L. Reverchon, N. Grandjean, and J. Y. Duboz, “Multilayer (Al,Ga)N structures for solar-blind detection,” IEEE J. Sel. Top. Quantum Electron., vol. 10, pp. 752-758, 2004.
    64. S. T. Sheppard, K. Doverspike, W. L. Pribble, S. T. Allen, J. W. Palmour, L. T. Kehias, and T. J. Jenkins, “High-power microwave GaN/AlGaN HEMT’s on semi-insulting silicon carbide substrates,” IEEE Electron Device Lett., vol. 20, pp. 161-163, 1999.
    65. R. Gaska, Q. Chen, J. Yang, A. Qsinsky, M. Asifkhan, and M. S. Shur, “High-temperature performance of AlGaN/GaN HFET’s on SiC substrates,” IEEE Electron Device Lett., vol. 18, pp. 492-494, 1997.
    66. M. Jaegle and K. Steiner, “Gas-sensitive GaAs-MESFETs,” Sens. Actuators B, vol. 34, pp. 543-547, 1996.
    67. J. Schalwig, G. Müller, M. Eickhoff, O. Ambacher, and M. Stutzmann, “Gas sensitive GaN/AlGaN-heterostructures,” Sens. Actuators B, vol. 87, pp. 425-430, 2002.
    68. S. Nakagomi, A. Fukumura, Y. Kokubun, S. Savage, H. Wingbrant, M. Andersson, I. Lundström, M. Löfdahl, and A. L. Spetz, “Influence of gate bias of MISiC-FET gas sensor device on the sensing properties,” Sens Actuators B, vol. 108, pp. 501-507, 2005.
    69. B. S. Kang, R. Mehandru, S. Kim, F. Ren, R. C. Fitch, J. K. Gillespie, N. Moser, G. Jessen, T. Jenkins, R. Dettmer, D. Via, A. Crespo, B. P. Gila, C. R. Abernathy, and S. J. Pearton, “Hydrogen-induced reversible changes in drain current in Sc2O3/AlGaN/GaN high electron mobility transistors,” Appl. Phys. Lett., vol. 84, pp. 4635-4637, 2004.
    70. H. T. Wang, B. S. Kang, F. Ren, R. C. Fitch, J. K. Gillespie, N. Moser, G. Jessen, T. Jenkins, R. Dettmer, D. Via, A. Crespo, B. P. Gila, C. R. Abernathy, and S. J. Pearton, “Comparison of gate and drain current detection of hydrogen at room temperature with AlGaN/GaN high electron mobility transistors,” Appl. Phys. Lett., vol. 87, pp. 172105, 2005.
    71. H. T. Wang, T. J. Anderson, F. Ren, C. Li, Z. N. Low, J. Lin, B. P. Gila, S. J. Pearton, A. Osinsky, A. Dabiran, “Robust detection of hydrogen using differential AlGaN/GaN high electron mobility transistor sensing diodes,” Appl. Phys. Lett., vol. 89, pp. 242111, 2006.
    72. B. S. Kang, H. T. Wang, F. Ren, and S. J. Pearton, “Electrical detection of biomaterials using AlGaN/GaN high electron mobility transistors,” J. Appl. Phys. vol. 104, pp. 031101, 2008.
    73. T. Y. Chen, H. I. Chen, C. S. Hsu, C. C. Huang, C. F. Chang, P. C. Chou, and W. C. Liu, “On an ammonia gas sensor based on a Pt/AlGaN/GaN heterostructure field-effect transistor,” IEEE Electron Device Lett., vol. 33, pp. 612-614, 2012.
    74. J. Song, W. Lu, J. S. Flynn, and G. R. Brandes, “Pt-AlGaN/GaN Schottky diodes operated at 800oC for hydrogen sensing,” Appl. Phys. Lett., vol. 87, pp. 133501, 2005.
    75. M. Momirlan, T. N. Veziroglu, “Current status of hydrogen energy,” Renew. Sust. Energ. Rev., vol. 6, pp. 141-179, 2002.
    76. P. Kumar, L. K. Malhotra, ”Palladium capped samarium thin films as potential hydrogen sensors,” Mater. Chem. Phys., vol. 88, pp. 106-109, 2004.
    77. Y. Liu, C. Gao, X. Pan, X. An, Y. Xie, M. Zhou, J. Song, H. Zhang, Z. Liu, Q. Zhao, Y. Zhang, E. Xie, “Synthesis and H2 sensing properties of aligned ZnO nanotubes,” Appl. Surf. Sci., vol. 257, pp. 2264-2268, 2011.
