簡易檢索 / 詳目顯示

研究生: 任婉貞
Jen, Wan-Zhen
論文名稱: 氧化鋅奈米線電晶體之製備與探討
The fabrication and study of zinc oxide nanowire transistor
指導教授: 洪昭南
Hong, Chau-Nan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 151
中文關鍵詞: 氧化鋅奈米線
外文關鍵詞: ZnO, zinc oxide, nanowire
相關次數: 點閱:60下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要分為五大部分:(一)濺鍍鋁摻雜氧化鋅或氧化銦摻雜氧化鋅薄膜定義為電極,利用側向成長奈米線製備氧化鋅奈米線電晶體;在鋁摻雜氧化鋅實驗中,在環六亞甲基四胺與醋酸鋅的濃度同為0.01M時較符合本實驗之需求。而在氧化銦摻雜氧化鋅實驗中,發現隨氧化銦摻雜氧化鋅厚度減少時,其開關特性隨之增加,且先在電極側壁沈積氧化鋅薄膜後再側向成長奈米線之元件其開關特性也較明顯。
    (二)利用介電電泳排列奈米線於電極上,再以轉印的方式將奈米線及電極同步轉移至另一基板;發現施以10公斤壓力時可得完整之圖形。其元件特性為開關特性比值約為200,臨界電壓值約-3.34V,載子傳輸率約6.15 cm2V-1s-1,轉移電導值(gm)為5.18μS。
    (三)利用介電電泳排列奈米線於電極上後,在奈米線上披覆高分子,改變所披覆之高分子材質及真空抽氣與否,探討其電性變化;發現在披覆環氧樹脂後經真空抽氣處理可得最佳之元件特性,開關特性比值約為625,臨界電壓值約-7.21V,載子傳輸率約814 cm2V-1s-1,轉移電導值(gm)為1.57mS。
    (四)利用介電電泳排列奈米線後,藉由升溫壓印,降低奈米線與電極間的接觸電阻,改變不同施加壓力,探討奈米線電晶體之電性變化;發現當施加之壓力越大時,奈米線會被下壓且被金屬電極包覆,但過大之壓力會使元件產生漏電流。
    (五)將奈米線以介電電泳排列好之後,利用壓印及披覆高分子,改變施加壓力及電極,探討其電性變化。當施加的壓力越大(上部閘極),不論是開關特性或是載子遷移率都隨之提升。且以鋁作為源極及汲極,可與奈米線有良好之歐姆特性及飽和特性,其元件特性為開關特性比值約為100,臨界電壓值約-0.7V,載子傳輸率約1000cm2V-1s-1,而轉移電導值(gm)為0.164mS。

    In our study, n-type ZnO (zinc oxide) nanowire transistor has been
    developed in five methods. In the method 1, AZO (aluminum doped zinc oxide) or IZO (indium doped zinc oxide) source and drain electrodes were defined by photolithography, ZnO nanowires were grown between two electrodes by hydrothermal method. For AZO experiment, the best parameter in our experiment is the concentration of HMTA and zinc acetate is 0.01M. In IZO experiment, on/off current ratio increased with decreased the thickness of IZO electrode. And on/off ratio is more distinct with depositing ZnO thin film in the side wall of IZO electrodes.
    In the method 2, nanowires were manipulated between source and drain using dielectrophoresis (DEP) and then both of nanowires and electrodes were transferred to another substrate. When the press force was 10kg during transferring, on/off current ratio was 200, carrier mobility was 6.15 cm2V-1s-1, VTH was about -3.34V and transconductance was 5.18μS.
    In the method 3, nanowires were manipulated between source and drain using DEP, and then the polymer layer was deposited by spin-coating. We discussed the characteristics of nanowire transistor by using different polymer and vacuuming or not after spin-coating. By using epoxy and then vacuuming, on/off current ratio was 625, carrier mobility was 814 cm2V-1s-1, VTH was about -7.21V and transconductance was 1.57mS.
