簡易檢索 / 詳目顯示

研究生: 吳博章
Wu, Bo-Zhang
論文名稱: 半連續培養泥漿法共代謝三氯乙烯生物降解之研究
The Study on the Bioremediation of Trichloroethylene Cometabolism Using Semicontinuous Slurry Microcosms
指導教授: 高銘木
Kao, Ming-Muh
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 102
中文關鍵詞: 半連續泥漿法三氯乙烯甲苯共代謝
外文關鍵詞: semicontinuous slurry microcosm, TCE, cometabolism, toluene
相關次數: 點閱:124下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究係探討以半連續泥漿法在不同操作條件下,利用甲苯為生長基質共代謝三氯乙烯之效應。
    在半連續泥漿培養試驗中,於三氯乙烯濃度0.5 ppm時,分別添加濃度為10 ppm及20 ppm之甲苯進行生物共代謝。研究顯示,在未考慮吸附及洩漏等非生物性降解因素下,培養至第四個培養期程時(約經過14天),T1菌對於三氯乙烯降解率可高達93.2 %及96.6 %,原生菌則可去除85.2 %及89.9 %之三氯乙烯。當甲苯濃度愈高,三氯乙烯降解率亦隨之提高,然甲苯降解率反而稍降。若以20 ppm甲苯共代謝0.5 ppm與1 ppm兩種不同濃度之三氯乙烯,後者之三氯乙烯降解率大為下降,分別為植種組79.9 %與未植種組68 %。維持甲苯及三氯乙烯濃度比例為20:1,但將二者濃度分別提高至66.6 ppm及3.33 ppm,T1菌與原生菌對三氯乙烯之降解率分別為79.2 %及73.5 %,達穩定狀態之時間也延長至約50天左右。此外,T1菌以甲苯共代謝三氯乙烯之效果較佳,但三氯乙烯及代謝產物的生物毒性確實會對T1菌造成傷害,導致降解率隨培養時間拉長而下降;原生菌則對環境較具緩衝能力,能將生物毒性之影響減到最小。
    根據穩定期單一期程試驗結果及微生物生長曲線顯示,T1菌及原生菌皆能在半天內使菌數及生物活性達最大。甲苯僅需約12小時即可降解90 %左右,三氯乙烯降解則發生於甲苯之後;主要原因為分解甲苯之同時才能產生可共代謝三氯乙烯之甲苯氧化酵素,且三氯乙烯競爭酵素之能力不如甲苯所致。
    此外,本研究中之三氯乙烯及甲苯非生物性降解率(吸附及洩漏)分別為23.5 %及28.9 %。若將其列入計算,則在穩態下,三氯乙烯之實際生物降解則分別為植種組51.9 %~74.7 %及未植種組45.2 %~68 %。

    The study focused on the toluene degraders on the cometabolic removal of trichloroethylene (TCE) with semicontinuous slurry microcosms method in different operating conditions.
    In the semicontinuous slurry microcosm, initial TCE concentration was 0.5 ppm and toluene was used as primary substrate with addition in concentration of 10 ppm and 20 ppm, respectively. The results showed that the incubation periods were 14 days for the fourth incubation, the TCE removal efficiency with T1 strain were 93.2 % and 96.6 %, and with indigenous strains were 85.2 % and 89.9 % when the non-biodegradable factors such as adsorption and leakage were neglected. The TCE removal rate increased with an increase in the concentration of toluene. And the initial TCE removal rate of seeding and unseeding were 79.9 % and 68 % when the ratio of toluene and TCE concentration were 20:1. If the toluene and TCE concentration increased to 66.6 ppm and 3.33 ppm, the degraded rate of T1 and indigenous strains were 79.2 % and 73.5 % and reached a steady state after 50 days. Therefore, it could get better cometabolic removal of TCE with T1 strains when toluene was used as primary substrate, but the biotoxicity of cometabolic by-products certainly damage the T1 strain with the result that degrade rate decreased with an increase in the incubation periods. On the contrary, the indigenous strains had the better buffering capacity to environment, so the biotoxicity could decrease to minimum.
    The results of single period and microbial growth curve in the steady state indicated T1 and indigenous strains reached the maximum bioactivity in half of the day. Toluene removal efficiency could reach almost 90 % after 12 hours, and the degradation of TCE follow to occur. The main reason was when toluene removal, the toluene oxygenase which could cometabolic removal of TCE produce simultaneously and conduce to the competition capacity of enzyme for TCE was weaker than toluene.
    Furthermore, the non-biodegradable amounts (include adsorption and leakage) of TCE and toluene in the study were about 23.5 % and 28.9 %. If the part was to be incorporated to calculate, the actual biodegradable amounts of TCE of seeding and unseeding in steady state were 51.9 %-74.7 % and 45.2 %-68 %, respectively.

