| 研究生: |
李含 Lee, Han |
|---|---|
| 論文名稱: |
仿宿主概念應用於生醫材料的設計:以氧化鋯塗佈於留置針及多孔鈦支架為例 Host-mimetic concept applied to design biomaterials: zirconia-based coatings upon indwelling needle and porous titanium scaffold |
| 指導教授: |
廖峻德
Liao, Jiunn-Der |
| 共同指導教授: |
劉浩志
Liu, Bernard HaoChih |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 123 |
| 中文關鍵詞: | 溶膠-凝膠法 、ZrO2塗層 、316L不銹鋼 、多孔鈦 、生物相容性 |
| 外文關鍵詞: | sol–gel method, ZrO2 coating, 316L stainless steel, porous titanium, biocompatibility |
| 相關次數: | 點閱:135 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
生物體自然而然形成了適應性強的結構,啟發我們人類可藉由生活當中尋找解決問題的答案。宿主模仿是對自然的模型和系統的模仿,可尋求解決影響人類複雜上的問題。本論文介紹以功能設計之宿主模擬應用研究:包括氧化鋯(ZrO2)基留置針和多孔鈦支架。對於氧化鋯(ZrO2)基留置針,使用溶膠-凝膠浸塗技術覆蓋ZrO2於316L不鏽鋼上。實驗結果表明,在體外和體內的反應測試中,氧化鋯塗層顯示出具生物惰性之特性,大幅明顯減少影響傷口癒合之因素,因此適合用於組織侵入表面。因此ZrO2/ 316L_500針極具有高潛力作為生物惰性之塗層,可應用於解剖刀和留置針。之後為了增加其生物相容性和機械性質,利用聚乙二醇作為粘合劑來改質ZrO2水溶液。隨之觀察比較ZAN_400_5和ZANP_400_5表面上的細胞貼附生長形態,其細胞生長和存活率顯示出無細胞毒性之特點。對於多孔鈦支架方面,Ti_1000_50的負荷承載能力,孔隙率、孔徑和生物相容性均顯示出適合替代如脊柱的腰椎間盤或小梁骨的一部分的結構。多孔鈦樣品的質量可以通過ZrO2塗層進一步增強,例如細胞親和力。預期多孔鈦和具生物相容性之氧化鋯塗層的結合會有很極高的潛在應用,不僅可運用於多孔鈦支架上,對於其它仿生應用也存在潛力。
Living organisms have evolved well-adapted structures through natural selection that inspires human to look for answers to our lives’ problems. The host-mimetic is the imitation of the models and systems of nature, which can be influential to the complex of human problem solving. This dissertation presents the study of functionally designed host-mimetic applications; including zirconia (ZrO2) based indwelling needle and porous titanium (Ti) scaffold. For the former, 316L stainless steel (SS) plate was coated with ZrO2 (ZrO2/316L) using the sol-gel dip coating technique. The results indicate that the in vitro and in vivo responses are most likely induced by the bio-inertness of the ZrO2 coating, which significantly reduces the impact of the wound healing process and is thus suitable for a tissue-invasive surface. The ZrO2/316L_500 needle exhibits high potential to be applied to scalpels and indwelling needles. In order to increase biocompatibility and mechanical properties of the as-prepared ZrO2/316L, a modified sol-gel process that uses PEG as the binding agent was applied. Examination of the cell morphology, growth, and viability on the surfaces of ZAN_400_5 and ZANP_400_5 indicates no cytotoxic effect. For the later, porous Ti scaffolds for bone spacer was developed based upon powder metallurgy. The load-bearing capacity, porosity, pore size, and biocompatibility of Ti_1000_50 make it become promising for the lumbar disc of the spine or a part of trabecular bone. The quality of porous Ti could be further improved by ZrO2 coating, for instance, the cell affinity. The combination of porous Ti characteristics and biocompatible ZrO2 coating is expected to have high potential applications not only for scaffolds but also for other biomimetic applications.
[1] P. P. Hesse, and R. L. Simpson, "Variable vegetation cover and episodic sand movement on longitudinal desert sand dunes", Geomorphology, Vol. 81, pp. 276-291, 2006.
[2] N. Alireza, P. D. Hodgson, and C. Wen, "Biomimetic porous titanium scaffolds for orthopaedic and dental applications ", InTech, pp. 415-450, 2010.
[3] C. F. Ming, and X. Liu, "Advancing biomaterials of human origin for tissue engineering", Progress in polymer science, Vol. 53, pp. 86-168, 2016.
[4] Y. Shen, G. Mackey, N. Rupcich, D. Gloster, W. Chiuman, Y. Li, and J. D. Brennan, "Entrapment of Fluorescence Signaling DNA Enzymes in Sol-Gel-Derived Materials for Metal Ion Sensing", Analytical chemistry, Vol. 79, pp. 3494-3503, 2007.
[5] S. Ramakrishnaa, J. Mayerb, E. Wintermantelc, K. Leong, "Biomedical applications of polymer-composite materials: a review", Composites science and technology, Vol. 61, pp. 1189-1224, 2001.
[6] J. C. Love, L. Estroff, J. Kriebel, R. Nuzzo, and G. Whitesides, "Self-assembled monolayers of thiolates on metals as a form of nanotechnology", Chemical reviews, Vol. 105, pp. 1103-1170, 2005.
