簡易檢索 / 詳目顯示

研究生: 陳季謙
Chen, Chi-chien
論文名稱: 阿拉伯芥下胚軸對生長素之年齡專一性反應的分子特性分析
Molecular characterization of age-dependent responses to auxin in Arabidopsis hypocotyls
指導教授: 黃浩仁
Huang, Hao-jen
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 98
中文關鍵詞: 癒傷組織細胞週期阿拉伯芥下胚軸成熟化幼年成熟微陣列分析
外文關鍵詞: Mature, Juvenile, Callus, Cell cycle, Arabidopsis
相關次數: 點閱:139下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了探討野生型阿拉伯芥成熟化的複雜分子機制,本研究首先藉由不同發育時期阿拉伯芥植株的下胚軸(幼年及成熟),建立一個理想的組織培養實驗系統。利用此實驗系統,我們研究與植株年齡有關並且導致下胚軸形成癒傷組織能力有所改變的過程。有趣的是,從幼年和成熟植物體取樣的下胚軸,他們形成癒傷組織的程度是相當不同的:比較癒傷組織生長的速度,發現成熟下胚軸形成癒傷組織的能力較幼年下胚軸來的好。在誘導癒傷組織培養基(callus-inducing medium; CIM)中經由生長素處理後,對生長素有反應的人造啟動子DR5::GUS在成熟下胚軸會較幼年下胚軸快被誘發,此結果指出生長素敏感性對癒傷組織生長能力是佔有相當重要因素。接著利用帶有CycB1;1::GUS的阿拉伯芥轉殖株,來瞭解下胚軸受生長素刺激而活化細胞分裂的情況,結果顯示: 成熟下胚軸的具有比較快速的細胞分裂過程,此現象推測: 細胞分裂和形成癒傷組織彼此有相當關聯性。進一步分析主要調控細胞週期相關基因的表現情形,發現當下胚軸在因生長素處理而形成癒傷組織時,CYCA1;1, CYCB2;1和CYCB3;1在成熟下胚軸會比幼年下胚軸具有較快及明顯的表現量。將形成癒傷組織有缺陷的突變珠srd2培養於誘導癒傷組織培養基中,結果顯示CYCA1;1, CYCB2;1和CYCB3;1幾乎難以被偵測到,綜合以上結果: 我們推測這些基因很可能在參與細胞分裂和癒傷組織生長佔有重要的角色。微陣列分析(Microarray analysis)幼年和成熟下胚軸形成癒傷組織過程,基因表現量統計結果指出有差異表現的相關基因可分為兩類:正向調節和負向調節。推測這些基因可能藉由正調控或負調控機制來影響癒傷組織形成。我們發現有20個相轉錄因子(Myb, E2F, HAT, ERF, C2H2)、23個訊息傳遞有關的基因(Protein kinase, WD-40, Ser/Thr protein kinase, protein phosphatase),而這些基因具有分子調控上、下游的關係。引人注目地,我們也發現葉子老化和下胚軸成熟化可能透過不同的雙組分信號傳導系統(two-component system)調控。因此,本研究建立全方位基因表達譜,並提供廣泛的資訊,藉以進一步洞察受生長素處理造成成熟下胚軸提高癒傷組織能力的過程。

    To understand complex mechanisms of hypocotyl maturation in wild-type Arabidopsis thaliana (Col-0), I establish an experimental system to study hypocotyl explants involved in the age-related competence of callus formation in vitro. Firstly, the acquisition of competence for cell proliferation in hypocotyl explants collected from juvenile and mature plants was quite different: mature explants exhibited better callus-forming potential than that of juvenile, determined by callus growth rates. A fusion of DR5::GUS, a synthetic auxin response element, was more induced in mature than in juvenile explants after auxin treatment, indicating that the sensitivity to auxin was one of factors accounting for the callus growing capacities. Using Arabidopsis plants transformed with CycB1;1::GUS to examine cell division activation in auxin-stimulated hypocotyls, it revealed mature explants showed rapid increase mitotic activity in correlation with callus formation. On closer inspection, analysis of the core cell cycle-regulated genes also demonstrated that the expression of mitotic cyclin genes increased more rapidly in mature hypocotyls than in juvenile hypocotyls throughout callus formation in response to auxin treatment although their expression was slight stronger in initial juvenile hypocotyls cutting than in mature prior to in vitro tissue culture. Mitotic cyclin gene transcripts were also almost not detectable in juvenile callus formation-deficient mutant, srd2, these results which suggest that these genes most likely play a role in both cell division and processes involved in callus development. Microarray analysis revealed that putative auxin-responsive genes were categorized into two groups: positive regulatory or negative regulatory. Among genes that were up-regulated or down-regulated throughout callus formation, functions in upstream of signal transduction such as kinase and transcription factors were often deduced. More to the point, it was found the developmental program of leaf senescence is mediated by a molecular mechanism different from hypocotyl maturation. Therefore, genome-wide gene expression profiling provides a comprehensive knowledge to get further insight into hypocotyl maturation and the enhancement process of the mature-related callus growth potential by auxin treatment.

