| 研究生: |
陳人豪 Chen, Ren-Hao |
|---|---|
| 論文名稱: |
利用PTZ攝影機建構一智慧型視訊監控系統 Using PTZ Camera to Construct a Smart Video Surveillance System |
| 指導教授: |
楊竹星
Yang, Chu-Sing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 47 |
| 中文關鍵詞: | 監控系統 、PTZ攝影機 、追蹤 、定位系統 |
| 外文關鍵詞: | Surveillance system, PTZ camera, Tracking, Positioning system |
| 相關次數: | 點閱:91 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著時代的進步,人們的生活越來越富裕但犯罪率卻是不斷的攀升,治安方面的安全需求更是越來越重要。任憑美國這麼強大的國家,科技技術領先全球但在一次911恐怖攻擊事件中,也抵擋不住恐怖組織的破壞,因此世界各國皆把視訊監控技術列為最重要的研究課題。傳統的監控系統將攝影機所拍攝的視訊畫面,連結至一個或多個的監視器中,再用人力去監控這些畫面,判斷此畫面是否有危險的異常事件發生,進而透過人力發出警訊並做後續的處理。但由於攝影機成本的下降,目前攝影機佈建的數量也越來越多,相對的透過人力監看視訊畫面的工作量也與日俱增,遺漏掉可疑的關鍵畫面影像機率變大大提升。有鑒於此,本篇論文提出了ㄧ智慧型視訊監控系統,以能夠達到自動偵測、監控、判斷異常事件以及警訊的功能為目標,結合了諸多智慧化的功能 : 監控追蹤移動物體、移動物體位置的定位、在監控空間中不同的位置動態調整最佳的zoom-in值擷取關鍵影像、當遺失追蹤移動物體時的解決機制、移動物體進入及離開監控空間的管制、移動物體在監控空間軌跡的描繪、警戒區域的異常行為偵測,期望盡量排除掉人為的干預跟不確定性,以減少異常事件所造成的傷害。
Due to the fast development of times and people owning more and more riches but the crime rate increases continuously, the safe demand of the public security will be more and more important. Though the America is a powerful country owning the most developed science and technology, it is also mauled heavily in the 911 attack event, hence other countries in the world focus on video tracking technology as the most research topic. The videos of the cameras are shown on one or plenty of the monitors in the traditional surveillance system and it still needs considerable human input to monitor potential threats and trigger warning according to the abnormal behavior. A great deal of cameras are deployed due to the cameras cost are dropped at present and relatively the loading of monitoring operators grows up along with days passing by, hence it may cause a large number of the key frames to be lost. Therefore this paper will propose a smart video surveillance system to obtain this aim of the detecting, monitoring and warning abnormal events dynamically by combining numerous smart functions including the moving object tracking, the moving object locating, the key frames capturing by adjusting various zoom-in values in the different positions, the lost and found strategy of the losing moving object, the entrance management of the pass in and out, the moving trajectory recording in the surveillance space, and the abnormal behavior detection in the warning section. We expect to eliminate the faults of the man-made interference and the damages of the abnormal event as far as possible.
[1] M. Valera and S.A. Velastin, “Intelligent distributed surveillance systems: a review,” IEE Proceedings of Vision, Image and Signal Processing,
Vol. 152, No. 2, pp. 192-204, 2005.
[2] A. Girgensohn, D. Kimber, J. Vaughan, T. Yang, F. Shipman, “DOTS: Support for Effective Video Surveillance,” Proceedings of the 15th international conference on Multimedia, pp. 423-432, 2007.
[3] G.C. de Silva, T. Yamasaki, K. Aizawa,” Evaluation of video summarization for a large number of cameras in ubiquitous home,” Proceedings of the 13th annual ACM international conference on Multimedia, pp. 820-828, 2005.
[4] M. Shah, O. Javed, K. Shafique,“ Automated Visual Surveillance in Realistic Scenarios,” IEEE Multimedia, pp. 30-39, 2007.
[5] X. Zhou, R. Collins, T. Kanade, P. Metes, “A master-slave system to acquire biometric imagery of humans at distance,” ACM International Workshop on Video Surveillance, pp. 113–120, 2003.
[6] Q. Liu, D. Kimber, J. Foote, L. Wilcox, J. Boreczky,”FLYSPEC: a multi-user video camera system with hybrid human and automatic control”, ACM Conference on Multimedia, pp. 484–492, 2002.