[7] G. Ryan, A. Pandit, and D. P. Apatsidis, "Fabrication methods of porous metals for use in orthopaedic applications", Biomaterials, Vol. 27, pp. 2651-2670, 2006.
[8] L. Gang, J. Lu, and K. Lu. "Surface nanocrystallization of 316L stainless steel induced by ultrasonic shot peening", Materials Science and Engineering: A, Vol. 286, pp. 91-95, 2000.
[9] O. Lev, Z. Wu , S. Bharathi , V. Glezer , A. Modestov , J. Gun , L. Rabinovich, and S. Sampath, "Sol− gel materials in electrochemistry", Chemistry of Materials, Vol. 9, pp. 2354-2375, 1997.
[10] G. X. Shen, R. G. Du, Y. C. Chen, C. J. Lin, and D. Scantlebury, "Study on hydrophobic nano-titanium dioxide coatings for improvement in corrosion resistance of type 316L stainless steel", Corrosion, Vol. 61, pp. 943-950, 2005.
[11] N. Jha, D. P. Mondal, J. D. Majumdarb, A. Badkul, A. K. Jha, and A. K. Khare, “Highly porous open cell Ti-foam using NaCl as temporary space holder through powder metallurgy route”, Materials & Design, Vol. 47, pp. 810-819, 2013.
[12] W. M. Kriven, "Martensitic toughening of ceramics." Materials Science and Engineering: A, Vol. 127, pp. 249-255, 1990.
[13] S. Lawson, “Environmental degradation of zirconia ceramics”, Journal of the European ceramic society, Vol. 15, pp. 485-502, 1995.
[14] R. H. Hannink, P. M. Kelly, and B. C. Muddle, "Transformation toughening in zirconia‐containing ceramics", Journal of the American Ceramic Society, Vol. 83, pp. 461-487, 2000.
[15] X. Chen, and H. J. Schluesener, "Nanosilver: a nanoproduct in medical application", Toxicology letters, Vol. 176, pp. 1-12, 2008.
[16] J. F. Bates, and A. G. Knapton, "Metals and alloys in dentistry", International Metals Reviews, Vol. 22, pp.39-60,1997.
[17] M. Hisbergues, S. Vendeville, and P. Vendeville, "Zirconia: Established facts and perspectives for a biomaterial in dental implantology", Journal of Biomedical Materials Research Part B: Applied Biomaterials, Vol. 88, pp. 519-529, 2009.
[18] P. N. Nanbu, T. Hosoe, Y. Hamai, and A. Shigematsu, "Stem cell renewal and contraction of the tunica media caused by a damaged blood vessel following a thick needle stab", European journal of drug metabolism and pharmacokinetics, Vol. 32, pp. 149-162, 2007.
[19] D. Giulian, J. Woodward, D. G. Young, J. F. Krebs, and L. B. Lachman, "Interleukin-1 injected into mammalian brain stimulates astrogliosis and neovascularization". Journal of Neuroscience, Vol. 8, pp. 2485-2490, 1988.
[20] M. Catauro, F. Papale, F. Bollino, M. Gallicchio, and S. Pacifico, “Biological evaluation of zirconia/PEG hybrid materials synthesized via sol–gel technique”, Materials Science and Engineering: C, Vol. 40, pp. 253-259, 2014.
[21] H. Dislich, and P. Hinz, "History and principles of the sol-gel process, and some new multicomponent oxide coatings", Journal of non-Crystalline Solids, Vol. 48, pp. 11-16, 1982.
[22] H. Dislich, "Sol-gel: science, processes and products", Journal of non-crystalline solids, Vol. 80, pp. 115-121, 1986.
[23] H. Tiainen, G. Eder, O. Nilsen, and H. J. Haugen, “Effect of ZrO2 addition on the mechanical properties of porous TiO2 bone scaffolds”, Materials Science and Engineering: C, Vol. 32, pp. 1386-1393, 2012.
[24] J. Y. Thompson, B. R. Stoner, Piascik J. R. and R. Smith, "Adhesion/cementation to zirconia and other non-silicate ceramics: where are we now?", Dental Materials, Vol. 27, pp. 71-82, 2011.
[25] H. Liu, S. Li, Q. Li, Y. Li, and W. Zhou, "Microstructure, phase stability and thermal conductivity of plasma sprayed Yb2O3, Y2O3 co-stabilized ZrO2 coatings", Solid State Sciences, Vol. 13, pp. 513-519, 2011.
[26] A. L. Ortiz, J. Sánchez-González, L. M. González-Méndez, and F. L. Cumbrera, “Determination of the thermal stability and isothermal bulk modulus of the ZrO2 polymorphs at room temperature by molecular dynamics with a semi-empirical quantum-chemical model”, Ceramics international, Vol. 33, pp. 705-709, 2007.
[27] Q. Zhao, W. H. Shih, H. L. Chang, and P. Andersen, “The effect of curing on the thermal stability of Si-doped ZrO2 powders”, Applied Catalysis A: General, Vol. 262, pp. 215-221, 2004.
[28] P. F. Manicone, P. R. Iommetti, and L. Raffaelli, “An overview of zirconia ceramics: basic properties and clinical applications”, Journal of dentistry,Vol. 35, pp. 819-826, 2007.