    78. X. Du, Y. Wang, Y. Mu, L. Gui, P. Wang, Y. Tang, “A new highly selective H2 sensor based on TiO2/PtO-Pt dual-layer films,” Chem. Mater., vol. 14, pp. 3953-3957, 2002.
    79. H. L. Hsu, J. M. Jehng, Y. Sung, L. C. Wang, S. R. Yang,” The synthesis, characterization of oxidized multi-walled carbon nanotubes, and application to surface acoustic wave quartz crystal gas sensor,” Mater. Chem. Phys., vol. 109, pp. 148-155, 2008.
    80. F. C. Huang, Y. Y. Chen, T. T. W, “A room temperature surface acoustic wave hydrogen sensor with Pt coated ZnO nanorods,” Nanotechnology, vol. 20, pp. 065501(6pp), 2009.
    81. D. L. Moreno, D. M. Hernandez, S. C. Carrera, R. E. Luna, “Tailored Pd-Au layer produced by conventional evaporation process for hydrogen sensing,” Opt. Lasers Eng., vol. 49, pp. 693-697, 2011.
    82. H. Okada, A. Naruse, Y. Furukawa, A. Wakahara, “Study of electrical response in Pt/GaN Schottky barrier diode to CO gas for high temperature gas sensor,” Jpn. J. Appl. Phys., vol. 50, pp. 01AD08(6pp), 2011.
    83. P. Koteswara, V. R. Reddy, “Effect of annealing temperature on electrical and structural properties of transparent indium tin oxide electrode to n-type GaN,” Mater. Chem. Phys., vol. 114, pp. 821-826, 2009.
    84. F. K. Yam, Z. Hassan, “Schottky diode based on porous GaN for hydrogen gas sensing application,” Appl. Surf. Sci., vol. 253, pp. 9525-9528, 2007.
    85. J. J. Delaunay, N. Kakoiyama, I. Yamada, “Fabrication of three-dimensional network of ZnO tetratpods and its response to ethanol,” Mater. Chem. Phys., vol. 104, pp. 141-145, 2007.
    86. F. K. Yam, Z. Hassan, “Structural and optical characteristics of porous GaN generated by electroless chemical etching,” Mater. Lett., vol. 63, pp. 724-727, 2009.
    87. S. Xu, S. Hartvickson, J. X. Zhao, “Increasing surface area of silica nanoparticles with a rough surface,” ACS Appl. Mater. Interfaces, vol. 3, pp. 1865-1872, 2011.
    88. M. M. Rahman, A. Jamal, S. B. Khan, M. Faisal, “CuO codoped ZnO based nanostructured materials for sensitive chemical sensor applications,” ACS Appl. Mater. Interfaces, vol. 3, pp. 1346-1351, 2011.
    89. C. J. Mogab, “The loading effect in plasma etching,” J. Electrochem. Soc., vol. 124, pp. 1262-1268, 1977.
    90. B. Wu, A. Kumar, and S. Pamarthy, “High aspect ratio silicon etch: A review,” J. Appl. Phys., vol. 108, pp. 051101(20p), 2010.
    91. S. M. Sze, Physics of Semiconductor Devices, 2nd ed. New York: Wiley, 1981, ch. 2.
    92. T. H. Tsai, J. R. Huang, K. W. Lin, W. C. Hsu, H. I. Chen, and W. C. Liu, “Improved hydrogen sensing characteristics of a Pt/SiO2/GaN Schottky diode,” Sens. Actuators B, vol. 129, pp. 292-302, 2008.
    93. H. Norde, “A modified forward I-V plot for Schottky diodes with high series resistance,” J. Appl. Phys., vol. 50, pp. 5052-5053, 1979.
    94. S. Y. Chiu, J. H. Tsai, H. W. Huang, K. C. Liang, T. H. Huang, K. P. Liu, T. M. Tsai, K. Y. Hsu, and W. S. Lour, “Hydrogen sensors with double dipole layers using a Pd-mixture-Pd triple-layer sensing structure,” Sens. Actuators B, vol. 141, pp. 532-537, 2009.
    95. N. Yildirim, K. Ejderha, A. Turut, “On temperature-dependent experimental I-V and C-V data of Ni/n-GaN Schottky contacts,” J. Appl. Phys., vol. 108, pp. 114506(8pp), 2010.