    目錄 摘要......................................................I ABSTRACT................................................III 致謝......................................................V 目錄....................................................VII 表目錄....................................................X 圖目錄..................................................XII 第一章 前言..............................................1 1-1 緣起................................................1 1-2 研究目的............................................3 第二章 文獻回顧..........................................4 2-1 土壤污染及復育......................................4 2-1-1 土壤污染定義.....................................4 2-1-2 土壤污染物及種類.................................5 2-1-3 有機物在土壤中之宿命.............................6 2-1-4 土壤復育........................................11 2-1-4-1 土壤復育技術.................................11 2-1-4-2 生物復育之影響因子...........................13 2-1-4-3 生物泥漿法...................................18 2-1-4-4 半連續泥漿法.................................20 2-2 三氯乙烯之生物降解.................................21 2-2-1 三氯乙烯之特性、用途及危害性....................21 2-2-1-1 三氯乙烯之特性...............................21 2-2-1-2 三氯乙烯之用途...............................22 2-2-1-3 三氯乙烯之危害性及相關法規規範...............24 2-2-1-4 污染案例.....................................26 2-2-2 三氯乙烯之生物降解..............................26 2-2-2-1 厭氧生物處理.................................26 2-2-2-2 好氧生物處理.................................27 2-2-3 甲苯分解菌共代謝三氯乙烯........................34 2-3 生物降解計量及反應動力方程式.......................35 第三章 材料與方法.......................................42 3-1 實驗材料...........................................42 3-1-1 供試土壤........................................42 3-1-1-1 土壤前處理...................................42 3-1-1-2 土壤理化及生物性質分析.......................42 3-2 實驗藥品...........................................49 3-2-1 碳源............................................49 3-2-2 無機營養鹽......................................49 3-2-3 培養基..........................................50 3-3 實驗用水...........................................50 3-4 甲苯分解菌.........................................50 3-4-1 菌種來源........................................50 3-4-2 菌株液體培養....................................51 3-5 實驗方法...........................................51 3-5-1 半連續泥漿法共代謝三氯乙烯試驗..................51 3-5-2 試驗組別說明....................................54 3-6 分析方法...........................................55 3-6-1 氣體分析方法....................................55 3-6-2 菌數測定(混合稀釋法)............................62 3-6-3 菌體乾重測定....................................62 3-6-3 pH測定..........................................63 第四章 結果與討論......................................65 4-1 供試土壤之理化、生物性質...........................65 4-2 非生物性降解.......................................65 4-3 三氯乙烯生物共代謝試驗.............................66 4-3-1 半連續泥漿法試驗................................68 4-3-1-1 不同濃度甲苯對三氯乙烯共代謝之影響...........68 4-3-1-2 不同濃度三氯乙烯之降解..........................69 4-3-1-3 共代謝效率......................................74 4-3-1-4 高濃度三氯乙烯之共代謝降解......................75 4-3-2 穩定期之甲苯及三氯乙烯降解情形..................76 4-3-2-1 不同濃度甲苯對三氯乙烯共代謝之影響..............83 4-4 實際之甲苯共代謝三氯乙烯效率.......................84 4-5 微生物細胞生長.....................................89 第五章 結論與建議.......................................91 5-1 結論...............................................91 5-2 建議...............................................92 第六章 參考文獻.........................................94 表目錄 表2-1 美國Superfund National Priority List場址 常見之地下水污染物................................10 表2-2 萃取和氣提之清除機構及限制條件....................14 表2-3 