[29] Z. Wang, Z. J. Zhao, B. J. Yan, Y. L. Li, F. Feng, K. Shi, and Z. Han, “An orientation competition in yttria-stabilized zirconia thin films fabricated by ion beam assisted sputtering deposition”, Thin Solid Films, Vol. 520, pp. 1115-1119, 2011.
[30] M. T. Soo, Prastomo N, A. Matsuda, G. Kawamura, H. Muto, A. F. M. Noor, Z. Lockman, and K. Y. Cheong, “Elaboration and characterization of sol–gel derived ZrO2 thin films treated with hot water”, Applied Surface Science, Vol. 258, pp. 5250-5258, 2012.
[31] S. Y. Bae, H. S. Choi, S. Y. Choi, and Y. J. Oh, “Sol–gel processing for epitaxial growth of ZrO2 thin films on Si (100) wafers”, Ceramics international, Vol. 26, pp. 213-214, 2000.
[32] W. C. Liu, D. Wu, A. D. Li, H. Q. Ling, Y. F. Tang, and N. B. Ming, “Annealing and doping effects on structure and optical properties of sol–gel derived ZrO2 thin films”, Applied surface science, Vol. 191, pp. 181-187, 2002.
[33] R. Caruso, O. De Sanctis, A. Macı́as-Garcı́a, E. Benavidez, and S.R. Mintzer, “Influence of pH value and solvent utilized in the sol–gel synthesis on properties of derived ZrO2 powders”, Journal of materials processing technology, Vol. 152, pp. 299-303, 2004.
[34] I. I. Stefanc, S. Music, G. Stefanic, and A. Gajovic, “Thermal behavior of ZrO2 precursors obtained by sol–gel processing”, Journal of molecular structure, Vol. 480, pp. 621-625, 1999.
[35] M. D. Hernández-Alonso, I. Tejedor-Tejedor, J. M. Coronado, Soria J, and M. A. Anderson, “Sol–gel preparation of TiO2–ZrO2 thin films supported on glass rings: Influence of phase composition on photocatalytic activity”, Thin Solid Films, Vol. 502, pp. 125-131, 2006.
[36] M. Mishra, P. Kuppusami, A. Singh, S. Ramya, V. Sivasubramanian, and E. Mohandas, “Phase evolution in zirconia thin films prepared by pulsed laser deposition”, Applied Surface Science, Vol. 258, pp. 5157-5165, 2012.
[37] K. Izumi, H. Tanaka, M. Murakami, T. Deguchi, A. Morita, N. Tohge, and T. Minami, “Coating of fluorine-doped ZrO2 films on steel sheets by sol-gel method”, Journal of Non-Crystalline Solids, Vol. 121, pp. 344-347, 1990.
[38] C. Piconi, and G. Maccauro, “Zirconia as a ceramic biomaterial”, Biomaterials, Vol. 20, pp.1-25, 1999
[39] S. Korkmaz, S. Pat, N. Ekem, M.Z. Balbag, and S. Temel, “Thermal treatment effect on the optical properties of ZrO2 thin films deposited by thermionic vacuum arc”, Vacuum, Vol. 86, pp. 1930-1933, 2012.
[40] A. Tarditi, C. Gerboni, and L. Cornaglia, “PdAu membranes supported on top of vacuum-assisted ZrO2-modified porous stainless steel substrates”, Journal of membrane science, Vol. 428, pp. 1-10, 2013.
[41] Z. Chen, N. Prud'homme, B. Wang, P. Ribot, and V. Ji, “Microstructure characterization and deposition mechanism studies of ZrO2 thin films deposited by LI-MOCVD”, Surface and Coatings Technology, Vol. 218, pp. 7-16, 2013.
[42] M. Catauro, F. Papale, and F. Bollino, “Characterization and biological properties of TiO¬2/PCL hybrid layers prepared via sol–gel dip coating for surface modification of titanium implants”, Journal of Non-Crystalline Solids,Vol. 415, pp. 9-15, 2015.
[43] J. K. Ros, J. Filipiak, C. Pezowicz, A. Baszczuk, M. Miller, M. Kowalski, and R. O. Bedzinski, "The effect of substrate roughness on the surface structure of TiO2, SiO2, and doped thin films prepared by the sol-gel method", Acta of Bioengineering and Biomechanics, Vol. 11, pp. 21-29, 2009.
[44] J. D. Wright, and N. A. Sommerdijk, "Sol-gel materials: chemistry and applications", Vol. 4, CRC press book, 2000.
[45] M. J. Paterson, D. G. McCulloch, P. J. Paterson and B. Ben-Nissan, "The morphology and structure of sol–gel derived zirconia films on stainless steel", Thin Solid Films, Vol. 311, pp. 196-206, 1997.
[46] A. Mehner, W. Datchary, N. Bleil, H. W. Zoch, M. J. Klopfstein and D. A. Lucca, "The influence of processing on crack formation, microstructure, density and hardness of sol-gel derived zirconia films", Journal of sol-gel science and technology, Vol. 36, pp. 25-32, 2005.
[47] M. Geetha, A. K. Singh, R. Asokamani, and A. K. Gogia, "Ti based biomaterials, the ultimate choice for orthopaedic implants–a review", Progress in materials science, Vol. 54, pp. 397-425, 2009.