    Acknowledgements……………………………………………1 Contents………………………………………………………2 List of tables…………………………………………………5 List of figures…………………………………………………..6 Abbreviations…………………………………………………8 Chinese abstract……………………………………………….9 Abstract………………………………………………………...……10 1. Introduction………………………………………………………….....…...11 1.1 Development transitions in plant………………………………………….11 1.1.1 Juvenile-to-adult transition………………………………………….12 1.1.2 Vegetative-to-reproductive transition……………………………...12 1.2 Leaf senescence…………………………………………………………….13 1.3 Organogenesis in vitro……………………………………………………..14 1.3.1 Competence acquisition phase………………………………………15 1.3.2 Induction and differentiation phase…...…………………………...16 1.4 The plant cell cycle………………………………………………………...17 1.4.1 Cyclin-dependent kinases….………………………………………...18 1.4.2 Cyclins……...…………………………………………………………19 1.4.3 CDK inhibitors……….……………………………...……………….21 1.5 Hormones and the cell cycle……………………………………………….22 1.5.1 Auxin……...………………………………………………..…………22 1.5.2 Cytokinins…….....……………………………………………………23 1.6 Aims of this study…..………………………………………………………23 2. Materials and methods……………………………………...……………..25 2.1 Plant materials and growth conditions……………………..………….....25 2.2 Callus and adventitious root induction………………………………...…25 2.3 Fresh weight…...…………………………………………………………...26 2.4 Histological observation…………………………………………………..26 2.5 GUS histochemical staining……………………………………….............27 2.6 Preparation of total RNA………………………………………………….27 2.7 Semi-quantitative reverse transcription PCR (RT-PCR)…………….28 2.8 Polymerase chain reaction (PCR)………………………………………...28 2.9 DNA sequencing……………………………………………………………29 2.10 Oligonucleotide primers…..…………………….......................................29 2.11 Microarray preparation…………………………………………………..30 2.12 Microarray data analysis………………….……………………………..31 3. Results………………………………………………………………………..33 3.1 In vitro tissue culture: mature hypocotyl explants exhibited higher callus proliferation rate than that of juvenile explants...……………………..…….33 3.2 In vitro tissue culture: Difference in adventitious root-forming potential between juvenile and mature hypocotyl explants……..............................34 3.3 Responsiveness to auxin in juvenile and mature hypocotyls during callus formation……………………………………………………………………….36 3.4 Activation of cell division in juvenile and mature explants during callus formation………………………….…………………………………...…….....37 3.5 The gene expression of core cell cycle regulators and transcriptional factors during development of hypocotyl-derived callus…………………...38 3.6 The gene expression of core cell cycle regulators and transcriptional factors in an Arabidopsis mutant (srd2) defective in callus formation……...40 3.7 Comparison of clustering gene expression patterns in wild type and srd2 explants on CIM…………………………………..……………………………43 3.8 Genome-wide gene expression profiles in juvenile and mature explants after incubated on CIM…………………………..……………………………45 4. Discussion…………………………………………………………..47 5. References…………………………………………………………55

    Reference

    Ach, R. A., Taranto, P., & Gruissem, W. (1997). A conserved family of WD-40 proteins binds to the retinoblastoma protein in both plants and animals. The Plant Cell, 9(9), 1595.
    Barton, M. K. (1993). Formation of the shoot apical meristem in Arabidopsis thaliana: an analysis of development in the wild type and in the shoot meristemless mutant. Development, 119(3), 823-831.
    Baurle, I., & Dean, C. (2006). The timing of developmental transitions in plants. Cell, 125(4), 655-664.
    Bayliss, M. W. (1985). Regulation of the cell division cycle in cultured plant cells The Cell Division Cycle in Plants.
    Breyne, P., & Zabeau, M. (2001). Genome-wide expression analysis of plant cell cycle modulated genes. Current Opinion in Plant Biology, 4(2), 136-142.
    Cao, J., Jiang, F., & Cui, K. (2003). Time-course of programmed cell death during leaf senescence in Eucommia ulmoides. Journal of Plant Research, 116(1), 7-12.
    Carmen Diaz-Sala, G. G. B. S. (2002). Age-related loss of rooting capability in Arabidopsis thaliana and its reversal by peptides containing the Arg-Gly-Asp (RGD) motif. Physiologia Plantarum, 114(4), 601-607.
    Casimiro, I., Marchant, A., Bhalerao, R. P., Beeckman, T., Dhooge, S., Swarup, R., et al. (2001). Auxin transport promotes Arabidopsis lateral root initiation. The Plant Cell Online, 13(4), 843.
    Chaubet-Gigot, N. (2000). Plant A-type cyclins. The Plant Cell Cycle, 43, 659-675.
    Chen, J. G., Ullah, H., Young, J. C., Sussman, M. R., & Jones, A. M. (2001). ABP1 is required for organized cell elongation and division in Arabidopsis embryogenesis. Genes & Development, 15, 902-911.
    Christianson, M. L., & Warnick, D. A. (1983). Competence and determination in the process of in vitro shoot organization. Dev. Biol, 95, 288-293.
    Chuck, G., & Hake, S. (2005). Regulation of developmental transitions. Current Opinion in Plant Biology, 8(1), 67-70.
