| 研究生: |
郭匡甫 Kuo, Kuang-Fu |
|---|---|
| 論文名稱: |
誘導後比生長速率對基因重組大腸桿菌
生產白細胞介素20號的影響 Effect of the Post-Induction Specific Growth Rate on the Production of Interleukin-20 by recombinant E. coli |
| 指導教授: |
陳特良
Chen, Teh-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 51 |
| 中文關鍵詞: | 誘導後比生長速率 、基因重組大腸桿菌 、白介素20號比產量 、批式饋料 |
| 外文關鍵詞: | Post-induction specific growth rate, IL-20 Yield, fed-batch, recombinant E. coli |
| 相關次數: | 點閱:134 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前利用基因重組大腸桿菌生產外來蛋白質之醱酵方法分成兩階段,首先以批次培養提高菌體濃度,其次以饋料批次饋入新鮮培養基與誘導劑,以誘導外來基因表現。由於以往的文獻發現在批次培養中大腸桿菌比生長速率是影響異種蛋白質產量的重要參數,因此本研究之目的在於探討誘導後細胞比生長速率對於重組蛋白白細胞介素20號(IL-20)生產之影響。研究發現,本研究所使用之宿主載體系統Escherichia coli BL21 (DE3)/pET-43a產生的醋酸僅在2 g/L以下,所以醱酵系統並無醋酸累積之問題。其次內涵體的累積亦不明顯,IL-20主要是以可溶性狀態存在於細胞內。其次,以平均比生長速率0.103 h-1進行饋料可得到最高的比產量(109 mg/g cell),此結果顯示誘導後比生長速率對比IL-20產量之影響存在一最適值。將實驗數據進一步分析,若以蛋白質比生產速率之觀點,將平均比生長速率控制在0.23 h-1可得到IL-20最高比生產速率16.4 mg/(g cell)•h。
The method for producing recombinant proteins by Escherichia coli consists of two stages. The first was to increase cell density at the batch-cultured stage; and the second was to feed fresh medium with inducer using fed-batch operation for inducing the expression of foreign gene. The literatures had documented that the cell growth rate is a major factor affecting the yield of recombinant proteins. Therefore, the objective of this study was to investigate the effect of cell growth rate of post-induction on the production of the recombinant protein interleukin-20 (IL-20). The results indicated that the host-vector system E. coli BL21(DE3) produced little acetic acid (below 2 g/L), thus the fermentation system was not influenced by the accumulation of acetate. The formation of inclusion bodies were not obvious, most of the IL-20 existed as soluble form inside the cells. In addition, the highest specific IL-20 yield (109 mg/g cell) was obtained when the average growth rate was 0.103 h-1. From the experimental data, the highest specific production rate of IL-20 was estimated as 16.4 mg/(g cell)•h if the average cell growth rate could be controlled at 0.23 h-1.
Andersson, L., S. Yang, P. Neubauer, and S.-O. Enfors, “Impact of plasmid presence and induction on cellular responses in fed batch cultures of Escherichia coli,” J. Biotechnol., 46: 255-263 (1996).
Bylund, F., E. Collet, S.-O. Enfors, and G. Larsson, “Substrate gradient formation in the large-scale bioreactor lowers cell yield and increases by-product formation,” Bioprocess Eng., 18: 171-180 (1998).
Chou, C. P., and J. H. Tiseng, “Effect of carbon source on inclusion body formation upon overproduction of periplasmic penicillin acylase in Escherichia coli,” J. Chin. Inst. Chem. Engrs., 31: 219-224 (2000).
Curless, C., J. Pope, and L. Tsai, “Effect of preinduction specific growth rate on recombinant alpha consensus interferon synthesis in Escherichia coli,” Biotechnol. Prog., 6: 149-152 (1990).
Gastan, A., and S.-O. Enfors, “Characteristic of a DO-controlled fed-batch culture of Escherichia coli,” Bioprocess Eng., 22: 509-515 (2000).
Han, K., H. C. Lim, and J. Hong, “Acetic acid formation in Escherichia coli,” Biotechnol. Bioeng., 39: 663-671 (1992).
Hellmuth, K., D. J. Korz, E. A. Sanders, and W. D. Deckwer, “Effect of growth rate on stability and gene expression of recombinant plasmids during continuous and cell density cultivation of Escherichia coli TG1,” J. Biotechnol., 32: 289-298 (1994).
Jensen, E. B., and S. Carlsen, “Production of recombinant human growth hormone in Escherichia coli: expression of different precursors and physiological effects of glucose, acetate, and salts,” Biotechnol. Bioeng., 36: 1-11 (1990).