[48] L. C. Palmer, C. J. Newcomb, S. R. Kaltz, , E. D. Spoerke, and Stupp, S. I., "Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel", Chemical reviews, Vol. 108, pp. 4754-4783, 2008.
[49] D. B. Burr, and R. B. Martin, "Errors in bone remodeling: toward a unified theory of metabolic bone disease", Developmental Dynamics, Vol. 186, pp. 186-216, 1989.
[50] K. Choi, J. L. Kuhn, M. J. Ciarelli, and S. A. Goldstein, "The elastic moduli of human subchondral, trabecular, and cortical bone tissue and the size-dependency of cortical bone modulus", Journal of biomechanics, Vol. 23, pp. 1103-1113, 1990.
[51] J. Y. Rho, L. Kuhn-Spearing, and P. Zioupos, "Mechanical properties and the hierarchical structure of bone", Medical engineering & physics, Vol. 20, pp. 92-102, 1998.
[52] T. Rajangam, and S. S. An, "Fibrinogen and fibrin based micro and nano scaffolds incorporated with drugs, proteins, cells and genes for therapeutic biomedical applications", International journal of nanomedicine, Vol. 8, pp.3641-3662, 2013.
[53] A. Bansiddhi, T. D. Sargean, S. I. Stupp, and D. C. Dunand, "Porous NiTi for bone implants: a review", Acta biomaterialia, Vol. 4, pp. 773-782, 2008.
[54] T. Imwinkelried, "Mechanical properties of open‐pore titanium foam", Journal of biomedical materials research Part A, Vol. 81, pp. 964-970, 2007.
[55] G. Guerrier, A. Alaqeeli, A. Jawadi, N. Foote, E. Baron, and A. Albustanji, "Reconstruction of residual mandibular defects by iliac crest bone graft in war-wounded Iraqi civilians", British Journal of Oral and Maxillofacial Surgery, Vol. 53, pp. e27-e31, 2015.
[56] G. A. Silva, O. P. Coutinho, P. Ducheyne, and R. L. Reis, "Materials in particulate form for tissue engineering", Journal of tissue engineering and regenerative medicine, Vol. 1, pp. 97-109, 2007.
[57] A. Kumar, S. Mandal, S. Barui, R. Vasireddi, U. Gbureck, M. Gelinsky, and B. Basu, "Low temperature additive manufacturing of three dimensional scaffolds for bone-tissue engineering applications: Processing related challenges and property assessment", Materials Science and Engineering: R: Reports, Vol. 103, pp. 1-39, 2016.
[58] D. Yang, H. Shao, Z. Guo, T. Lin and L. Fan, "Preparation and properties of biomedical porous titanium alloys by gelcasting", Biomedical Materials, Vol. 6, pp. 045010, 2011.
[59] M. Niinomi, M. Nakai and J. Hieda, "Development of new metallic alloys for biomedical applications", Acta Biomaterialia , Vol. 8, pp. 3888-3903, 2012.
[60] M. A. Hady, H. Fuwa, K. Hinoshita, H. Kimura, Y. Shinzato and M. Morinaga, "Phase stability change with Zr content in β-type Ti–Nb alloys", Scripta Materialia, Vol. 57, pp. 1000-1003, 2007.
[61] D. Yang, H. Shao, Z. Guo, T. Lin and L. Fan, "Preparation and properties of biomedical porous titanium alloys by gelcasting", Biomedical Materials, Vol. 6, pp. 045010, 2011.
[62] Y. C. Tsui, C. Doyle and T. W. Clyne, "Plasma sprayed hydroxyapatite coatings on titanium substrates Part 2: optimisation of coating properties", Biomaterials, Vol. 19, pp. 2031-2043, 1998.
[63] J. Subrahmanyam, and M Vijayakumar, "Self-propagating high-temperature synthesis", Journal of Materials Science, Vol. 27, pp. 6249-6273, 1992.
[64] A. L. Donlevy and C. M. Bugle, Inc. Dynamet, "Porous metal coating process and mold therefor", U.S. Patent, Vol. 4, pp. 612-160, 1986.
[65] A. W. Nugroho, G. Leadbeater and I. J. Davies, "Processing and properties of porous Ti-Nb-Ta-Zr alloy for biomedical applications using the powder metallurgy route", Australian Journal of Mechanical Engineering, Vol. 8, pp. 169-176, 2011.
[66] P. S. Liu and K. M. Liang, "Review Functional materials of porous metals made by P/M, electroplating and some other techniques", Journal of Materials Science, Vol. 36, pp. 5059-5072, 2001.
[67] P. C. Angelo and R. Subramanian, "Powder metallurgy: science, technology and applications", HI Learning Pvt. Ltd, 2008.
[68] G. Ryan, A. Pandit and D. P. Apatsidis, "Fabrication methods of porous metals for use in orthopaedic applications", Bomaterials, Vol. 27, pp. 2651-2670, 2006.
[69] M. Calin, A. Gebert, A. C. Ghinea, P. F. Gostin, S. Abdi, C. Mickel, and J. Eckert, "Designing biocompatible Ti-based metallic glasses for implant applications", Mterials Science and Engineering, Vol. 33, pp. 875-883, 2013.
[70] K. K. Mallick, "Freeze casting of porous bioactive glass and bioceramics", Journal of the American Ceramic Society, Vol. 92, s1, 2009.