    Clark, S. E. (1997). Organ formation at the vegetative shoot meristem. The Plant Cell, 9(7), 1067.
    Clemens, J., Henriod, R. E., Bailey, D. G., & Jameson, P. E. (1999). Vegetative phase change in Metrosideros: Shoot and root restriction. Plant Growth Regulation, 28(3), 207-214.
    Colon-Carmona, A., You, R., Haimovitch-Gal, T., & Doerner, P. (1999). Spatio-temporal analysis of mitotic activity with a labile cyclin-GUS fusion protein. The Plant Journal, 20(4), 503-508.
    Conway, L. J., & Poethig, R. S. (1997). Mutations of Arabidopsis thaliana that transform leaves into cotyledons. Proceedings of the National Academy of Sciences, 94(19), 10209.
    Corellou, F., Camasses, A., Ligat, L., Peaucellier, G., & Bouget, F. Y. (2005). Atypical regulation of a green lineage-specific B-type cyclin-dependent kinase. Plant Physiology, 138(3), 1627-1636.
    Cosgrove, D. J. (1997). Relaxation in a high-stress environment: the molecular bases of extensible cell walls and cell enlargement. Plant Cell, 9(103), 1-1041.
    Coso, O. A., Chiariello, M., Yu, J. C., Teramoto, H., Crespo, P., Xu, N., et al. (1995). The small GTP-binding proteins Rac1 and Cdc42 regulate the activity of the JNK/SAPK signaling pathway. Cell, 81(7), 1137-1146.
    Coue, M., Kearsey, S. E., & Mechali, M. (1996). Chromatin binding, nuclear localization and phosphorylation of Xenopus cdc21 are cell-cycle dependent and associated with the control of initiation of DNA replication. EMBO J, 15(5), 1085-1097.
    Criqui, M. C., & Genschik, P. (2002). Mitosis in plants: how far we have come at the molecular level? Current Opinion in Plant Biology, 5(6), 487-493.
    Czechowski, T., Bari, R. P., Stitt, M., Scheible, W.-R., & Udvardi, M. K. (2004). Real-time RT-PCR profiling of over 1400 Arabidopsis transcription factors: unprecedented sensitivity reveals novel root- and shoot-specific genes. The Plant Journal, 38(2), 366-379.
    Dahl, M., Meskiene, I., Bogre, L., Ha, D. T., Swoboda, I., Hubmann, R., et al. (1995). The D-type alfalfa cyclin gene cycMs4 complements G1 cyclin-deficient yeast and is induced in the G1 phase of the cell cycle. The Plant Cell, 7(11), 1847.
    De Gregori, J., Kowalik, T., & Nevins, J. R. (1995). Cellular targets for activation by the E2F1 transcription factor include DNA synthesis-and G1/S-regulatory genes. Molecular and Cellular Biology, 15(8), 4215.
    De Jong, A. J., Cordewener, J., Schiavo, F. L., Terzi, M., Vandekerckhove, J., Van Kammen, A., et al. (1992). A carrot somatic embryo mutant is rescued by chitinase. The Plant Cell, 4(4), 425.
    De Veylder, L., Beeckman, T., Beemster, G. T. S., de Almeida Engler, J., Ormenese, S., Maes, S., et al. (2002). Control of proliferation, endoreduplication and differentiation by the Arabidopsis E2Fa-DPa transcription factor. The EMBO Journal, 21, 1360-1368.
    De Veylder, L., Beeckman, T., Beemster, G. T. S., Krols, L., Terras, F., Landrieu, I., et al. (2001). Functional analysis of cyclin-dependent kinase inhibitors of Arabidopsis. The Plant Cell Online, 13, 1653-1668.
    Dewitte, W., & Murray, J. A. H. (2003). The plant cell cycle. Annual Review of Plant Biology, 54(1), 235-264.
    Dharmasiri, S., & Estelle, M. (2002). The role of regulated protein degradation in auxin response. Plant Molecular Biology, 49(3), 401-408.
    Diehl, A. M. (2000). Cytokine regulation of liver injury and repair. Immunological Reviews, 174, 160.
    Donnelly, P. M., Bonetta, D., Tsukaya, H., Dengler, R. E., & Dengler, N. G. (1999). Cell cycling and cell enlargement in developing leaves of Arabidopsis. Developmental Biology, 215(2), 407-419.
    Ducommun, B., Brambilla, P., Felix, M. A., Franza, B. R., Karsenti, E., & Draetta, G. (1991). cdc2 phosphorylation is required for its interaction with cyclin. EMBO J, 10(11), 3311-3319.
    Eimert, K., Wang, S. M., Lue, W. L., & Chen, J. (1995). Monogenic recessive mutations causing both late floral initiation and excess starch accumulation in Arabidopsis. Plant Cell, 7(10), 1703-1712.
    Eulgem, T., Rushton, P. J., Robatzek, S., & Somssich, I. E. (2000). The WRKY superfamily of plant transcription factors. Trends in Plant Science, 5(5), 199-206.
    Evans, T., Rosenthal, E. T., Youngblom, J., Distel, D., & Hunt, T. (1983). Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell, 33(2), 389-396.