Kazan, D., A. Camurdan, and A. Hortaçsu, “The effect of glucose concentration on the growth rate and some intracellular components of a recombinant Escherichia coli culture,” Process Biochem., 30: 269-273 (1995).
Kim S. S., E. K. Kim, and J. S. Rhee, “Effects of growth rate on the production Pseudomonas fluorescens lipase during the fed-batch cultivation of Escherichia coli, ” Biotechnol. Prog., 12: 718-722 (1996).
Kosinski, M. J., U. Rinas, and J. E. Bailey, “Isopropyl-β-D-thiogalactopyranoside influences the metabolism of Escherichia coli,” Appl. Microbiol. Biotechnol., 36: 782-784 (1992).
Luli, G. W., and W. R. Strohl, “Comparison of growth, acetate production, and acetate inhibition of Escherichia coli strain in batch and fed-batch fermentation,” Appl. Environ. Microbiol., 56: 1004-1011 (1990).
Luong, J. H. T., “Generalization of Monod kinetics for analysis of growth data with substrate inhibition,” Biotechnol. Bioeng., 29: 242-248 (1986).
Jung, G., P. Denefle, J. Becquart, and J.-F. Mayaux, “High-cell density fermentation studies of recombinant Escherichia coli strains expressing human interleukin-1β,” Ann. Inst. Pasteur Microbiol., 139: 129-146 (1988).
Miao, F., and D. S. Kompala, “Overexpression of cloned genes using recombinant Escherichia coli regulated by T7 promoter: 1. Batch cultures and kinetic modeling,” Biotechnol. Bioeng., 40: 787-796 (1992).
Mitraki, A., and J. King, “ Protein folding intermediates and inclusion body formation,” Bio/technol., 7: 690-697 (1989).
Nancib, N., and J. Boudrant, “Effect of growth rate on stability and gene expression of a recombinant plasmid during continuous culture of Escherichia coli,” Biotechnol. Lett., 14: 643-648 (1992).
Nancib, N., R. Mosrati, and J. Boudrant, “Study of population dynamic for a recombinant Bacterium during continuous cultures: Application of data filtering and smoothing,” Biotechnol. Bioeng., 39: 398-407 (1992).
Riesenberg, D., K. Menzel, V. Schulz, K. Schumann, G. Veith, G. Zuber, and W. A. Knorre, “High cell density fermentation of recombinant Escherichia coli expressing human interferon alpha 1,” Appl. Microbiol. Biotechnol., 34: 77-82 (1990).
Riesenberg, D., and R. Guthke, “High-cell-density cultivation of microorganisms,” Appl. Microbiol. Biotechnol., 51: 422-430 (1999).
Seo, J. H., and J. E. Bailey, “Effects of recombinant plasmid content on growth properties and cloned gene product formation in Escherichia coli,” Biotechnol. Bioeng., 27: 1668-1674 (1985).
Seo, J. H., and J. E. Bailey, “Continuous cultivation of recombinant Escherichia coli: existence of an optimum dilution rate for maximum plasmid and gene product concentration,” Biotechnol. Bioeng., 28: 1590-1594 (1986).
Shiloach, C. S., J. Kaufman, A. S. Guillard, and R. Fass, “Effect of glucose supply strategy on acetate accumulation, growth, and recombinant protein production by Escherichia coli BL21 (λDE3) and Escherichia coli JM109,” Biotechnol. Bioeng., 49: 421-428 (1996).
Shin, C. S., M. S. Hong, D. Y. Kim, H. C. Shin, and J. Lee, “Growth-associated synthesis of recombinant human glucagon and human growth hormone in high-cell-density cultures of Escherichia coli,” Appl. Microbiol. Biotechnol., 49: 364-370 (1998).
Sriubolmas, N., W. Panbangred, S. Sriuairatana, and V. Meevootism, “Localization and characterization of inclusion bodies in recombinant Escherichia coli cells overproducing penicillin G acylase,” Appl. Microbiol. Biotechnol., 47: 373-378 (1997).
Suárez, D. C., and B. V. Kilikian, “Acetic acid accumulation in aerobic growth of recombinant Escherichia coli,” Process Biochem., 35: 1051-1055 (2000).
Varma, A., and B. O. Palsson, “Prediction for oxygen supply control to enhance population stability of engineered production strain,” Biotechnol. Bioeng., 43: 275-285 (1994).
Wong, H. H., Y. C. Kim, S. Y. Lee, and H. N. Chang, “Effect of post-induction nutrient feeding strategies on the production of bioadhesive protein in Escherichia coli,” Biotechnol. Bioeng., 60: 271-276 (1998).
Zabriskie, D. W. and E. J. Arcuri, “Factors influencing productivity of fermentation employing recombinant microorganism,” Enzyme Microb. Technol., 8: 706-717 (1986).