[71] G. E. J. Poinern, , S. Brundavanam, and D. Fawcett, "Biomedical magnesium alloys: a review of material properties, surface modifications and potential as a biodegradable orthopaedic implant", American Journal of Biomedical Engineering, Vol. 2, pp. 218-240, 2012.
[72] R. B. Heimann, "Structure, properties, and biomedical performance of osteoconductive bioceramic coatings", Surface and Coatings Technology, Vol. 233, pp. 27-38, 2013.
[73] K. Byrappa and T. Adschiri, "Hydrothermal technology for nanotechnology", Progress in Crystal Growth and Characterization of Materials, Vol. 53, pp. 117-166, 2007.
[74] C. M. Santos, J. Mangadlao, F. Ahmed, A. Leon, R. C. Advincula and D. F. Rodrigues, "Graphene nanocomposite for biomedical applications: fabrication, antimicrobial and cytotoxic investigations", Nanotechnology, Vol. 23, p. 395101, 2012.
[75] A. Dureković, "Cement pastes of low water to solid ratio: an investigation of the porosity characteristics under the influence of a superplasticizer and silica fume", Cement and Concrete Research, Vol. 25, pp. 365-375, 1995.
[76] C. M. Wang, "Materials analysis", pp. 73-82, 2001.
[77] F. A. Fischer-Cripps, "Nanoindentation Springer-Verlag", Vol. 164, 2004.
[78] A. Yamamoto, R. Honma, M. Sumita, and T. Hanawa, "Cytotoxicity evaluation of ceramic particles of different sizes and shapes", Journal of Biomedical Materials Research Part A, Vol. 68, pp. 244-256, 2004.
[79] T. M. H. Ngo, P. L. Shao, J. D. Liao, C. C. K. Lin, and H. K. Yip, "Enhancement of Angiogenesis and Epithelialization Processes in Mice with Burn Wounds through ROS/RNS Signals Generated by Non‐Thermal N2/Ar Micro‐Plasma", Plasma Processes and Polymers, Vol. 11, pp. 1076-1088, 2014.
[80] J. C. Wataha, P. E. Lockwood, M. Marek, and M. Ghazi, "Ability of Ni‐containing biomedical alloys to activate monocytes and endothelial cells in vitro", Journal of Biomedical Materials Research Part A, Vol. 45, pp. 251-257, 1999.
[81] A. R. Anand, R. Bradley, and R. K. Ganju, "LPS-induced MCP-1 expression in human microvascular endothelial cells is mediated by the tyrosine kinase, Pyk2 via the p38 MAPK/NF-κB-dependent pathway", Molecular immunology, Vol. 46, pp. 962-968, 2009.
[82] X. Jin, L. Dong, H. Xu, L. Liu, N. Li, X. Zhang, and J. Han, "Effects of porosity and pore size on mechanical and thermal properties as well as thermal shock fracture resistance of porous ZrB2–SiC ceramics", Ceramics International, Vol. 42, pp. 9051-9057, 2016.
[83] B. Cimatti, E. E. Engel, M. H. Nogueira-Barbosa, P. D. Frighetto, and J. B. Volpon, "Physical and mechanical characterization of a porous cement for metaphyseal bone repair", Acta ortopedica brasileira, Vol. 23, pp. 197-201, 2015.
[84] G. M. M. van de Graaf, D. Zoppa, A. L. do Valle, R. C. Moreira, S. C. Maestrelli, R. F. C. Marques, and M. G. N. Campos, "Morphological and mechanical characterization of chitosan-calcium phosphate composites for potential application as bone-graft substitutes", Research on Biomedical Engineering, Vol. 31, pp. 334-342, 2015.
[85] P. Neacsu, D. M. Gordin, V. Mitran, T. Gloriant, M. Costache, and A. Cimpean, “In vitro performance assessment of new beta Ti–Mo–Nb alloy compositions”, Materials Science and Engineering: C, Vol. 47, pp. 105-113, 2015.
[86] S. Hiromoto, T. Hanawa, and K. Asami, “Composition of surface oxide film of titanium with culturing murine fibroblasts L929”, Biomaterials, Vol. 25, pp. 979-986, 2004.
[87] W. Tianshi, Z. Renji, and Y. Yongnian, "Preparation of bioactive hydroxyapatite on pure titanium", Journal of Bioactive and Compatible Polymers, Vol. 24, pp.169-182, 2009.
[88] E. Zhang, C. Zou, and G. Yu, "Surface microstructure and cell biocompatibility of silicon-substituted hydroxyapatite coating on titanium substrate prepared by a biomimetic process", Materials Science and Engineering: C, Vol. 29, pp. 298-305, 2009.
[89] T. Ivanova, A. Harizanova, T. Koutzarova, N. Krins, and B. Vertruyen, "Electrochromic TiO2, ZrO2 and TiO2–ZrO2 thin films by dip-coating method", Materials Science and Engineering: B, Vol. 165, pp. 212-216, 2009.
[90] S. Lee, H. Choi, S. Shin, J. Park, G. Ham, H. Jung, and H. Jeon, “Permeation barrier properties of an Al2O3/ZrO2 multilayer deposited by remote plasma atomic layer deposition”, Current Applied Physics, Vol. 14, pp. 552-557, 2014.