各項土壤復育技術處理成本比較......................14 表2-4 每公克典型園藝土壤中主要微生物種類其數量 與深度關係........................................19 表2-5 有機質在不同環境下分解之基質角色..................19 表2-6 三氯乙烯之基本特性................................23 表2-7 三氯乙烯對人體健康的危害效應......................25 表2-8 三氯乙烯之產生源及污染途徑........................28 表2-9 國內土壤地下水污染案件摘要表......................29 表2-10 不同甲苯分解菌之代謝途徑..........................41 表3-1 無機營養鹽成分及濃度..............................52 表3-2 NA (Nutrient Agar)成分............................52 表3-3 實驗組別操作條件..................................64 表4-1 供試土壤(梅山土)之理化、生物性質..................67 表4-2 梅山土之三氯乙烯及甲苯非生物性降解率..............67 表4-3 植種組在不同三氯乙烯濃度下之生物降解速率 及共代謝效率(甲苯20 ppm)(包含非生物性降解)........79 表4-4 未植種組在不同三氯乙烯濃度下之生物降解速率 及共代謝效率(甲苯20 ppm)(包含非生物性降解)........79 表4-5 植種組在不同甲苯濃度下之生物降解速率及 共代謝效率(三氯乙烯0.5 ppm)(包含非生物性降解).....80 表4-6 未植種組在不同甲苯濃度下之生物降解速率及 共代謝效率(三氯乙烯0.5 ppm)(包含非生物性降解).....80 表4-7 植種組在不同三氯乙烯濃度下之生物降解速率 及共代謝效率(甲苯20 ppm)(扣除非生物性降解)........87 表4-8 未植種組在不同三氯乙烯濃度下之生物降解速率 及共代謝效率(甲苯20 ppm)(扣除非生物性降解)........87 表4-9 植種組在不同甲苯濃度下之生物降解速率及 共代謝效率(三氯乙烯0.5 ppm)(扣除非生物性降解).....88 表4-10 未植種組在不同甲苯濃度下之生物降解速率及 共代謝效率(三氯乙烯0.5 ppm)(扣除非生物性降解).....88 圖目錄 圖2-1 土壤污染來源.......................................8 圖2-2 有機污染物在土壤中之宿命...........................9 圖2-3 各種處理技術之成本比較............................15 圖2-4 四氯乙烯經還原性脫氯轉換成二氧化碳之可能途徑......30 圖2-5 氧化酵素進行共代謝示意圖..........................31 圖2-6 甲苯、酚及苯甲酸之一般開環途徑....................39 圖2-7 不同甲苯分解菌之甲苯代謝途徑......................40 圖3-1 土壤質地檢測方法之流程............................44 圖3-1 (續一) 土壤質地檢測方法之流程.....................45 圖3-1 (續二) 土壤質地檢測方法之流程.....................46 圖3-2 土壤有機質檢測方法之流程..........................47 圖3-3 土壤陽離子交換能力檢測方法之流程..................48 圖3-4 半連續泥漿法共代謝三氯乙烯試驗流程圖..............53 圖3-5 T1菌及梅山原生菌生長曲線(混濁度測定法)............56 圖3-6 半連續培養泥漿法試驗裝置..........................57 圖3-7 半連續泥漿法植種組操作流程........................58 圖3-8 半連續泥漿法未植種組操作流程......................59 圖3-9 半連續泥漿法滅菌組操作流程........................60 圖4-1 植種組(S1)之三氯乙烯(0.5 ppm)及甲苯(10 ppm) 降解率變化........................................70 圖4-2 未植種組(U1)之三氯乙烯(0.5 ppm)及甲苯(10 ppm) 降解率變化........................................70 圖4-3 植種組(S2)之三氯乙烯(0.5 ppm)及甲苯(20 ppm) 降解率變化........................................71 圖4-4 未植種組(U2)之三氯乙烯(0.5 ppm)及甲苯(20 ppm) 降解率變化........................................71 圖4-5 植種組(S1)與未植種組(U1)在三氯乙烯(0.5 ppm) 及甲苯(10 ppm)下之三氯乙烯降解率比較..............72 圖4-6 植種組(S1)與未植種組(U1)在三氯乙烯(0.5 ppm) 及甲苯(10 ppm)下之甲苯降解率比較..................72 圖4-7 植種組(S2)與未植種組(U2)在三氯乙烯(0.5 ppm) 及甲苯(20 ppm)下之三氯乙烯降解率比較..............73 圖4-8 植種組(S2)與未植種組(U2)在三氯乙烯(0.5 ppm) 及甲苯(20 ppm)下之甲苯降解率比較..................73 圖4-9 植種組(S3)之三氯乙烯(1 ppm)及甲苯(20 ppm) 降解率變化........................................77 圖4-10 未植種組(U3)之三氯乙烯(1 ppm)及甲苯(20 ppm) 降解率變化........................................77 圖4-11 植種組(S3)與未植種組(U3)在三氯乙烯(1 ppm) 及甲苯(20 ppm)下之三氯乙烯降解率比較..............78 圖4-12 植種組(S3)與未植種組(U3)在三氯乙烯(1 ppm) 及甲苯(20 ppm)下之甲苯降解率比較..................78 圖4-13 植種組(S4)之三氯乙烯(3.33 ppm)及甲苯(66.6 ppm) 降解率變化........................................81 圖4-14 未植種組(U4)之三氯乙烯(3.33 ppm)及甲苯(66.6 ppm) 降解率變化........................................81 圖4-15 植種組(S4)與未植種組(U4)在三氯乙烯(3.33 ppm) 及甲苯(66.6 ppm)下之三氯乙烯降解率比較............82 圖4-16 植種組(S4)與未植種組(U4)在三氯乙烯(3.33 ppm) 及甲苯(66.6 ppm)下之甲苯降解率比較................82 圖4-17 植種組(S1)與未植種組(U1)在三氯乙烯(0.5 ppm) 及甲苯(10 ppm)下單一期程降解情形..................85 圖4-18 植種組(S2)與未植種組(U2)在三氯乙烯(0.5 ppm) 及甲苯(20 ppm)下單一期程降解情形..................85 圖4-19 植種組(S3)與未植種組(U3)在三氯乙烯(1 ppm) 及甲苯(20 ppm)下單一期程降解情形..................86 圖4-20 植種組(S4)與未植種組(U4)在三氯乙烯(3.33 ppm) 及甲苯(66.6 ppm)下單一期程降解情形................86 圖4-21細胞乾重變化.......................................90