    Fobert, P. R., Gaudin, V., Lunness, P., Coen, E. S., & Doonan, J. H. (1996). Distinct classes of cdc2-related genes are differentially expressed during the cell division cycle in plants. Plant Cell, 8(9), 1465-1476.
    Friml, J. (2003). Auxin transport—shaping the plant. Current Opinion in Plant Biology, 6(1), 7-12.
    Gan, S., & Amasino, R. M. (1995). Inhibition of Leaf Senescence by Autoregulated Production of Cytokinin. Science, 270(5244), 1986.
    Gautheret, R. J. (1966). Factors AVecting diVerentiation of plant tissue grown in vitro. Cell diVerentiation and morphogenesis. North-Holland, Amsterdam, 55–95.
    Globerson, A. (1999). Hematopoietic stem cells and aging. Experimental Gerontology, 34(2), 137-146.
    Goodin, J. R. (1965). Anatomical changes associated with juvenile-to-mature growth phase transition in Hedera. Nature, 208(5009), 504-505.
    Gould, A. R., Everett, N. P., Wang, T. L., & Street, H. E. (1981). Studies on the control of the cell cycle in cultured plant cells. Protoplasma, 106(1), 1-13.
    Gray, W. M., & Estelle, M. (2000). Function of the ubiquitin–proteasome pathway in auxin response. Trends in Biochemical Sciences, 25(3), 133-138.
    Haga, N., Kato, K., Murase, M., Araki, S., Kubo, M., Demura, T., et al. (2007). R1R2R3-Myb proteins positively regulate cytokinesis through activation of KNOLLE transcription in Arabidopsis thaliana. Development, 134(6), 1101.
    Hemerly, A. S., Ferreira, P., de Almeida Engler, J., Van Montagu, M., Engler, G., & Inze, D. (1993). cdc2a Expression in Arabidopsis Is Linked with Competence for Cell Division. Plant Cell, 5(12), 1711-1723.
    Hicks, G. S. (1980). Patterns of organ development in plant tissue culture and the problem of organ determination. The Botanical Review, 46(1), 1-23.
    Hicks, G. S. (1994). Shoot induction and organogenesis in vitro: A developmental perspective. In Vitro Cellular & Developmental Biology-Plant, 30(1), 10-15.
    Himanen, K., Boucheron, E., Vanneste, S., de Almeida Engler, J., Inze, D., & Beeckman, T. (2002). Auxin-Mediated Cell Cycle Activation during Early Lateral Root Initiation. Plant Cell, 14(10), 2339-2351.
    Hirayama, T., Imajuku, Y., Anai, T., Matsui, M., & Oka, A. (1991). Identification of two cell-cycle-controlling cdc2 gene homologs in Arabidopsis thaliana. Gene, 105(2), 159-165.
    Hobbie, L., & Estelle, M. (1994). Genetic approaches to auxin action. Plant, Cell and Environment, 17(5), 525-540.
    Horiguchi, G., Fujikura, U., Ferjani, A., Ishikawa, N., & Tsukaya, H. (2006). Large-scale histological analysis of leaf mutants using two simple leaf observation methods: identification of novel genetic pathways governing the size and shape of leaves. The Plant Journal, 48(4), 638-644.
    Houssa, C., Bernier, G., Pieltain, A., Kinet, J. M., & Jacqmard, A. (1994). Activation of latent DNA-replication origins: a universal effect of cytokinins. Planta, 193(2), 247-250.
    Huang, L. C., Lius, S., Huang, B. L., Murashige, T., Mahdi, E. F. M., & Van Gundy, R. (1992). Rejuvenation of Sequoia sempervirens by repeated grafting of shoot tips onto juvenile rootstocks in vitro: model for phase reversal of trees. Plant Physiology, 98(1), 166.
    Hwang, A., McKenna, W. G., & Muschel, R. J. (1998). Cell Cycle-dependent Usage of Transcriptional Start Sites A NOVEL MECHANISM FOR REGULATION OF CYCLIN B1. Journal of Biological Chemistry, 273(47), 31505-31509.
    Ito, M. (2000). Factors controlling cyclin B expression. Plant Molecular Biology, 43(5), 677-690.
    Ito, M., Iwase, M., Kodama, H., Lavisse, P., Komamine, A., Nishihama, R., et al. (1998). A Novel cis-Acting Element in Promoters of Plant B-Type Cyclin Genes Activates M Phase–Specific Transcription. The Plant Cell Online, 10, 331-342.
    Iwakawa, H., Shinmyo, A., & Sekine, M. (2006). Arabidopsis CDKA; 1, a cdc2 homologue, controls proliferation of generative cells in male gametogenesis. Plant J, 45(5), 819-831.
    Jefferson, R. A. (1987). Assaying chimeric genes in plants: The GUS gene fusion system. Plant Molecular Biology Reporter, 5(4), 387-405.
    Kakimoto, T. (1996). CKI1, a Histidine Kinase Homolog Implicated in Cytokinin Signal Transduction. Science, 274(5289), 982.
    Kim, H. J., Ryu, H., Hong, S. H., Woo, H. R., Lim, P. O., Lee, I. C., et al. (2006). Cytokinin-mediated control of leaf longevity by AHK3 through phosphorylation of ARR2 in Arabidopsis. Proceedings of the National Academy of Sciences, 103(3), 814-819.