[91] S. Delpeux, F. Beguin, R. Benoit, R. Erre, N. Manolova, and I. Rashkov, "Fullerene core star-like polymers-1. Preparation from fullerenes and monoazidopolyethers", European polymer journal, Vol. 34, pp. 905-915, 1998.
[92] Y. Kotani, A. Matsuda, M. Tatsumisago, T. Minami, T Umezawa, and T. Kogure, "Formation of anatase nanocrystals in sol-gel derived TiO2-SiO2 thin films with hot water treatment", Journal of Sol-Gel Science and Technology, Vol. 19, pp. 585-588, 2000.
[93] M. H. T. Ngo, J. D. Liao, P. L. Shao, C. C. Weng, and C. Y. Chang, "Increased Fibroblast Cell Proliferation and Migration Using Atmospheric N2/Ar Micro‐Plasma for the Stimulated Release of Fibroblast Growth Factor‐7", Plasma Processes and Polymers, Vol. 11, pp. 80-88, 2014.
[94] C. Xia, Q. Meng, L. Z. Liu, Y. Rojanasakul, X.R. Wang, and B. H. Jiang, "Reactive oxygen species regulate angiogenesis and tumor growth through vascular endothelial growth factor", Cancer research, Vol. 67, pp. 10823-10830, 2007.
[95] A. Mehner, W. Datchary, N. Bleil, H. W. Zoch, M. J. Klopfstein, and D. A. Lucca, "The influence of processing on crack formation, microstructure, density and hardness of sol-gel derived zirconia films", Journal of sol-gel science and technology, Vol. 36, pp. 25-32, 2005.
[96] C. Martinez, M. Sancy, J. H. Zagal, F.M. Rabagliati, B. Tribollet, H. Torres, J. Pavez, A. Monsalve, and M. A. Paez, "A zirconia-polyester glycol coating on differently pretreated AISI 316L stainless steel: corrosion behavior in chloride solution", Journal of Solid State Electrochemistry, Vol. 13, pp. 1327-1337, 2009.
[97] M. A. Dominguez-Crespo, A. Garcia-Murillo, A. M. Torres-Huerta, F.J. Carrillo-Romo, E. Onofre-Bustamante, and C. Yanez-Zamora, "Characterization of ceramic sol-gel coatings as an alternative chemical conversion treatment on commercial carbon steel", Electrochimica Acta, Vol. 54, pp. 2932-2940, 2009.
[98] M. Atik, S. H. Messaddeq, F.P. Luna, and M. A. Aegerter, "Zirconia sol-gel coatings deposited on 304 and 316L stainless steel for chemical protection in acid media", Journal of Materials science letters, Vol. 15, pp. 2051-2054, 1996.
[99] R. Brenier, and A. Gagnaire, "Densification and aging of ZrO2 films prepared by sol–gel", Thin Solid Films, Vol. 392, pp. 142-148, 2001.
[100] M. A. Dominguez-Crespo, A. Garcia-Murillo, A. M. Torres-Huerta, F. J. Carrillo-Romo, E. Onofre-Bustamante, and C. Yanez-Zamora, "Characterization of ceramic sol-gel coatings as an alternative chemical conversion treatment on commercial carbon steel", Electrochimica Acta, Vol. 54, pp. 2932-2940, 2009.
[101] M. Atik, C. R. Kha, P. D. L. Neto, L. A. Avaca, M. A. Aegerter, and J. Zarzycki, "Protection of 316L stainless steel by zirconia sol-gel coatings in 15% H2SO4 solutions", Journal of materials science letters, Vol. 14, pp. 178-181, 1995.
[102] J. Voelkel, "Improvement in quality of sol-gel derived zirconia multilayer coatings by polymeric additive", Molecular Crystals and Liquid Crystals, Vol. 354, pp. 503-509, 2000.
[103] C. Lin, C. Zhang, and J. Lin, "Phase transformation and photoluminescence properties of nanocrystalline ZrO2 powders prepared via the pechini-type sol− gel process", The Journal of Physical Chemistry C, Vol. 111, pp. 3300-3307, 2007.
[104] M. Catauro, F. Papale, F. Bollino, M. Gallicchio, and S. Pacifico, "Biological evaluation of zirconia/PEG hybrid materials synthesized via sol–gel technique", Materials Science and Engineering: C, Vol. 40, pp. 253-259, 2014.
[105] M. Catauro, F. Bollino, P. Veronesi, and G. Lamanna, "Influence of PCL on mechanical properties and bioactivity of ZrO2-based hybrid coatings synthesized by sol–gel dip coating technique", Materials Science and Engineering: C, Vol. 39, pp. 344-351, 2014.
[106] M. Geetha, A. K. Singh, R. Asokamani, and A. K. Gogia, "Ti based biomaterials, the ultimate choice for orthopaedic implants–a review", Progress in materials science, Vol. 54, pp. 397-425, 2009.
[107] S. V. Dorozhkin, "Bioceramics of calcium orthophosphates", Biomaterials, Vol. 31, pp. 1465-1485, 2010.
[108] F. M. Chen, and X. Liu, "Advancing biomaterials of human origin for tissue engineering", Progress in polymer science, Vol. 53, pp. 86-168, 2016.