    96. T. H. Tsai, H. I. Chen, I. P. Liu, C. W. Huang, T. P. Chen, L. Y. Chen, Y. J. Liu, W. C. Liu, “Investigation on a Pd-AlGaN/GaN Schottky diode-type hydrogen sensor with ultrahigh sensing responses,” IEEE Trans. Electron Dev., vol. 55, pp. 3575-3581, 2008.
    97. C. W. Hung, H. C. Chang, Y. Y. Tsai, P. H. Lai, S. I. Fu, T. P. Chen, H. I. Chen, W. C. Liu, “Study of a new field-effect resistive hydrogen, IEEE Trans. Electron Dev., vol. 52, pp. 1224-1231, 2007.
    98. T. H. Tsai, H. I. Chen, K. W. Lin, C. W. Huang, C. H. Hsu, T. P. Chen, L. Y. Chen, K. Y. Chu, C. F. Chang, W. C. Liu, “Hydrogen sensing characteristics of a Pd/AlGaN/GaN Schottky diode,” Appl. Phys. Express, vol. 1, pp. 041102(3pp), 2008.
    99. A. C. Schmitz, A. T. Ping, M. A. Khan, Q. Chen, J. W. Yang, I. Adesida, “Schottky barrier properties of various metals on n-type GaN,” Semicond. Sci. Technol., vol. 11, pp. 1464-1467, 1996.
    100. N. Tasaltin, S. Ozturk, N. Kilinc, Z. Z. Ozturk, ”Temperature dependence of a nanoporous Pd film hydrogen sensor based on an AAO template on Si,” Appl. Phys. A., vol. 97, pp. 745-750, 2009.
    101. J. R. Welty, C. E. Wicks, R. E. Wilson, G. Rorrer, in “Fundamentals of Momentum, Heat, and Mass Transfer,” Wiley & Sons, New York, 5th Ed., (2008) 427.
    102. R. C. Pawar, J. S. Shaikh, A. V. Moholkar, S. M. Pawar, J. H. Kim, J. Y. Patil, S. S. Suryavanshi, P. S. Patil, “Surfactant assisted low temperature synthesis of nanocrystalline ZnO and its gas sensing properties,” Sens. Actuator B-chem., vol. 151, pp. 212-218, 2010.
    103. P. P. Sahay, R. K. Nath, “Al-doped zinc oxide thin films for liquid petroleum gas (LPG) sensors,” Sens. Actuator B-chem., vol. 133, pp. 222-227, 2008.
    104. X. Q. Zeng, M. L. Latimer, Z. L. Xiao, S. Panuganti, U. Welp, W. K. Kwok, T. Xu, “Hydrogen gas sensing with networks of ultrasmall palladium nanowires formed on filtration membranes,” Nano Lett., vol. 11, pp. 262-268, 2011.
    105. T. H. Tsai, H. I. Chen, K. W. Lin, C. W. Hung, C. H. Hsu, L. Y. Chen, K. Y. Chu, and W. C. Liu, “Comprehensive study on hydrogen sensing properties of a Pd-AlGaN-based Schottky diode,” Int. J. Hydrog. Energy, vol. 33, pp. 2986-2992, 2008.
    106. J. R. Huang, W. C. Hsu, Y. J. Chen, T. B. Wang, H. I. Chen, and W. C. Liu, “Investigation of hydrogen-sensing characteristics of a Pd/GaN Schottky diode,” IEEE Sens. J., vol. 11, pp.1194-1200, 2011.
    107. Y. L. Wang, F. Ren, U. Zhang, Q. Sun, C. D. Yerino, T. S. Ko, Y. S. Cho, I. H. Lee, J. Han, and S. J. Pearton, “Improved hydrogen detection sensitivity in N-polar GaN Schottky diodes,” Appl. Phys. Lett., vol. 94, pp. 212108, 2009.
    108. O. Ambacher, “Growth and applications of group III nitrides,” J. Phys. D: Appl. Phys., vol. 31, pp. 2653–2710, 1998.
    109. S. Strite and H. Morkoc, “GaN, AlN, and InN - A review,” J. Vac. Sci. Technol. B, vol. 10, pp. 1237–1266, 1992.
    110. E. T. Yu, X. Z. Dang, P. M. Asbeck , S. S. Lau, and G. J. Sullivan, “Spontaneous and piezoelectric polarization effects in III-V nitride heterostructures,” J. Vac. Sci. Technol. B, vol. 17, pp. 1742–1749, 1999.