    Kobayashi, Y., Yamamoto, S., Minami, H., Kagaya, Y., & Hattori, T. (2004). Differential activation of the rice sucrose nonfermenting1-related protein kinase2 family by hyperosmotic stress and abscisic acid. Plant Cell, 16(5), 1163-1177.
    Kolotilin, I., Koltai, H., Tadmor, Y., Bar-Or, C., Reuveni, M., Meir, A., et al. (2007). Transcriptional Profiling of high pigment-2dg Tomato Mutant Links Early Fruit Plastid Biogenesis with Its Overproduction of Phytonutrients. Plant Physiology, 145(2), 389.
    Koornneef, M., Alonso-Blanco, C., Peeters, A. J. M., & Soppe, W. (1998). GENETIC CONTROL OF FLOWERING TIME IN ARABIDOPSIS. Annual Reviews in Plant Physiology and Plant Molecular Biology, 49(1), 345-370.
    Koornneef, M., Hanhart, C. J., & van der Veen, J. H. (1991). A genetic and physiological analysis of late flowering mutants in Aruhidopsis haliunu. Mol. Gen. Genet, 229, 57-66.
    Kovtun, Y., Chiu, W. L., Zeng, W., & Sheen, J. (1998). Suppression of auxin signal transduction by a MAPK cascade in higher plants. Nature, 395(6703), 716-720.
    Lauber, M. H., Waizenegger, I., Steinmann, T., Schwarz, H., Mayer, U., Hwang, I., et al. (1997). The Arabidopsis KNOLLE Protein Is a Cytokinesis-specific Syntaxin. The Journal of Cell Biology, 139(6), 1485-1493.
    Lee, D. J., Kim, S., Ha, Y. M., & Kim, J. (2008). Phosphorylation of Arabidopsis response regulator 7 (ARR7) at the putative phospho-accepting site is required for ARR7 to act as a negative regulator of cytokinin signaling. Planta, 227(3), 577-587.
    Lee, D. J., Park, J. Y., Ku, S. J., Ha, Y. M., Kim, S., Kim, M. D., et al. (2007). Genome-wide expression profiling of ARABIDOPSIS RESPONSE REGULATOR 7 (ARR7) overexpression in cytokinin response. Molecular Genetics and Genomics, 277(2), 115-137.
    Leyser, O. (2002). Molecular genetics of auxin signaling, Anna. Rev. Plant Biol, 53, 377-398.
    Lukowitz, W., Mayer, U., & Jurgens, G. (1996). Cytokinesis in the Arabidopsis embryo involves the syntaxin-related KNOLLE gene product. Cell, 84(1), 61-71.
    Lund, S. T., Smith, A. G., & Hackett, W. P. (1996). Cuttings of a tobacco mutant, rac, undergo cell divisions but do not initiate adventitious roots in response to exogenous auxin. Physiologia Plantarum, 97(2), 372-380.
    Lund, S. T., Smith, A. G., & Hackett, W. P. (1997). Differential Gene Expression in Response to Auxin Treatment in the Wild Type and rac, an Adventitious Rooting-Incompetent Mutant of Tobacco. Plant Physiology, 114(4), 1197.
    Magyar, Z., Meszaros, T., Miskolczi, P., Deak, M., Feher, A., Brown, S., et al. (1997). Cell cycle phase specificity of putative cyclin-dependent kinase variants in synchronized alfalfa cells. The Plant Cell, 9(2), 223.
    Martinez, M. C., Jorgensen, J. E., Lawton, M. A., Lamb, C. J., & Doerner, P. W. (1992). Spatial pattern of cdc2 expression in relation to meristem activity and cell proliferation during plant development. Proceedings of the National Academy of Sciences of the United States of America, 89(16), 7360.
    Mathias, N., Johnson, S. L., Winey, M., Adams, A. E., Goetsch, L., Pringle, J. R., et al. (1996). Cdc53p acts in concert with Cdc4p and Cdc34p to control the G1-to-S-phase transition and identifies a conserved family of proteins. Mol. Cell. Biol, 16, 6634-6643.
    Meinke, D. W. (1998). Arabidopsis thaliana: A Model Plant for Genome Analysis. Science, 282(5389), 662-682.
    Mendenhall, M. D., & Hodge, A. E. (1998). Regulation of Cdc28 cyclin-dependent protein kinase activity during the cell cycle of the yeast Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev, 62(4), 1191-1243.
    Menges, M., de Jager, S. M., Gruissem, W., & Murray, J. A. H. (2005). Global analysis of the core cell cycle regulators of Arabidopsis identifies novel genes, reveals multiple and highly specific profiles of expression and provides a coherent model for plant cell cycle control. The Plant Journal, 41(4), 546-566.
    Menges, M., Hennig, L., Gruissem, W., & Murray, J. A. H. (2002). Cell Cycle-regulated Gene Expression in Arabidopsis. Journal of Biological Chemistry, 277(44), 41987-42002.
    Menges, M., & Murray, J. A. H. (2002). Synchronous Arabidopsis suspension cultures for analysis of cell-cycle gene activity. The Plant Journal, 30(2), 203-212.