    In the method 4, nanowires were manipulated between source and drain using DEP, and then nanowires were pressed in different force under high temperature (180oC) in order to reduce contact electric resistance between nanowire and electrode. When pressing force was too much, nanowires embed in metal. But there was leakage current between drain and gate.
    Method 5 was combining method 3 and method 4. Nanowires were manipulated between source and drain using DEP, and then nanowires were pressed in different force under high temperature. Finally, the polymer layer was deposited by spin-coating. When the electrodes was Al and pressing force was 100kg, there was ohmic contact between nanowire and electrode and drain current was saturated when drain voltage increased. The on/off current ratio was 100, carrier mobility was 1000 cm2V-1s-1, VTH was about -0.7V and transconductance was 0.164mS.

    中文摘要….................................................................................................I 英文摘要…..............................................................................................III 誌謝….......................................................................................................V 目錄…......................................................................................................VI 表目錄…..................................................................................................XI 圖目錄….................................................................................................XII 第一章 緒論…..........................................................................................1 1-1前言…..................................................................................................1 1-2奈米元件之發展..................................................................................3 1-2-1奈米元件製作瓶頸…................................................................3 1-2-2一維奈米線之應用…................................................................5 1-2-3奈米元件…................................................................................6 1-3研究動機…..........................................................................................8 1-4 論文架構….........................................................................................9 第二章 理論基礎與文獻回顧…............................................................13 2-1電晶體簡介…....................................................................................13 2-2 FET工作原理與理論計算…............................................................14 2-2-1兩端特性…...............................................................................14 2-2-2三端特性…...............................................................................15 2-2-2-1載子遷移率(Carrier Mobility)…......................................16 2-2-2-2 臨界電壓值(Threshold voltage, VTH) .............................17 2-2-2-3 轉移電導值(Transconductance, gm) ...............................18 2-2-2-4 開關特性(On/off ratio) ....................................................18 2-2-2-5 次起始擺幅(Substhreshold swing, S) .............................18 2-3奈米線電晶體…................................................................................19 2-3-1奈米線電晶體研究近況..........................................................19 2-3-1-1平面場效電晶體( planar FETs)….....................................20 2-3-1-2 3-D奈米線電晶體............................................................23 2-3-1-3 核/殼(core/shell)奈米線電晶體………...........................24 2-3-1-4 環繞式閘極(surrounding gate)奈米線電晶體.................26 2-4奈米線自我組裝…............................................................................28 2-4-1間接組裝…...............................................................................28 2-4-2直接組裝…...............................................................................30 第三章 實驗方法與步驟…....................................................................55 3-1實驗流程…........................................................................................55 3-2 儀器設備….......................................................................................56 3-2-1反應式離子蝕刻系統(Reactive ion etching, RIE)…...............56 3-2-2光罩對準機(Mask aligner)………….......................................56 3-2-3電子槍鍍膜系統(electron-gun thermal evaporation)...............58 3-2-4介電電泳電源供應器…...........................................................59 