    111. Y. Alifragis, A. Volosiraki, N. A. Chaniotakis, G. Konstantinidis, E. Iliopoulos, and A. Georgakilas, “AlGaN/GaN high electron mobility transistor sensor sensitive to ammonium ions,” Phys. Status Solidi A-Appl. Mat., vol. 204, pp. 2059–2063, 2007.
    112. S. Y. Chiu, H. W. Huang, T. H. Huang, K. C. Liang, K. P. Liu, J. H. Tsai, and W. S. Lour, “High-sensitivity metal-semiconductor-metal hydrogen sensors with a mixture of Pd and SiO2 forming three-dimensional dipoles,” IEEE Electron Device Lett., vol. 29, pp. 1328–1331, 2008.
    113. T. Lalinsky, L. Rufer, G. Vanko, S. Mir, S. Hascik, Z. Mozolova, A. Vincze, and F. Uherek, “AlGaN/GaN heterostructure-based surface acoustic wave-structures for chemical sensors,” Appl. Surf. Sci., vol. 255, pp. 712–714, 2008.
    114. S. Y. Chiu, H. W. Huang, K. C. Liang, T. H. Huang, K. P. Liu, J. H. Tsai, and W. S. Lour, “High sensing response Pd/GaN hydrogen sensors with a porous-like mixture of Pd and SiO2,” Electron. Lett., vol. 45, pp. 231–232, 2009.
    115. S. Y. Chiu, K. C. Liang, H. W. Huang, T. H. Huang, K. P. Liu, H. W. Huang, J. H. Tsai, and W. S. Lour, “GaN sensors with metal-oxide mixture for sensing hydrogen-containing gases of ultralow concentration,” Jpn. J. Appl. Phys., vol. 48, pp. 041002, 2009.
    116. C. F. Chang, T. H. Tsai, H. I. Chen, K. W. Lin, T. P. Chen, L. Y. Chen, Y. C. Liu, and W. C. Liu, “Hydrogen sensing properties of a Pd/SiO2/AlGaN-based MOS diode,” Electrochem. Commun., vol. 11, pp. 65–67, 2009.
    117. E. D. Readinger and S. E. Mohney, “Environmental sensitivity of Au diodes on n-AlGaN,” J. Electron. Mater., vol. 34, pp. 375–381, 2005.
    118. J. Schalwig, G. Müller, M. Eickhoff, O. Ambacher, and M. Stutzmann, “Gas sensitive GaN/AlGaN-heterostructures,” Sens. Actuators B, vol. 87, pp. 425–430, 2002.
    119. T. Travis, “The Haber-Bosch process – Exemplar of 20th-century chemical-industry,” Chem. Ind., pp. 581–585, 1993.
    120. L. M. Lechuga, A. Calle, D. Golmaya, and F. Briones, “The ammonia sensitivity of Pt/GaAs Schottky-barrier diodes,” J. Appl. Phys., vol. 70, pp. 3348–3354, 1991.
    121. A. Spetz, M. Armgarth, and I. Lundstrom, “Hydrogen and ammonia response of metal-silicon dioxide-silicon structures with thin platinum gates,” J. Appl. Phys., vol. 64, pp. 1274–1283, 1988.
    122. C. S. Lee and A. Y. Kao, “Investigations on SiN-Passivated Γ-gate Al0.27Ga0.73N/GaN high electron mobility transistors,” J. Electrochem. Soc., vol. 157, pp. H202-H207, 2007.
    123. T. B. Wang, W. C. Hsu, J. L. Su, R. T. Wu, Y. S. Lin, and K. H. Su, “Comparison of Al0.32Ga0.68N/GaN heterostructure field-effect transistor with different channel thickness,” J. Electrochem. Soc., vol. 154, pp. H131-H133, 2007.
    124. T. Y. Chen, H. I. Chen, Y. J. Liu, C. C. Huang, C. S. Hsu, C. F. Chang, and W. C. Liu, “Ammonia sensing properties of a Pt/AlGaN/GaN Schottky diode,” IEEE Trans. Electron Devices, vol. 58 pp. 1541-1547, 2011.
    125. A. E. Abom, E. Comini, G. Sberveglieri, N. Finnegan, I. Petrov, L. Hultman, and M. Eriksson, “Experimental evidence for a dissociation mechanism in NH3 detection with MIS field-effect devices,” Sens. Actuator B-Chem., vol. 89, pp. 1-8, 2003.