    Meskiene, I., Bogre, L., Dahl, M., Pirck, M., Ha, D. T., Swoboda, I., et al. (1995). cycMs3, a novel B-type alfalfa cyclin gene, is induced in the G0-to-G1 transition of the cell cycle. Plant Cell, 7(6), 759-771.
    Meszaros, T., Miskolczi, P., Ayaydin, F., Pettko-Szandtner, A., Peres, A., Magyar, Z., et al. (2000). Multiple cyclin-dependent kinase complexes and phosphatases control G 2/M progression in alfalfa cells. The Plant Cell Cycle, 43, 595-605.
    Meyerowitz, E. M. (2002). Plants Compared to Animals: The Broadest Comparative Study of Development. Science, 295(5559), 1482-1485.
    Michalopoulos, G. K. (1997). Liver Regeneration. Science, 276(5309), 60-66.
    Miller, C. O., Skoog, F., Von Saltza, M. H., & Strong, F. M. (1955). KINETIN, A CELL DIVISION FACTOR FROM DEOXYRIBONUCLEIC ACID1. Journal of the American Chemical Society, 77(5), 1392-1392.
    Minden, A., Lin, A., Claret, F. X., Abo, A., & Karin, M. (1995). Selective activation of the JNK signaling cascade and c-Jun transcriptional activity by the small GTPases Rac and Cdc42Hs. Cell, 81(7), 1147-1157.
    Mironov, V. (1999). Cyclin-dependent kinases and cell division in plants-the nexus. The Plant Cell, 11(4), 509.
    Mordhorst, A. P., Voerman, K. J., Hartog, M. V., Meijer, E. A., van Went, J., Koornneef, M., et al. (1998). Somatic Embryogenesis in Arabidopsis thaliana Is Facilitated by Mutations in Genes Repressing Meristematic Cell Divisions. Genetics, 149(2), 549-563.
    Morgan, D. O. (1997). Cyclin-dependent kinases: Engines, clocks, and microprocessors. Annual Review of Cell and Developmental Biology, 13(1), 261-291.
    Morrison, S. J., Wandycz, A. M., Akashi, K., Globerson, A., & Weissman, I. L. (1996). The aging of hematopoietic stem cells. Nature Medicine, 2(9), 1011-1016.
    Mouradov, A., Cremer, F., & Coupland, G. (2002). Control of flowering time: interacting pathways as a basis for diversity. Plant Cell, 14(Suppl S), S111-S130.
    Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473-497.
    Nigg, E. A. (1995). Cyclin-dependent protein kinases: key regulators of the eukaryotic cell cycle BioEssays, 17(6), 471-480.
    Nishihama, R., Soyano, T., Ishikawa, M., Araki, S., Tanaka, H., Asada, T., et al. (2002). Expansion of the Cell Plate in Plant Cytokinesis Requires a Kinesin-like Protein/MAPKKK Complex. Cell, 109(1), 87-99.
    Nooden, L. D. (1988). The phenomena of senescence and aging (pp. 1-50): Academic Press.
    Nowack, M. K., Grini, P. E., Jakoby, M. J., Lafos, M., Koncz, C., & Schnittger, A. (2006). A positive signal from the fertilization of the egg cell sets off endosperm proliferation in angiosperm embryogenesis. Nat Genet, 38(1), 63-67.
    Ohtani, K., DeGregori, J., Leone, G., Herendeen, D. R., Kelly, T. J., & Nevins, J. R. (1996). Expression of the HsOrc1 gene, a human ORC1 homolog, is regulated by cell proliferation via the E2F transcription factor. Mol. Cell. Biol, 16, 6977-6984.
    Ohtani, M., & Sugiyama, M. (2005). Involvement of SRD2-mediated activation of snRNA transcription in the control of cell proliferation competence in Arabidopsis. Plant Journal, 43(4), 479-490.
    Ori, N., Juarez, M. T., Jackson, D., Yamaguchi, J., Banowetz, G. M., & Hake, S. (1999). Leaf Senescence Is Delayed in Tobacco Plants Expressing the Maize Homeobox Gene knotted1 under the Control of a Senescence-Activated Promoter. The Plant Cell Online, 11(6), 1073.
    Ozawa, S. (1998). Organogenic responses in tissue culture of srd mutants of Arabidopsis thaliana (Vol. 125, pp. 135-142).
    Planchais, S., Perennes, C., Glab, N., Mironov, V., Inze, D., & Bergounioux, C. (2002). Characterization of cis-acting element involved in cell cycle phase-independent activation of Arath; CycB1; 1 transcription and identification of putative regulatory proteins. Plant Molecular Biology, 50(1), 109-125.
    Poethig, R. S. (1990). Phase Change and the Regulation of Shoot Morphogenesis in Plants. Science, 250(4983), 923-930.
    Polymenis, M., & Schmidt, E. V. (1999). Coordination of cell growth with cell division. Current Opinion in Genetics & Development, 9(1), 76-80.
    Porceddu, A., Stals, H., Reichheld, J. P., Segers, G., De Veylder, L., de Pinho, B., et al. (2001). A Plant-specific Cyclin-dependent Kinase Is Involved in the Control of G2/M Progression in Plants. Journal of Biological Chemistry, 276(39), 36354-36360.