    中華土壤肥料學會主編,「土壤分析手冊」,台北,1993。
    環境法令研究會編集,「日本環境六法」,日本,1998。
    王一雄、陳尊賢、李達源,「土壤污染學」,國立空中大學,台北,第69頁,1995。
    王銀波,「土壤污染區整治之準則及考慮」,第五屆土壤污染防治研討會論文集,第17-18頁,1997。
    古晏菁,「土壤污染整治技術介紹」,工業污染防治報導,第140期,第3-5頁,1999。
    行政院環境保護署,網站名稱http://www.epa.gov.tw。
    行政院勞工委員會,「物質安全資料表及參考範例」,1997。
    行政院環境保護署,「土壤污染評估技術規範之研究計畫」,EPA-89-UIE1-03-1001,2000。
    江美幸,「甲烷分解菌及苯環類分解菌共代謝三氯乙烯之比較」,碩士論文,國立中興大學環境工程研究所,台中,1995。
    李安,「職場的隱形殺手—揮發性有機化合物」,環保資訊,第2期,第6-10頁,1992。
    李茂山、盧至人,「受三氯乙烯污染土壤之生物復育」,第十三屆廢棄物處理技術研討會論文集,第246-252頁,1998。
    李正怡、李春樹、高銘木「利用甲苯共代謝三氯乙烯之生物濾床效率提升之研究」,第十六屆空氣污染控制技術研討會論文集,第737-742頁,1999。
    車明道,「土壤受氯化碳氫化合物污染整治技術與問題評析」,第六屆土壤污染防治研討會—受有機污染物污染之整治復育技術論文集,第61-95頁,1999。
    林建芬、趙聖傑、盧至人、李季眉,「甲烷分解菌對三氯乙烯喜氧生物分解之影響」,第十八屆廢水處理技術研討會論文集,第287-291頁,1993。
    周孟琦,「三氯乙烯在土壤之吸附反應及共代謝生物降解之研究」,碩士論文,國立成功大學環境工程研究所,台南,2002。
    呂淑慧,「酚分解菌共代謝三氯乙烯之連續流試驗」,國立中興大學環境工程研究所,台中,1995。
    郭家倫、曾迪華、黃雪莉,「好氧性共代謝生物分解含氯脂肪族化合物之回顧與評析」,國立中央大學環境工程學刊,第5期,第23-38頁,1998。
    陳致谷、張添晉,「土壤復育工程技術」,工業污染防治,第45期,第43-65頁,1993。
    陳致谷、張添晉,「土壤生物復育技術之應用與展望」,工業污染防治,第53期,第113-138頁,1995。
    張萬權,「土壤污染之微生物復育法」,工業污染防治,第54期,第116-126頁,1995。
    蔡文田、邱伸彥,「蒸氣脫脂用含氯溶劑之特性管制和污染預防」,工業污染防治,第41期,第145-160頁,1992。
    蔡文田,「含氯有機溶液之毒性及新陳代謝機制」,工業污染防治﹐第43期,第175-187頁,1992。
    蔡文田,「含氯溶劑可行減廢技術介紹」,工業污染防治,第47期,第171-182頁,1993。
    鄭顯榮、吳文娟,「土壤污染防治基本政策與推動方向」,第二屆土壤污染防治研討會論文集,第21-36頁,1990。
    盧滄海、賴龍山,「廢溶劑回收可行性探討」,工業污染防治,第29期,第102-177頁,1989。