    126. C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, W. H. Hsu, C. W. Hung, R. C. Liu, and W. C. Liu, “Pd-oxide-Al0.24Ga0.76As (MOS) high electron mobility transistor (HEMT)-based hydrogen sensor”, IEEE Sens. J., vol. 6, pp. 287-292, 2006.
    127. H. Wingbrant, H. Svenningstorp, P. Salomonsson, D. Kubinski, J. H. Visser, M. Lofdahl, and A. L. Spetz, “Using a MISiC-FET sensor for detecting NH3 in SCR systems,” IEEE Sens. J., vol. 5, pp. 1099-1105, 2005.
    128. P. Gambardella, Z. Sljivancanin, B. Hammer, M. Blanc, K. Kuhnke, and K. Kern, “Oxygen dissociation at Pt steps,” Phys. Rev. Lett., vol. 87, pp. 056103, 2001.
    129. S. J. Teichner, “Recent studies in hydrogen and oxygen spillover and their impact on catalysis,” Appl. Catalysis, vol. 62, pp. 1-10, 1990.
    130. A. Y. Hudeish, C. K. Tan, A. A. Aziz, and Z. Hassan, “A chemical sensor based on AlGaN,” Mater. Sci. Forum, vol. 517 pp. 33-36, 2006.
    131. T. H. Tsai, H. I. Chen, K. W. Lin, Y. W. Kuo, C. F. Chang, C. W. Hung, L. Y. Chen, T. P. Chen, Y. C. Liu, and W. C. Liu, “SiO2 passivation effect on the hydrogen adsorption performance of a Pd/AlGaN/GaN-based Schottky diode,” Sens. Actuators B, vol. 136, pp. 338-343, 2009.
    132. F. Winquist, A. Spetz, M. Armgarth, C. Nylander, and I. Lundström, “Modified palladium metal-oxide-semiconductor structures with increased ammonia gas sensitivity,“ Appl. Phys. Lett., vol. 43, pp. 839-841, 1983.
    133. K. W. Lin and C. S. Hsu, “Analysis of hydrogen gas sensing characteristics based on a grey polynomial differential model (GPDM) algorithm,“ IEEE Sens. J., vol. 11, pp. 1894-1898, 2011.
    134. J. Song and W. Lu, “Operation of Pt/AlGaN/GaN-heterojunction field-effect transistor hydrogen sensors with low detection limit and high sensitivity,” IEEE Electro. Dev. Lett., vol. 29, pp. 1193-1195, 2008.
    135. I. Lundstrom, H. Sundgren, F. Winquist, M. Eriksson, C. K. Rulcker, and A. L. Spetz, “Twenty-five years of field effect gas sensor research in Linkoping,” Sens. Actuator B-Chem., vol. 121, pp. 247-262, 2007.
    136. R. R. Blanchard, J. A. del Alamo, S. B. Adams, P. C. Chao, A. Cornet, “Hydrogen-induced piezoelectric effects in InP HEMT,” IEEE Electron Device Lett., vol. 20, pp. 393-395, 1999.
    137. T. Egawa, G. Y. Zhao, H. Ishikawa, and M. Umeno, “Characterizations of recessed gate AlGaN/GaN HEMTs on sapphire,” IEEE Trans. Electron Devices, vol. 48, pp. 603-608, 2001.
    138. S. Arulkumaran, T. Egawa, H. Ishikawa, and T. Jimbo, “High-temperature effects of AlGaN/GaN high-mobility transistors on sapphire and semi-insulating SiC substrates,” Appl. Phys. Lett., vol. 80, pp. 2186 (3p), 2002.
    139. J. X. Wang, X. W. Sun, Y. Yang, H. Huang, Y. C. Lee, O. K. Tan, and L. Vayssiers, “Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications,” Nanotechnology, vol. 17, pp. 4995-4998, 2006.
    140. C. W. Lin, H. I. Chen, T. Y. Chen, C. C. Huang, C. S. Hsu, and W. C. Liu, “Ammonia sensing characteristics of sputtered indium tin oxide (ITO) thin films on quartz and sapphire substrates,” IEEE Trans. Electron Devices, vol. 58, pp. 4407-4413, 2011.
    141. Y. Y. Tsai, C. W. Hung, S. I. Fu, P. H. Lai, H. C. Chang, H. I. Chen, and W. C. Liu, “Comprehensive investigation of hydrogen-sensing properties of Pt/InAlP-based Schottky diodes,” Sens. Actuator B-Chem., vol. 124, pp. 535-541, 2007.