3-2-5示波器(Oscilloscope)…............................................................59 3-2-6管型高溫爐管….......................................................................60 3-2-7真空電漿濺鍍系統…...............................................................61 3-2-8壓印機…...................................................................................61 3-2-9 PH儀….....................................................................................62 3-3實驗材料…........................................................................................63 3-3-1基板材料…...............................................................................63 3-3-2有機材料…...............................................................................63 3-3-3無機材料…...............................................................................64 3-3-4金屬材料…...............................................................................64 3-3-5靶材材料…...............................................................................64 3-3-6基板清洗溶劑及實驗氣體…...................................................65 3-4 實驗步驟….......................................................................................66 Part A濺鍍鋁或銦摻雜氧化鋅薄膜定義為源極及汲極,再利用側 向成長的方式製備氧化鋅奈米線電晶體............................66 Part B利用介電電泳將奈米線排列在電極上後,以轉印的方式將 奈米線及電極一起轉移至以二氧化矽為介電層之基板....69 Part C利用介電電泳將奈米線排列後在電極上披覆高分子,探討 其電性變化............................................................................72 Part D利用介電電泳將奈米線排列在電極上後,升溫壓印探討其電性變化................................................................................75 Part E 結合C及D部分,利用介電電泳將奈米線排列在電極上 後,改變壓力及金屬電極後披覆高分子,探討其電性變 化............................................................................................75 3-5實驗鑑定…........................................................................................77 3-5-1掃描式電子顯微鏡…...............................................................77 3-5-2電性量測系統….......................................................................78 第四章 結果與討論…............................................................................86 4-1濺鍍鋁或銦摻雜氧化鋅薄膜定義為源極及汲極,再利用側向成長的方式製備氧化鋅奈米線電晶體…................................................86 4-1-1鋁摻雜氧化鋅之電極側向成長氧化鋅奈米線.......................86 4-1-2銦摻雜氧化鋅之電極側向成長氧化鋅奈米線.......................89 4-2利用介電電泳將奈米線排列在電極上後,以轉印的方式將奈米線及電極同步轉移至以二氧化矽為介電層之基板............................93 4-3利用介電電泳將奈米線排列在電極上後披覆高分子,探討其電性變化....................................................................................................95 4-3-1將奈米線電晶體披覆 PVA之特性.........................................95 4-3-2填入Epoxy之奈米線電晶體特性............................................98 4-4利用介電電泳將奈米線排列後,升溫壓印探討其電性變化........100 4-5結合第三及第四部分,將奈米線以介電電泳排列好之後,改變壓力及金屬電極後披覆高分子,探討其電性變化............................103 4-5-1以鎳為源極及汲極電極改變不同壓力後披覆PVA之上部閘極奈米線電晶體之特性........................................................103 4-5-2以鋁為源極及汲極電極改變不同壓力後披覆PVA之上部閘極奈米線電晶體之特性............................................................105 第五章 結 論…....................................................................................144 第六章 參考文獻…..............................................................................147

    [1]C. Poole and F. Owens, Introduction to nanotechnology, Wiley 2003
    [2]G. E. Moore, Electronics, Vol. 38, No. 8, April 19(1965)
    [3]張鼎張,顏碩廷,劉伯村,電子與材料雜誌,第24期。
    [4] J. D. Meindl, Q. Chen and J. A. Davis, Science 293, 2044(2001)
    [5]M. A. Reed and J. A. Tour. Sci. Am. June, 86(2000).
    [6]C. Joachim, J. K. Gimzewski, A. Aviram., Nature 408, 541(2000).
    [7]C. P. Collier, E. W. Wong, M. Belohradsky, F. M. Raymo, J. F. Stoddart, P. J. Kuekes, R. S.Williams, J. R. Heath. Science 285, 391 (1999).
    [8]C. P. Collier, G. Mattersteig, E. W. Wong, Y. Luo, K. Beverly, J.
    Sampaio, F. M. Raymo, J. F. Stoddart, J. R. Heath. Science 289,
    1172(2000).
    [9]M. A. Reed, J. Chen, A. M. Rawlett, D. W. Price, J. M. Tour. Appl. Phys. Lett. 286, 1550 (2001).
    [10]A. P. Alivisatos. Science 271, 933 (1996).
    [11]D. L. Klein, R. Roth, A. K. L. Lim, A. P. Alivisatos, P. L. McEuen.
    Nature 389, 699 (1997).
    [12]P. G. Collins and P. Avouris. Sci. Am. Dec., 62 (2000).
    [13]C. Dekker. Phys. Today 52, 22 (1999).
    [14]陳一誠,曾永寬,鄭信民,許正良,郭忠義,工業材料雜誌,231
    期,93年9月
    [15]X. Duan, C. Niu, V. Sahi, J. Chen, J. W. Parce, S. Empedocles2, J. L. Goldman, Nature 425, 274(2003)
    [16]劉博文,半導體物理元件,p8-2
    [17]C. Dekker. Phys. Today 52, 22 (1999).