    Alvarez-Cohen, L. and P. L. McCarty, “Effects of toxicity, aeration, and reductant supply on trichloroethylene transformation by a mixed methanotroohic culture”, Appl. Environ. Microbiol., Vol. 57, No. 1, pp. 228-235, 1991a.

    Alvarez-Cohen, L. and P. L. McCarty, “Product toxicity and cometabolic competitive inhibition modeling of chloroform and trichloroethylene transformation by methanotrophic resting cells”, Appl. Environ. Microbiol., Vol. 57, No. 4, pp. 1031-1037, 1991b.

    Barkach, J. H., J. Dragun, and S. A. Mason, “Soil and groundwater clean-up standards as approached by the michigan department of natural resources”, The Environmental Professional, Vol. 12, pp. 319-333, 1990.

    Brusseau, G. A., H. C. Tsien, R. S. Hanson, and L. P. Wackett, “Optimization of trichloroethylene oxidation by methanotrophs and the use of a colorimetric assey to detect soluble methane monooxygenase activity”, Biodegradation, Vol. 1, pp. 19-29, 1990.

    Chang, H. L. and L. Alvarez-Cohen, “Transformation capacities of chlorinated organics by mixed cultures enriched on methane, propane, toluene, or phenol”, Biotechnology and Bioengineering, Vol. 45, pp. 440-449, 1995.