[109] Z. Rezvani, J. R. Venugopal, A. M. Urbanska, D. K. Mills, S. Ramakrishna, and M. Mozafari, "A bird's eye view on the use of electrospun nanofibrous scaffolds for bone tissue engineering: Current state‐of‐the‐art, emerging directions and future trends", Nanomedicine: Nanotechnology, Biology and Medicine, Vol. 12, pp. 2181-2200, 2016.
[110] K. A. Hing, "Bone repair in the twenty–first century: biology, chemistry or engineering?", Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, Vol. 362, pp. 2821-2850, 2004.
[111] S. Wu, X. Liu, K. W. Yeung, C. Liu, and X. Yang, "Biomimetic porous scaffolds for bone tissue engineering", Materials Science and Engineering: R: Reports, Vol. 80, pp. 1-36, 2014.
[112] J. M. Holzwarth, and P. X. Ma, "Biomimetic nanofibrous scaffolds for bone tissue engineering", Biomaterials, Vol. 32, pp. 9622-9629, 2011.
[113] J. G. McCarthy, J. Schreiber, N. Karp, C. H. Thorne, and B. H. Grayson, "Lengthening the human mandible by gradual distraction", Plastic and reconstructive surgery, Vol. 89, pp. 1-8, 1992.
[114] D. W. Hutmacher, "Scaffolds in tissue engineering bone and cartilage", Biomaterials, Vol. 21, pp. 2529-2543, 2000.
[115] P. V. Giannoudis, H. Dinopoulos, and E. Tsiridis, "Bone substitutes: an update", Injury, Vol. 36, pp. S20-S27, 2005.
[116] Y. Yang, K. H. Kim, and J. L. Ong, "A review on calcium phosphate coatings produced using a sputtering process an alternative to plasma spraying", Biomaterials, Vol. 26, pp. 327-337, 2005.
[117] B. Lee, T. Lee, Y. Lee, D. J. Lee, J. Jeong, J. Yuh, S.H. Oh, H. S. Kim, and C. S. Lee, "Space-holder effect on designing pore structure and determining mechanical properties in porous titanium", Materials & Design, Vol. 57, pp. 712-718, 2014.
[118] A. Arifin, A. B. Sulong, N. Muhamad, J. Syarif, and M. I. Ramli, "Material processing of hydroxyapatite and titanium alloy (HA/Ti) composite as implant materials using powder metallurgy: a review", Materials & Design, Vol. 55, pp. 165-175, 2014.
[119] W. Yuan, Y. Tang, X. Yang, and Z. Wan, "Porous metal materials for polymer electrolyte membrane fuel cells–a review", Applied Energy, Vol. 94, pp. 309-329, 2012.
[120] M. Long, and H. J. Rack, "Titanium alloys in total joint replacement-a materials science perspective", Biomaterials, Vol. 19, pp. 1621-1639, 1998.
[121] A. Nouri, "Titanium foam scaffolds for dental applications", Metallic Foam Bone: Processing, Modification and Characterization and Properties, p. 131, 2016.
[122] S. Wu, X. Liu, K. W. Yeung, C. Liu, and X. Yang, "Biomimetic porous scaffolds for bone tissue engineering", Materials Science and Engineering: R: Reports, Vol. 80, pp. 1-36, 2014.
[123] Y. Okazaki, S. Rao, S. Asao, T. Tateishi, S. I. Katsuda, and Y. Furuki, "Effects of Ti, Al and V concentrations on cell viability", Materials Transactions, Vol. 39, pp. 1053-1062, 1998.
[124] N. J. Hallab, A. Skipor, and J. J. Jacobs, "Interfacial kinetics of titanium‐and cobalt‐based implant alloys in human serum: Metal release and biofilm formation", Journal of Biomedical Materials Research Part A, Vol. 65, pp. 311-318, 2003.
[125] D. BomBač, M. Brojan, P. Fajfar, F. Kosel and R. Turk, "Review of materials in medical applications", RMZ–Materials and Geoenvironment, Vol. 54, pp. 471-499, 2007.
[126] J. R. Davies, "Handbook of Materials for Medical Devices, ASM International", Materials Park, Ohio, 2003, pp. 21–50.
[127] H. H. Huang, Y. H. Chiu, T. H. Lee, S. C. Wu, H. W. Yang, K. H. Su, and C. C. Hsu, "Ion release from NiTi orthodontic wires in artificial saliva with various acidities", Biomaterials, Vol. 24, pp. 3585-3592, 2003.
[128] M. A. Darendeliler, A. Darendeliler, and M. Mandurino, "Clinical application of magnets in orthodontics and biological implications: a review", The European Journal of Orthodontics, Vol. 19, pp. 431-442, 1997.
[129] CARCINOGENICITY, OF. "5A. Metallic Medical and Dental Materials."
[130] G. Manivasagam, D. Dhinasekaran, and, A. Rajamanickam, "Biomedical implants: Corrosion and its prevention-a review", Recent patents on corrosion science, Vol. 2 pp. 40-54, 2010.
[131] K., Alvarez, and H. Nakajima, "Metallic scaffolds for bone regeneration", Materials, Vol. 2, pp. 790-832, 2009.
[132] Y. Li, C. Yang, H. Zhao, S. Qu, X. Li, and Y. Li, "New developments of Ti-based alloys for biomedical applications", Materials, Vol. 7, pp. 1709-1800, 2014.