    Potuschak, T., & Doerner, P. (2001). Cell cycle controls: genome-wide analysis in Arabidopsis. Current Opinion in Plant Biology, 4(6), 501-506.
    Qin, L. X., Perennes, C., Richard, L., Bouvier-Durand, M., Trehin, C., Inze, D., et al. (1996). G2-and early-M-specific expression of the NTCYC1 cyclin gene in Nicotiana tabacum cells. Plant Molecular Biology, 32(6), 1093-1101.
    Renaudin, J. P., Doonan, J. H., Freeman, D., Hashimoto, J., Hirt, H., Inze, D., et al. (1996). Plant cyclins: a unified nomenclature for plant A-, B-and D-type cyclins based on sequence organization. Plant Molecular Biology, 32(6), 1003-1018.
    Richmond, A. E., & Lang, A. (1957). Effect of Kinetin on Protein Content and Survival of Detached Xanthium Leaves. Science, 125(3249), 650-651.
    Riou-Khamlichi, C., Huntley, R., Jacqmard, A., & Murray, J. A. H. (1999). Cytokinin Activation of Arabidopsis Cell Division Through a D-Type Cyclin. Science, 283(5407), 1541.
    Robatzek, S., & Somssich, I. E. (2002). Targets of AtWRKY6 regulation during plant senescence and pathogen defense. Genes & Development, 16(9), 1139.
    Sambrook, J., & Russell, D. W. (2001). Molecular cloning: a laboratory manual: Cold Spring Harbor Laboratory Pr.
    Segers, G., Gadisseur, I., Bergounioux, C., Engler, J., Jacqmard, A., Montagu, M., et al. (1996). The Arabidopsis cyclin-dependent kinase gene cdc2bAt is preferentially expressed during S and G2 phases of the cell cycle. The Plant Journal, 10(4), 601-612.
    Shaul, O., Mironov, V., Burssens, S., Van Montagu, M., & Inze, D. (1996). Two Arabidopsis cyclin promoters mediate distinctive transcriptional oscillation in synchronized tobacco BY-2 cells. Proc Natl Acad Sci US A, 93(10), 4868-4872.
    Sherr, C. J., & Roberts, J. M. (1999). CDK inhibitors: positive and negative regulators of G-phase progression. Genes & Development, 13(12), 1501-1512.
    Sigal, S. H., Brill, S., Fiorino, A. S., & Reid, L. M. (1992). The liver as a stem cell and lineage system. American Journal of Physiology- Gastrointestinal and Liver Physiology, 263(2), 139-148.
    Simpson, G. G., Gendall, A. R., & Dean, C. (1999). When to switch to flowering. Annu Rev Cell Dev Biol, 15, 519-550.
    Skoog, F., & Miller, C. O. (1957). Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp Soc Exp Biol, 54(11), 118-130.
    Smalle, J., Kurepa, J., Yang, P., Babiychuk, E., Kushnir, S., Durski, A., et al. (2002). Cytokinin Growth Responses in Arabidopsis Involve the 26S Proteasome Subunit RPN12. The Plant Cell Online, 14, 17-32.
    Smyth, G. K., & Speed, T. (2003). Normalization of cDNA microarray data. Methods, 31(4), 265-273.
    Soni, R., Carmichael, J. P., Shah, Z. H., & Murray, J. A. H. (1995). A family of cyclin D homologs from plants differentially controlled by growth regulators and containing the conserved retinoblastoma protein interaction motif. Plant Cell, 7(1), 85-103.
    Spellman, P. T., Sherlock, G., Zhang, M. Q., Iyer, V. R., Anders, K., Eisen, M. B., et al. (1998). Comprehensive Identification of Cell Cycle–regulated Genes of the Yeast Saccharomyces cerevisiae by Microarray Hybridization. Molecular Biology of the Cell, 9(12), 3273.
    Staehelin, L. A., & Hepler, P. K. (1996). Cytokinesis in higher plants. Cell, 84(6), 821-824.
    Stals, H., & Inze, D. (2001). When plant cells decide to divide. Trends in Plant Science, 6(8), 359-364.
    Strompen, G., El Kasmi, F., Richter, S., Lukowitz, W., Assaad, F. F., Jurgens, G., et al. (2002). The Arabidopsis HINKEL Gene Encodes a Kinesin-Related Protein Involved in Cytokinesis and Is Expressed in a Cell Cycle-Dependent Manner. Current Biology, 12(2), 153-158.
    Sugiyama, M. (1999). Organogenesis in vitro, Curr. Opin. Plant Biol, 2, 61–64.
    Takahashi, Y., Ishida, S., & Nagata, T. (1995). Auxin-Regulated Genes. Plant and Cell Physiology, 36(3), 383-390.
    Telfer, A. (1997). Phase change and the regulation of trichome distribution in Arabidopsis thaliana (Vol. 124, pp. 645-654).
    Torres Acosta, J. A., de Almeida Engler, J., Raes, J., Magyar, Z., De Groodt, R., Inze, D., et al. (2004). Molecular characterization ofArabidopsisPHO80-like proteins, a novel class of CDKA; 1-interacting cyclins. Cellular and Molecular Life Sciences (CMLS), 61(12), 1485-1497.