    Compeau, G. C., W. D. Mhaffey, and L. Patras, “Full-scale bioremedration of contaminated soil and water”, Environmental Biotechnology for Waste Treatment, G. S. Sayler et al.(Eds.), New York: Plenum Press, pp. 91-109, 1990.

    Dabrock, B., J. Riedel, J. Bertram, and G. Gottschalk, “Isopropylbenzene (cumene)-a new substrate for the isolation of trichloroethene-degrading bacteria”, Arch. Microbiol., Vol. 158, pp. 9-13, 1992.

    Ely, R. L., K. J. Williamson, M. R. Hyman, and D. J. Arp, “Cometabolism of chlorinated Solvents by nitrifying bacteria: kinetics, substrate interactions, toxicity effects, and bacterial response”, Biotechnology and Bioengineering, Vol. 54, pp. 520-534, 1997.

    Ensign, S. A., M. R. Hyman, and D. J. Arp, “Cometabolic degradation of chlorinated alkenes by alkene monooxygenase in a propylene-grown Xanthobacter strain”, Appl. Environ. Microbiol., Vol. 58, No. 9, pp. 3038-3046, 1992.

    Ewers, J., W. Clemens, and H. J. Knackmuss, “Biodegradation of chloroethenes using isoprene as co-substrate”, International Symposium on Environmental biotechnology, Vol. 1, Royal Flemish Society of Engineers : Ostead, Belgium, pp. 77-83, 1991.

    Fan, S. and K. M. Scow, “Biodegradation of trichloroethylene and toluene by indigeous microbial population in soil”, Appl. Environ. Microbiol., Vol. 59, No. 6, pp. 1911-1918, 1993.

    Fogel, M. M., A. R. Taddeo, and S. Fogel, “Biodegradation of chlorinated ethenes by a methane-utilizing mixed culture”, Appl. Environ. Microbiol., Vol. 51, No. 4, pp. 720-724, 1986.

    Folsom, B. R., P. J. Chapman, and P. H. Pritchard, “Phenol and trichloroethylene degradation by Pseudomonas cepacia G4: kinetics and interactions between substrate”, Appl. Environ. Microbiol., Vol. 56, No. 5, pp. 1279-1285, 1990.

    Fox, B. G., J. G. Borneman, L. P. Wackett, and J. D. Lipscomb, “Haloalkene oxidation by the soluble methane monooxygenase from Methylosinus trichosporium OB3b: mechanistic and environmental applications”, Biochemistry, Vol. 29, pp. 6419-6427, 1990.

    Fries, M. R., L. J. Forney, and J. M. Tiedje, “Phenol-and toluene-degrading microbial populations from an aquifer in which successful trichloroethene cometabolism occurred”, Appl. Environ. Microbiol., Vol. 63, No. 4, pp. 1523-1530, 1997.

    Grathwohl, P., “Influence of organic matter from soils and sediments from various origicns on the sorption of some chlorinated aliphatic hydrocarbons: implications on Koc correlations”, Environ. Sci. Technol., Vol. 24, No. 11, pp. 1687-1693, 1990.

    Henson, J. M., M. V. Yates, J. W. Cochran, and D. L. Shackleford, “Microbial removal of halogenated methanes, ethanes, and ethylenes in an aerobic soil exposed to methane”, FEMS Microbial Ecol, Vol. 53, pp. 193-201, 1988.

    Hopkins, G. D., L. Semprini, and P. L. McCarty, “Microcosm and in situ field studies of enhanced biotransformation of trichloroethylene by phenol-utilizing microorganisms”, Appl. Environ. Microbiol., Vol. 59, No. 7, pp. 2277-2285, 1993a.

    Hopkins, G. D., J. Munakata, L. Semprini, and P. L. McCarty, “Trichloroethylene concentration effects on pilot field-scale in-situ groundwater bioremediation by phenol-oxidizing microorganisms”, Environ. Sci. Technol, Vol. 27, pp. 2542-2547, 1993b.