    142. H. M. Apsimon, B. M. Barker, and S. Kayin, “Modeling studies of the atmospheric release and transport of ammonia in anticyclonic episodes,” Atmos. Environ., vol. 21, pp. 1939-1946, 1967.
    143. S. Yamulki, R. M. Harrison, and K. W. T. Goulding, “Ammonia surface-exchange above an agricultural field in southeast England,” Atmos. Environ., vol. 30, pp. 109-118, 1996.
    144. R. L. Knight, R. H. Kadlec, and H. M. Ohlendorf, “The use of treatment wetlands for petroleum industry effluents,” Environ. Sci. Technol., vol. 33, pp. 973-980, 1999.
    145. R. K. Gangopadhyay and S. K. Das, “Ammonia leakage from refrigeration plant and the management practice,” Process Saf. Prog., vol. 27, pp. 15-20, 2008.
    146. R. Gardner, “Use of the reciprocal calculation procedure for setting workplace emergency action levels for hydrocarbon mixtures and their relationship to lower explosive limits,” Ann. Occup. Hyg., vol. 55, pp. 1-14, 2011.
    147. S. Y. Chiu, J. H. Tsai, H. W. Huang, K. C. Liang, T. M. Tsai, K. Y. Hsu, and W. S. Lour, “Integrated hydrogen-sensing amplifier with GaAs Schottky-type diode and InGaP-GaAs heterojunction bipolar transistor,” IEEE Electron Device Lett., vol. 30, pp. 898-900, 2009.
    148. T. Y. Chen, H. I. Chen, Y. J. Liu, C. C. Huang, C. S. Hsu, C. F. Chang, and W. C. Liu, “Ammonia sensing characteristics of a Pt/AlGaN/GaN Schottky diode,” Sens. Actuators B-Chem., vol. 155, pp. 347-350, 2011.
    149. Z. Fan and J. G. Lu, “Chemical sensing with ZnO nanowire field-effect transistor,” IEEE Trans. Nanotechnol., vol. 5, pp. 393-396, 2006.
    150. A. O. Dikovska, G. B. Atanasova, N. N. Nedyalkov, P. K. Stefanov, P. A. Atanasov, E. I. Karakoleva, and A. Ts. Andreev, “Optical sensing of ammonia using ZnO nanostructure grown on a side-polished optical-fiber,” Sens. Actuators B-Chem., vol. 146, pp. 331-336, 2010.
    151. R. Moos, R. Muller, C. Plog, A. Knezevic, H. Leye, E. Irion, T. Braun, K. J. Marquardt, and K. Binder, “Selective ammonia exhaust gas sensor for automotive applications,” Sens. Actuators B-Chem., vol. 83, pp. 181-189, 2002.
    152. G. Wang, Y. Ji, X. Huang, X. Yang, P. I. Gouma, and M. Dudley, “Fabrication and characterization of polycrystalline WO3 nanofibers and their application for ammonia sensing,” J. Phys. Chem. B, vol. 110, pp. 23777-23782, 2006.
    153. C. S. Lee, B. Y. Chou, and W. C. Hsu, “A novel transparent AZO-gated Al0.2Ga0.8As/In0.2Ga0.8As pHEMT and photosensing characteristics thereof,” IEEE Trans. Electron Devices, vol. 58, pp. 725-731, 2011.
    154. J. J. Wu and S. C. Liu, “Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition,” Adv. Mater., vol. 14, pp. 215-218, 2002.
    155. J. Li, H. Fan, X. Jia, “Multilayered ZnO nanosheets with 3D porous architectures: synthesis and gas sensing application,” J. Phys. Chem. C, vol. 114, pp. 14684-14691, 2010.
    156. F. Meng, J. Yin, Y. Q. Duan, Z. H. Yuan, and L. J. Bie, “Co-precipitation synthesis and gas-sensing properties of ZnO hollow sphere with porous shell,” Sens. Actuators B-Chem., vol. 156, pp. 703-708, 2011.
    157. X. Wang, S. S. Yee, and W. P. Carey, “Transition between neck-controlled and grain-boundary-controlled sensing response of metal-oxide gas sensors,” Sens. Actuators B-Chem., vol. 24-25, pp. 454-457, 1995.