    Trehin, C., Ahn, I. O., Perennes, C., Couteau, F., Lalanne, E., & Bergounioux, C. (1997). Cloning of upstream sequences responsible for cell cycle regulation of the Nicotiana sylvestris CycB1; 1 gene. Plant Molecular Biology, 35(5), 667-672.
    Ulmasov, T., Murfett, J., Hagen, G., & Guilfoyle, T. J. (1997). Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell, 9(11), 1963-1971.
    Umeda, M., Shimotohno, A., & Yamaguchi, M. (2005). Control of cell division and transcription by cyclin-dependent kinase-activating kinases in plants (Vol. 46, pp. 1437-1442): Jpn Soc Plant Physiol.
    Valvekens, D., van Montagu, M., & van Lijsebettens, M. (1988). Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proceedings of the National Academy of Sciences of the United States of America, 85(15), 5536-5540.
    Vandepoele, K., Raes, J., De Veylder, L., Rouze, P., Rombauts, S., & Inze, D. (2002). Genome-wide analysis of core cell cycle genes in Arabidopsis. The Plant Cell Online, 14, 903-916.
    Wang, G. F., Kong, H. Z., Sun, Y. J., Zhang, X. H., Zhang, W., Altman, N., et al. (2004). Genome-wide analysis of the cyclin family in Arabidopsis and comparative phylogenetic analysis of plant cyclin-like proteins. Plant Physiology, 135(2), 1084-1099.
    Wang, H., Zhou, Y., Gilmer, S., Whitwill, S., & Fowke, L. C. (2000). Expression of the plant cyclin-dependent kinase inhibitor ICK1 affects cell division, plant growth and morphology. The Plant Journal, 24(5), 613-623.
    Weingartner, M., Criqui, M. C., Meszaros, T., Binarova, P., Schmit, A. C., Helfer, A., et al. (2004). Expression of a nondegradable cyclin B1 affects plant development and leads to endomitosis by inhibiting the formation of a phragmoplast. Plant Cell, 16(3), 643-657.
    Werner, T., Motyka, V., Laucou, V., Smets, R., Van Onckelen, H., & Schmulling, T. (2003). Cytokinin-Deficient Transgenic Arabidopsis Plants Show Multiple Developmental Alterations Indicating Opposite Functions of Cytokinins in the Regulation of Shoot and Root Meristem Activity. The Plant Cell Online.
    White, D. W. R., Woodfield, D. R., & Caradus, J. R. (1998). Mortal: A Mutant of White Clover Defective in Nodal Root Development. Plant Physiology, 116(3), 913.
    Willmann, M. R., & Poethig, R. S. (2005). Time to grow up: the temporal role of smallRNAs in plants. Current Opinion in Plant Biology, 8(5), 548-552.
    Yamaguchi, M., Kato, H., Yoshida, S., Yamamura, S., Uchimiya, H., & Umeda, M. (2003). Control of in vitro organogenesis by cyclin-dependent kinase activities in plants. Proc Natl Acad Sci US A, 100(13), 8019-8023.
    Yang, J., Zhang, J., Huang, Z., Wang, Z., Zhu, Q., & Liu, L. (2002). Correlation of Cytokinin Levels in the Endosperms and Roots with Cell Number and Cell Division Activity during Endosperm Development in Rice. Annals of Botany, 90(3), 369.
    Yasutani, I., Ozawa, S., Nishida, T., Sugiyama, M., & Komamine, A. (1994). Isolation of temperature-sensitive mutants of Arabidopsis thaliana that are defective in the redifferentiation of shoots. Plant Physiol., 105(3), 815-822.
    Yu, Y., Steinmetz, A., Meyer, D., Brown, S., & Shen, W. H. (2003). The Tobacco A-Type Cyclin, Nicta; CYCA3; 2, at the Nexus of Cell Division and Differentiation. The Plant Cell Online, 15(12), 2763.
    Yutaka Sasaki, K. T. Y. O. M. S. R. Y. K. S. M. U. (2008). Characterization of growth-phase-specific responses to cold in <i>Arabidopsis thaliana</i> suspension-cultured cells. Plant, Cell & Environment, 31(3), 354-365.
    Zhang, S., & Klessig, D. F. (1998). The tobacco wounding-activated mitogen-activated protein kinase is encoded by SIPK. Proceedings of the National Academy of Sciences, 95(12), 7225.
    Zhou, Y., Fowke, L., & Wang, H. (2002). Plant CDK inhibitors: studies of interactions with cell cycle regulators in the yeast two-hybrid system and functional comparisons in transgenic Arabidopsis plants. Plant Cell Reports, 20(10), 967-975.
    Zhou, Y., Wang, H., Gilmer, S., Whitwill, S., Keller, W., & Fowke, L. C. (2002). Control of petal and pollen development by the plant cyclin-dependent kinase inhibitor ICK1 in transgenic Brassica plants. Planta, 215(2), 248-257.

    下載圖示 校內:2013-08-29公開
    校外:2015-08-29公開
    QR CODE