    Jenal-Wanner, U. and P. L. McCarty, “Development and evaluation of semicontinuous slurry microcosms to simulate in situ biodegradation of trichloroethylene in contaminated aquifers”, Environ. Sci. Technol. Vol. 31, pp. 2915-2922, 1997.

    Julie, A. S. and D. Ramey, “In situ biological treatment of TCE-impacted soil and groundwater: demonstration results”, Environmental Process, Vol. 16, No. 4, pp. 287-296, 1997.

    Large, P. J., “Methylotrophy and methanogenesis”, American Society for Microbiology, Washington, DC, pp. 25-26, 1983.

    Leahy, J. G. and R. R. Colwell, “Microbial degradation hydrocarbons in the environment”, Microbiological Reviews, Vol. 54, pp. 305-315, 1990.

    Little, C. D., A. V. Palumbo, S. E. Herbes, M. E. Lidstrom, R. L. Tyndall, and P. J. Gilmer, “Trichloroethylene biodegradation by a methane-oxidizing bacterium”, Appl. Environ. Microbiol., Vol. 54, No. 4, pp. 951-956, 1988.

    Lovelace, K. A., “Evaluating the technical impracticability of groundwater cleanup”, 1997 International Conference Groundwater Quality Protection, Taipei, pp.165-179, 1997.

    Mackenbrock, K., “Treatment of contaminated soils by a combination of suitable, proven technologies”, Contaminated soil, Vol. 2, Kluwer Academic Publishers, Netherlands, 1993.

    McCarty, P. L., M. Reinhard, and B. E. Rittmann., “Trace organics in groundwater”, Environ. Sci. Technol., Vol. 15, No. 1, pp. 40-42, 1981.

    McCarty, P. L., “Bioengineering issues related to in situ remediation of contaminated soils and groundwater”, Environ. Biotechnol., pp. 143-161, 1988.

    Miller, R. E. and F. P. Guengerich, “Oxidation of trichloroethylene by liver microsomal cytochrome P-450: evidence for chlorine migration in a transition state not involing trichloroethylene oxide”, Biochemistry, Vol. 21, pp. 1090-1097, 1982.

    Nelson, M. J. K., S. O. Montgomery, W. R. Mahaffey, and P. H. Pritchard, “Biodegradation of trichloroethylene and involvement of an aromatic biodegradative pathway”, Appl. Environ. Microbiol., Vol. 53, No. 5, pp. 949-954, 1987.

    Nelson, M. J. K., S. O. Montgomery, and P. H. Pritchard, “Trichloroethylene metabolism by microorganisms that degrade aromatic compounds”, Appl. Environ. Microbiol., Vol. 54, No. 2, pp. 604-606, 1988.

    Oldenhuis, R., R. L. J. M. Vink, D. B. Janssen, and B. Witholt, “Degradation of chlorinated aliphatic hydrocarbons by Methylosinus trichosporium OB3b expressing soluble methane monooxygenase”, Appl. Environ. Microbiol., Vol. 55, No. 11, pp. 2819-2826, 1989.

    Phelps, T. J., J. J. Niedzielski, R. M. Schram, S. E. Herbes, and D. C. White, “Biodegradation of trichloroethylene in continuous-recycle expanded-beb bioreactors” , Appl. Environ. Microbiol., Vol. 56, pp. 1702-1709, 1990.

    Pignatello, J. J. and B. Xing, “Mechanisms of slow sorption of organic Chemicals to natural particles”, Environ. Sci. technol., Vol. 30, No. 1, pp. 1-11, 1996.

    Rasche, M. E., M. R. Hyman, and D. J. Arp, “Factors limiting aliphatic chlorocarbon degradation by Nitrosomonas europaea: cometabolic inactivation of ammonia monooxygenase and substrate specificity”, Appl. Environ. Microbiol., Vol. 57, No. 10, pp. 2986-2994, 1991.