    158. S. Bai, J. Hu, X. Xu, R. Luo, D. Li, A. Chen, and C. C. Liu, “Gas sensing properties of quantum-sized ZnO nanoparticles for NO2,” IEEE Sens. J., vol. 12, pp. 1234-1238, 2012.
    159. J. H. Jun, J. Yun, K. Cho, I. S. Hwang, J. H. Lee, and S. Kim, “Necked ZnO nanoparticle-based NO2 sensors with high and fast response,” Sens. Actuators B-Chem., vol. 140, pp. 412-417, 2009.
    160. T. Y. Chen, H. I. Chen, C. S. Hsu, C. C. Huang, J. S. Wu, P. C. Chou, and W. C. Liu, “ZnO-nanorod-based ammonia gas sensors with underlying Pt/Cr interdigitated electrodes,” IEEE Electron Device Lett., vol. 33, pp. 1486-1488, 2012.
    161. Q. Li, V. Kumar, Y. Li, H. Zhang, T. J. Marks, and R. P. H. Chang, “Fabrication of ZnO nanorods and nanotubes in aqueous solutions,” Chem. Mater., vol. 17, pp. 1001-1006, 2005.
    162. Z. Yang, L. M. Li, Q. Wan, Q. H. Liu, and T. H. Wang, “High performance ethanol sensing based on an aligned assembly of ZnO nanorods,” Sens. Actuators B-Chem., vol. 135, pp. 57-60, 2008.
    163. C. Xu, J. Tamaki, N. Miura, and N. Yamazoe, “Grain size effects on gas sensing response of porous SnO2-based elements,” Sens. Actuators B-Chem., vol. 3, pp. 147-155, 1991.
    164. M. M. J. C. Yu, L. Zhang, and S. K. A. Li, “Self-assembly of ZnO nanorods and nanosheets into hollow microhemispheres and microspheres,” Adv. Mater., vol. 17, pp. 756-760, 2005.
    165. Y. Tak and K. Yong, “Controlled growth of well-aligned ZnO nanorod array using a novel solution method,” J. Phys. Chem., vol. 109, pp. 19263-19269, 2005.
    166. L. Liao, H. B. Lu, J. C. Li, H. He, D. F. Wang, D. J. Fu, and C. Liu, “Size dependence of gas sensitivity of ZnO nanorods,” J. Phys. Chem. C, vol. 111, pp. 1900-1903, 2007.
    167. M. Takata, D. Tsubone, and H. Yanagida, “Dependence of electrical conductivity of ZnO on degree of sintering,” J. Am. Ceram. Soc., vol. 59, pp. 4-8, 1976.
    168. Y. J. Chen, X. Y. Xue, Y. G. Wang, and T. H. Wang, “Synthesis and ethanol sensing characteristics of single crystalline SnO2 nanorods,” Appl. Phys. Lett., vol. 87, pp. 233503(3p), 2005.
    169. Y. Zeng, Z. Lou, L. Wang, B. Zou, T. Zhang, W. Zheng, and G. Zou, “Enhanced ammonia sensing performance of Pd-sensitized flowerlike ZnO nanostructure,” Sens. Actuators B-Chem., vol. 156, pp. 395-400, 2011.
    170. Y. K. Fang and J. J. Lee, “A tin oxide thin film sensor with high ethanol sensitivity,” Thin Solid Films, vol. 169, pp. 51-56, 1989.
    171. M. Siemons and U. Simon, “Gas sensing properties of volume-doped CoTiO3 synthesized via polyol method,” Sens. Actuators B-Chem., vol. 126, pp. 595-603, 2007.
    172. O. Lupan, V. V. Ursaki, G. Chai, L. Chow, G. A. Emelchenko, I. M. Tiginyanu, A. N. Gruzintsev, and A. N. Redkin, “Selective hydrogen gas nanosensor using individual ZnO nanowire with fast response at room temperature,” Sens. Actuators B-Chem., vol. 144, pp. 56-66, 2010.
    173. E. Comini, “Metal oxide nano-crystals for gas sensing,” Anal. Chim. Acta, vol. 568, pp. 28-40, 2006.
    174. D. Barreca, D. Bekermann, E. Comini, A. Devi, R. A. Fischer, A. Gasparotto, C. Maccato, G. Sberveglieri, and E. Tondello, “1D ZnO nano-assemblies by plasma-CVD as chemical sensors for flammable and toxic gases,” Sens. Actuators B-Chem., vol. 149, pp. 1-7, 2010.