    [18] X. Duan, Y. Huang, Y. Cui, J. Wang and C. M. Lieber, Nature 409, 66(2001)
    [19] P. A. Smith, C. D. Nordquist, T. N. Jackson, T. S. Mayer, B. R. Martin, J. Mbindyo and T. E. Mallouk, Appl. Phys. Lett. 77, 1399(2000)
    [20]M. R. Diehl, S. N. Yaliraki, R. A. Beckman, M. Barahona and J. R. Heath, Angew. Chem. Int. Ed. 41, 253(2002)
    [21]Y. Huang, X. Duan, Q. Wei and C. M. Lieber, Science 291, 630(2001)
    [22]劉博文,半導體元件物理,p.8-17,高立圖書有限公司(2000)
    [23]Y. Okubo, T. Nakagiri, Y. Osada, M. Sugata, N. Kitahara, and K. Hatanaka, op.cit., p. 40.
    [24]E. Stupp, U. Mitra, A. Carlson, H. Sorkin, M. Venkatesan, B. A. Khan, P. Janssen, and M. Stroomer, Proc. 10th Int. Disp. Res. Conf. “Eurodisplay ’90” (Soc. for Inf. Display, San Jose, 1990), p 52.
    [25]W. Il Park, J. S. Kim, G. C. Yi, M. H. Bae, H. J. Lee, Appl. Phys. Lett. 85, 5052(2004)
    [26] J. H. Ahn, H. S. Kim, K. J. Lee, S. Jeon, S. J. Kang, Y. Sun, R. G. Nuzzo, J. A. Rogers, Science 314,1754(2006)
    [27] A. Javey, S. W. Nam, R. S. Friedman, H. Yan, C. M. Lieber, Nano Lett. 7,773(2007)
    [28] Y. Li, J. Xiang, F. Qian, S. Gradecˇak, Y. Wu, H. Yan, D. A. Blom, C. M. Lieber, Nano Lett. 6,1468(2006)
    [29] J. Xiang1, W. Lu1, Y. Hu1, Y. Wu1, H. Yan1, C. M. Lieber, Nature 441, 489 (2006)
    [30] A. I. Hochbaum, R. Fan, R. He, P Yang, Nano Lett. 5,457(2005)
    [31] J. Goldberger, A. I. Hochbaum, R. Fan, P. Yang, Nano Lett. 6,973(2006)
    [32] K. Keem, D. Y. Jeong, S. Kim, M. S. Lee, In. S. Yeo, U. I. Chung, J. T. Moon, Nano Lett. 6,1454(2006)
    [33] L. Zhang, R. Tu, H. Dai, Nano Lett. 6,2785(2006)
    [34] X. Duan, Y. Huang, Y. Cui, J. Wang ,C. M. Lieber, Nature 409, 66 (2001)
    [35] P. A. Smith, C. D. Nordquist, T. N. Jackson, T. S. Mayer, B. R. Martin, J. Mbindyo , T. E. Mallouk, Appl. Phys. Lett. 77, 1399 (2000)
    [36]M. R. Diehl, S. N. Yaliraki, R. A. Beckman, M. Barahona, J. R. Heath, Angew. Chem. Int. Ed. 41, 253 (2002)
    [37]K. Yamamoto, S. Akita and Y. Nakayama, J. Phys. D: Appl. Phys. 31, L34 (1998)
    [38]P. A. Smith, C. D. Nordquist, T. N. Jackson, T. S. Mayer, B. R. Martin, J. Mbindyo, Thomas E. Mallouk, Appl. Phys. Lett. 77, 1399 (2000)
    [39]Y. Huang, X. Duan, Q. Wei , C. M. Lieber, Science 291, 630 (2001)
    [40]A. Ulman: An introduction to ultrathin organic films: from Langmuir-Blodgett to self-assembly (Academic Press, New York, 1991)