    Shields, M. S., S. O. Montgomery, P. J. Chapmen, S. M. Cuskey, and P. H. Pritchard, “Novel pathway of toluene catabolism in the trichloroethylene-degrading bacterium G4”, Appl. Environ. Microbiol., Vol. 55, No. 4, pp. 1624-1629, 1989.

    Shields, M. S., S. O. Montgomery, S. M. Cuskty, P. J. Chapman, and P. H. Pritchard, “Mutants of Pseudomonas cepacia G4 defective in catabolism of aromatic compounds and trichloroethylene”, Appl. Environ. Microbiol., Vol. 57, No. 7, pp. 1935-1941, 1991.

    Skopp, J., M. D. Jawson, and J. W. Doran, “Steady-state aerobic microbial activity as a function of soil water content”, Soil Sci. Soc. Am. J., Vol. 54, pp. 1619-1625, 1990.

    Speitel, G. E. and D. Mclay, “Biofilm reactors for treatment of gas streams containing chlorinated solvents”, J. Envir. Engrg., Vol. 119, No. 2, pp. 658-678, 1993.

    Tortora G. J., B. R. Funke and C. L. Case, “Microbiology an introduction”, 5th edition, The Benjamin/Cummings Publishing Company, Inc., pp. 664-690, 1995.

    Vannelli, T., M. Logan, D. M. Arciero, and A. B. Hooper, “Degradation of halogenated aliphatic compounds by the ammonia-oxidizing bacterium Nitrosomonas europaea”, Appl. Environ. Microbiol., Vol. 56, pp. 1169-1171, 1988.

    Vannelli, T., M. Logan, D. M. Arciero, and A. B. Hooper, “Degradation of halogenated aliphatic compounds by the ammonia-oxidizing bacterium Nitrosomonas europaea”, Appl. Environ. Microbiol., Vol. 56, No. 4, pp. 1169-1171, 1990.

    Vogel, T. M. and P. L. McCarty, “Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions”, Appl. Environ. Microbiol., Vol. 49, No. 5, pp. 1080-1083, 1985.

    Vogel, T. M., C. S. Criddle, and P. L. McCarty, “Transformation of halogenated aliphatic compounds”, Environ. Sci. Technol., Vol. 21, No. 8, pp. 722-736, 1987.

    Wackett, L. P. and D. T. Gibson, “Degradation of trichloroethylene by toluene dioxygenase in whole-cell studies with Pseudomonas putida F1”, Appl. Environ. Microbiol., Vol. 54, No. 7, pp. 1703-1708, 1988.

    Wackett, L. P. and S. R. Householder, “Toxicity of trichloroethylene to Pseudomonas putida F1 is mediated by toluene dioxygenase”, Appl. Environ. Microbiol., Vol. 55, No. 10, pp. 2723-2725, 1989a.

    Wackett, L. P., G. A. Brusseau, S. R. Householder, and R. S. Hanson, “Survey of microbial oxygenases: trichloroethylene degradation by propane-oxidizing bacteria”, Appl. Environ. Microbiol., Vol. 55, No. 11, pp. 2960-2964, 1989b.

    Wilcox, D. W., R. L. Autenrieth, and J. S. Bonner, “propane-induced bio-degradation of vapor phase trichloroethylene”, Biotechnol. Bioeng., Vol. 46, pp. 333-342, 1995.

    Wilson, J. T. and B. G. Wilson, “Biotransformation of trichloroethylene in soil” , Appl. Environ. Microbiol., Vol. 49, No. 1, pp. 242-243, 1985.

    Woodhull, P. M. and D. E. Jerger, “Bioremediation using a commercial-phase biological treatment system: site-specific applications and costs”, Remediation, pp. 353-362, 1994.

    下載圖示 校內:立即公開
    校外:2003-07-16公開
    QR CODE