    175. M. Duffy, W. G. Hurley, J. Kubik, S. O’Reilly, and P. Ripka, “Current sensor in pcb technology,” Sensors, 2002 Proceedings of IEEE, vol.18, pp. 779-784, 2002.
    176. C. C. Chang, and Y. E. Chen, “Fabrication of high sensitivity ZnO thin film ultrasonic devices by electrochemical etch techniques,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 44, pp. 624-628, 1997.
    177. I. Lundstrom, S. Shivaraman, C. Svensson, and L. Lundkvist, “A hydrogen-sensitive MOS field-effect transistor,” Appl. Phys. Lett., vol. 26, pp. 55-57, 1975.
    178. W. J. Buttner, G. J. Maclay, and J. R. Stetter, “Microfabricated amperometric gas sensors,” IEEE Trans. Electron Devices, vol. 35, pp. 793 –799, 1988.
    179. Y. I. Chou, C. M. Chen, W. C. Liu, and H. I. Chen, “A new Pd/InP Schottky hydrogen sensor fabricated by electrophoretic deposition with Pd nanoparticles,” IEEE Electron Device Lett., vol. 26(2), pp. 62-65, 2005.
    180. N. Yamazoe and N. Miuta, “Development of gas sensors for environmental protection,” IEEE Tran. Compo. Packag. Manuf. Technol. Part A, vol. 18, pp. 252-256, 1995.
    181. K. Hjort, “Micromechanics in indium phosphide for opto electrical applications,” Semiconductor Conference, 1997. CAS ‘97 Proceedings, 1997 International, vol. 2, pp. 431–440, 1997.
    182. A. E. Abom, P. Persson, L. Hultman, and M. Eriksson, “Influence of gate metal film growth parameters on the properties of gas sensitive field-effect devices,” Thin Solid Films, vol. 409, pp. 233-242, 2002.
    183. J. Zhou, Y. Gu, Y. Hu, W. Mai, P. H. Yeh, G. Bao, A. K. Sood, D. L. Polla, and Z. L. Wang, “Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization,” Appl. Phys. Lett., vol. 94, pp. 191103(2pp), 2009.
    184. M. Saito and S. Fujihara, “Large photocurrent generation in dye-sensitized ZnO solar cells,” Energy Environ. Sci., vol. 1, pp. 280-283, 2008.
    185. P. Mitra, A. P. Chatterjee, and H. S. Maiti, “ZnO thin film sensor,” Mater. Lett., vol. 35, pp. 33-38, 1998.
    186. G. S. T. Rao and D. T. Rao, “Gas sensing response of ZnO based thick film sensor to NH3 at room temperature,” Sens. Actuators B-Chem., vol. 55, pp. 166-169, 1999.
    187. A. Kolmakov, D. O. Klenov, Y. Lilach, S. Stemmer, and M. Moskovits, “Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles,” Nano Lett., vol. 5, pp. 667-673, 2005.
    188. S. Mubeen, T. Zhang, B. Yoo, M. A. Deshusses, and N. V. Myung, “Palladium nanoparticles decorated single-walled carbon nanotube hydrogen sensor,” J. Phys. Chem., vol. 111, pp. 6321-6327, 2007.
    189. Y. C. Lee, H. Huang, O. K. Tan, and M. S. Tse, “Semiconductor gas sensor based on Pd-doped SnO2 nanorod thin films,” Sens. Actuators B-Chem., vol. 132, pp. 239-242, 2008.
    190. S. J. Chang, T. J. Hsueh, I. C. Chen, and B. R. Huang, “Highly sensitive ZnO nanowire CO sensors with the adsorption of Au nanoparticles,” Nanotechnology, vol. 19, pp. 175502(5pp), 2008.
    191. J. M. Giraudon, A. Elhachimi, F. Wyrwalski, S. Siffert, A. Aboukais, J. F. Lamonier, G. Leclercq, “Studies of the activation process over Pd perovskite-type oxides used for catalytic oxidation of toluene,” Appl. Catal., vol. 75, pp. 157-166, 2007.
    192. I. S. Hwang, J. K. Choi, H. S. Woo, S. J. Kim, S. Y. Jung, T. Y. Seong, I. D. Kim, and J. H. Lee, “Facile control of C2H5OH sensing characteristics by decorating discrete Ag nanoclusters on SnO2 nanowire networks,” Appl. Mater. Interfaces, vol. 3, pp. 3140-3145, 2011.

    下載圖示 校內:2018-07-31公開
    校外:2018-07-31公開
    QR CODE