[7] M. Greiffenhagen, V. Ramesh, D. Comaniciu, ”Statistical modeling and performance characterization of a real-time dual camera surveillance system,” IEEE International Conference on ComputerVision and Pattern Recognition, pp. 2335–2342, 2000.
[8] G. Scotti, L. Marcenaro, C. Coelho, F. Selvaggi, C.S. Regazzoni, “Dual camera intelligent sensor for high definition 360 degrees surveillance,” IEE Proceedings, pp. 250-257, 2005.
[9] Marchesotti, L., Messina, A., Marcenaro, L., Regazzoni, C.” A cooperative multisensor system for face detection in video surveillance applications,” Acta Autom Sinica Chinese J. Autom. 29, pp. 423–433, 2003.
[10] Swarup, S., Oezer, T., Ray, S.R., Anastasio, T.J.”A self-aiming camera based on neurophysical principles,” International Joint Conference on Neural Networks, pp. 3201–3206, 2003.
[11] T. Yamazaki, ”Ubiquitous home: real-life testbed for home context-aware service,” Proc. Tridentcom 2005 (the First International Conference on Testbeds and Research Infrastructures for the DEvelopment of NeTworks and COMmunities), pp.54–59, 2005.
[12] T. Yamazaki, K. Kayama; S. Igi ,”Detection of People and Tracking Test Bed Using Multiple Sensors,” Multimedia and Ubiquitous Engineering, pp. 135–140, 2007.
[13] T. Mori, H. Noguchi, A. Takada, T. Sato, “Sensing Room: Distributed Sensor Environment for Measurement of Human Daily Behavior”, First International Workshop on Networked Sensing Systems (INSS2004), pp. 40-43, 2004.
[14] G.C. de Silva, S. Anavi, T. Yamasaki, K. Aizawa, ” A Sensor Network for Event Retrieval in a Home Like Ubiquitous Environment”, Acoustics, Speech and Signal Processing, ICASSP 2007, IEEE International Conference, Vol. 4, pp. 1393-1396, 2007.
[15] G.C. de Silva, T. Yamasaki, K. Aizawa,”Interactive Experience Retrieval for Ubiquitous Home”, ACM CARPE'06, pp. 45-48, 2006.
[16] C.R. Yu, C.L. Wu, C.H. Lu, L.C. Fu, ”Human Localization via Multi-Cameras and Floor Sensors in Smart Home,” ICSMC '06, IEEE International Conference, Vol. 5, pp. 3822–3827, 2006.
[17] G. C. de Silva, T. yamasaki, T. Ishikawa, K. Aizawa,“ Video Handover for Retrieval in a Ubiquitous Environment Using Floor Sensor Data,” In proc. ICME 2005, pp. 233-236, 2005.
[18] G. C. de Silva, T. Ishikawa, T. Yamasaki, K. Aizawa,“ Person Tracking and Multi-camera Video Retrieval Using Floor Sensors in a Ubiquitous Environment,” In proc. CIVR 2005, 2005.
[19] S. Huttunen, J. Heikkila ,” An Active Head Tracking System for Distance Education and Videoconferencing Applications,” Video and Signal Based Surveillance. IEEE International Conference, pp. 30–30, 2006.
[20] http://www.blueeyes.com.tw/
[21] C.Anderson, Peter Burt, G. van der Wal, “Change detection and tracking using pyramid transformation techniques,” In Proceedings of SPIE – Intelligent Robots and Computer Vision, Vol. 579, pp. 72-78,1985.
[22] P.L. Rosin, T. Ellis, “ Image difference threshold strategies and shadow detection,” in Proc. British Machine Vision Conf., pp. 347–356, 1995.
[23] C. Wren, A. Azarbayejani, T. Darrell, A. Pentland, “Pfinder: real-time tracking of the human body,”IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 19, No.7, pp. 780-785,1997.
[24] I. Haritaoglu, D. Harwood, L.S. Davis,”W4:who?when?where?Where?what?a real-time system for detection and tracking people,” Third Face and Gesture Recognition Conference, pp. 222-227, 1998.
[25] K. Toyama, J. Krumm, B. Brumitt, and B. Meyers,“ Wallflower: Principles and practice of background maintenance,” in Proc. Int. Conf. Computer Vision, Corfu,
Greece, pp. 255–261, 1999.