| 研究生: |
張慈云 Jhang, Cih-Yun |
|---|---|
| 論文名稱: |
尋找胺基酸填入蛋白質之最佳樣板 Toward Optimal Template of a Filler Amino Acid in a Protein |
| 指導教授: |
王清正
Wang, Ching-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 製造工程研究所 Institute of Manufacturing Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 49 |
| 中文關鍵詞: | 蛋白質二級結構 、胺基酸樣版 、初始結構 |
| 外文關鍵詞: | molecular dynamics, protein, secondary structure, amino acid template |
| 相關次數: | 點閱:91 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前以分子動力學模擬軟體之參數,多是取自於實驗量測之結構加以統計分析,或是用軟體模擬小型結構進而套用,而這些參數也常被應用於同源模擬法之初始結構排列。從統計結果我們可以知道,蛋白質之中的各種鍵長與角度可能會因為各種環境因素之影響而呈現不同分布,而分類若能越詳細,則越能探究這些環境因素與蛋白質結構的關係,在應用這些參數時則可以依據分子的環境,較精確的挑選參數,以達到較好的預測效果。本研究探討區塊為單純之二級結構環境與胺基酸結構的關係,是以詳細內容的二級結構作為單一胺基酸環境的分類依據,並且用已知的條件將其分類,之後將各個分類群組之中胺基酸的鍵長、鍵角及兩面角計算其平均值,將其拼湊後可得胺基酸的平均結構樣板,即可依照類別挑選套用於初始結構,若要加以統計分析,則僅需挑選出欲分析或比較的群組數值即可進行分析。
Simulations using molecular dynamics (MD) ands homology modeling are applied to predicting protein conformations. Presently, geometric parameters of amino acids needed to initiate MD simulations such as bond-lengths and angles are often obtained from analyzing experimental results or modeling them by calculating small molecular structures. Previous analysis reveals that bond-lengths, bond-angles, and other geometric parameters are affected by the secondary structure of a protein, and other factors as well. Rotational isomer (Rotamer) libraries have attempted to capture the effect of the secondary structure on certain geometric parameters. Unfortunately, rotamer libraries consider only a partial of side chain dihedral angles, and parameters such as bond-lengths and angles are left behind. For the remedy, this research aims at establishing a compete library including every protein geometric parameter that is considered to be affected by the secondary structure. In this effort, we employ DSSP and Stride while conducting assignments. It is well known that not all the assignment results by both methods are consistent. To avoid unnecessary errors caused by assignment inconsistency, inconsistent results are excluded from our investigation. We calculate sample mean and standard deviation of bond-lengths, bond-angles and dihedral angles of each amino acid. Those statistics could be applied while building the nominal conformation of each type of amino acids, and the nominal conformation could then be applied while generating the initial conformation as needed by MD simulations.
1. Kabsch, W. and Sander, C., “Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features,” Biopolymers, Vol. 22, NO.12, 2577-637, 1983.
2. Frishman, D. and Argos, P. “Knowledge-Based Protein Secondary Structure Assignment.” Proteins: Struct. Funct. Genet, Vol. 23, Issue 4, 566-579,1995.
3. Willard, L., Ranjan, A., Zhang, H., Monzavi, H., Boyko, R. F., Sykes, B. D. and Wishart, D. S., “VADAR: a web server for quantitative evaluation of protein structure quality,” Nucleic Acids Res., Vol.31, No.13, 3316-3319, 2003.
4. Altschul S.F., Madden T.L., Schaffer A.A., Zhang J., Zhang Z., Miller W. and Lipman D.J., “Gapped BLAST and PSI-BLAST: a new generation of protein database search programs,” Nucleic Acids Res., Vol.25, No.17, 3389-3402, 1997.
5. Deane, C. M. and Blundell, T. L., “A novel exhaustive search algorithm for predicting the conformation of polypeptide segments in proteins,” Proteins: Struct. Funct. Genet., Vol. 40, NO.1, 135-144, 2000.
6. Murzin A. G., Brenner S. E., Hubbard T. and Chothia C., “SCOP: a structural classification of proteins database for the investigation of sequences and structures,” J. Mol. Biol. Vol. 247, 536-540, 1995.
7. Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S. and Karplus, M. “CHARMM: A program for macromolecular energy, minimization, and dynamics calculations”. J. Comp. Chem. Vol. 4, 187–217, 1983.
8. Canutescu, A. A., Shelenkov, A. A. and Jr. Dunbrack, R. L., “A graph theory algorithm for protein side-chain prediction,” Protein Science Vol. 12, 2001-2014, 2003.
9. Koehl, P. and Delarue, M., “Application of a self consistent mean field theory to predict protein side-chain conformations and estimate their conformational entropy,” J. Mol. Biol., Vol. 239, 249-275, 1994.
10. Levitt, M., “Accurate modeling of protein conformation by automatic segment matching,” J. Mol. Biol., Vol. 226, NO. 2, 507-533, 1992.
11. Roland, L. and Dunbrack, Jr., “Rotamer Libraries in the 21st Century,” Current Opinion in Structural Biology, Vol. 12, NO. 4, 431-440, 2002.
12. Dunbrack, R.L., Jr. and Karplus, M. “A backbone dependent rotamer library for proteins: application to sidechain prediction,” J. Mol. Biol., Vol. 230, 543-571, 1993.
13. Shetty R.P., de Bakker P.I., Depristo M.A.and Blundell T.L., “Advantages of fine-grained side chain conformer libraries,” Protein Eng., Vol. 16, No. 12, 963-969, 2003.
14. DePristo, M.A., de Bakker, P.I.W., Shetty, R.P. and Blundell, T.L. “Discrete restraint-based protein modeling and the Cα-trace problem,” Protein Science, Vol. 12, 2032-2046, 2003.
15. Lovell, S.C., Word, J.M. Richardson J.S. and Richardson D.C., "The Penultimate Rotamer Library," Proteins: Struct. Funct. Genet., Vol. 40, 389-408, 2000.
校內:2057-06-29公開