[133] G. J. Owens, R. K. Singh, F. Foroutan, M. Alqaysi, C. M. Han, C. Mahapatra, H. W. Kim, and J. C. Knowles, "Sol–gel based materials for biomedical applications", Progress in Materials Science, Vol. 77, pp.1-79, 2016.
[134] H. Tiainen, G. Eder, O. Nilsen, and H. J. Haugen, "Effect of ZrO2 addition on the mechanical properties of porous TiO2 bone scaffolds", Materials Science and Engineering: C, Vol. 32, pp. 1386-1393, 2012.
[135] H. Liu, S. Li, Q. Li, Y. Li, and W. Zhou, "Microstructure, phase stability and thermal conductivity of plasma sprayed Yb2O3, Y2O3 co-stabilized ZrO2 coatings", Solid State Sciences, Vol. 13, pp. 513-519, 2011.
[136] A. L. Ortiz, J. Sánchez-González, L. M. González-Méndez, and F. L. Cumbrera, "Determination of the thermal stability and isothermal bulk modulus of the ZrO2 polymorphs at room temperature by molecular dynamics with a semi-empirical quantum-chemical model", Ceramics international, Vol. 33, pp. 705-709, 2007.
[137] M. L. Zheludkevich, I. M. Salvado, and M. G. S. Ferreira, "Sol–gel coatings for corrosion protection of metals", Journal of Materials Chemistry, Vol. 15, pp. 5099-5111, 2005.
[138] D. Wang, and G. P. Bierwagen, "Sol–gel coatings on metals for corrosion protection", Progress in organic coatings, Vol. 64, pp. 327-338, 2009.
[139] M. Guglielmi, "Sol-gel coatings on metals", Journal of sol-gel science and technology, Vol. 8, pp. 443-449, 1997.
[140] H. Hornberger, S. Virtanen, and A. R. Boccaccini, "Biomedical coatings on magnesium alloys–a review", Acta biomaterialia, Vol. 8, pp. 2442-2455, 2012.
[141] L. Esteban-Tejeda, L. A. Díaz, B. Cabal, C. Prado, R. López-Píriz, R. Torrecillas, and J.S. Moya, "Biocide glass–ceramic coating on titanium alloy and zirconium oxide for dental applications", Materials Letters, Vol. 111, pp. 59-62, 2013.
[142] S. Nagarajan, and N. Rajendran, "Sol–gel derived porous zirconium dioxide coated on 316L SS for orthopedic applications", Journal of Sol-Gel Science and Technology, Vol. 52, pp. 188-196, 2009.
[143] A. D. Pye, D. E. A. Lockhart, M. P. Dawson, C. A. Murray, and A. J. Smith, "A review of dental implants and infection", Journal of Hospital infection, Vol. 72, pp. 104-110, 2009.
[144] A. Rahtu, M. Ritala, and M. Leskelä, "Atomic layer deposition of zirconium titanium oxide from titanium isopropoxide and zirconium chloride", Chemistry of Materials, Vol. 13, pp. 1528-1532, 2001.
[145] C. Piconi, and G. Maccauro, "Zirconia as a ceramic biomaterial", Biomaterials, Vol. 20, pp. 1-25, 1999.
[146] S. M. Chang, and R. A. Doong, "Chemical-Composition-Dependent Metastability of Tetragonal ZrO2 in Sol−Gel-Derived Films under Different Calcination Conditions", Chemistry of materials, Vol. 17, pp. 4837-4844, 2005.
[147] V. V. Atuchin, V. G. Kesler, N. V. Pervukhina, and Z. Zhang, "Ti 2p and O 1s core levels and chemical bonding in titanium-bearing oxides", Journal of electron spectroscopy and related phenomena, Vol. 152, pp. 18-24, 2006.
[148] C. Wildfire, E. Çiftyürek, K. Sabolsky, and E.M Sabolsky, "Investigation of doped-gadolinium zirconate nanomaterials for high-temperature hydrogen sensor applications", Journal of Materials Science, Vol. 49, pp. 4735-4750, 2014.
[149] A. Bagri, C. Mattevi, M. Acik, Y. J. Chabal, M. Chhowalla, and V. B. Shenoy, "Structural evolution during the reduction of chemically derived graphene oxide", Nature chemistry, Vol. 2, pp. 581-587, 2010.
[150] X. Liu, R. Wang, M. Liu, J. Luo, X. Jin, J. Sun, and L. Gao, "Defect-related photoluminescence and photocatalytic properties of porous ZnO nanosheets", Materials Chemistry A, Vol. 2, pp. 15377-15388, 2014.
[151] Z. D Cui., M. F. Chen, L. Y. Zhang, R. X. Hu, S. L. Zhu, and X. J. Yang, "Improving the biocompatibility of NiTi alloy by chemical treatments: An in vitro evaluation in 3T3 human fibroblast cell", Materials Science and Engineering: C, Vol. 28, pp. 1117-1122, 2008.
[152] A. L. Rosa, G. E. Crippa, P. T. De Oliveira, M. Taba, L. P. Lefebvre, and M. M. Beloti, "Human alveolar bone cell proliferation, expression of osteoblastic phenotype, and matrix mineralization on porous titanium produced by powder metallurgy", Clinical oral implants research, Vol. 20, pp. 472-481, 2009.