    [41]D. Whang, S. Jin, C. M. Lieber, Nano Lett. 3, 951 (2003)
    [42] D. Whang, S. Jin, C. M. Lieber, Nano Lett. 3, 1255(2003)
    [43]S. Acharya, A. B. Panda, N. Belman, S. Efrima, Y. Golan, Avd. Mater. 18, 210 (2006)
    [44]C. Zhou, J. Kong, H. Dai, Appl. Phys. Lett. 76, 1597 (2000)
    [45]Y. Zhang, A. Chang, J. Cao, Q. Wang, W. Kim, Y. Li, N. Morris, E. Yenilmez, J. Kong, H. Dai, Appl. Phys. Lett. 79, 3155 (2001)
    [46]A. Ural, Y. Li, and H. Dai, Appl. Phys. Lett. 81, 3463 (2002)
    [47] M. Islam, S. Sharma, T. I. Kamins , R. S. Williams, Nanotechnology 15, L5 (2004)
    [48] M. Islam, S. Sharma, T. I. Kamins , R. S. Williams, Appl. Phys. A , 80, 1133 (2005)
    [49] R. He, D. Gao, R. Fan, A. Hochbaum, C. Carraro, R. Maboudian,
    P. D. Yang ,Adv. Mater. 17, 2098 (2005)
    [50] J. F. Conley, Jr., L. Stecker, Y. Ono, Appl. Phys. Lett. 87, 223114 (2005)
    [51] J. Lee, M. S. Islam, S. Kim, Nano Lett. 6, 1487 (2006)
    [52]Y. Cui, Z Zhong, D. Wang,W. U. Wang, Charles M. Lieber, Nano Lett., 3,149(2003)
    [53]S. Jin, D. Whang, M. C. McAlpine, R. S. Friedman, Y. Wu, and C. M.Lieber, Nano Lett. 4, 915(2004)
    [54]S. Tans, S. Verschueren, C. Dekker, Nature 393, 49(1998)
    [55]A. Javey, H. Kim, M. Brink, Q. Wang, A. Ural, J. Guo, P. Mcintyre, P.Mceuen, M. Lundstrom, H. Dai, Nature Materials 1, 241(2002)
    [56]L. Dong, V. Chirayos, J. Bush, J. Jiao, V. M. Dubin, R. V.Chebian, Y.Ono, J. F. Conley, Jr. B.D. Ulrich, J. Phys. Chem. B 109, 13148(2005)
    [57]J. Goldberger, D. J. Sirbuly, M. Law, P. Yang, J. Phys. Chem. B 109, 9(2004)
    [58]Q. H. Li, Y. X. Liang, Q. Wan, and T. H. Wang, Appl. Phys. Lett.
    85,6389(2004)
    [59]Y. W. Heo, L. C. Tien, Y. Kwon, D. P. Norton, and S. J. Pearton, Appl.Phys. Lett. 85, 2274(2004)
    [60]Zhiyong Fan, Dawei Wang, Pai-Chun Chang, Wei-Yu Tseng, and Jia G.Lu, Appl. Phys. Lett. 85, 5923(2004)
    [61]R. L. Hoffman, B. J. Norris, J. F. Wager, Appl. Phys. Lett. 82, 733(2003)
    [62]E. M. C. Fortunato, P. M. C. Barquinha, A. C. M. B. G. Pimentel, A. M.F. Gonçalves, A. J. S. Marques, R. F. P. Martins,L. M.N. Pereira, Appl.Phys. Lett. 85, 2541(2004)
    [63]P. F. Carcia, R. S. McLean, M. H. Reilly, G. Nunes, Jr., Appl. Phys. Lett.,82, 1117(2003)
    [64]E. Fortunato, A. Pimentel, L. Pereira, A. Goncalves, G. Lavareda, H.
    Aguas, I. Ferreira, C.N. Carvalho, R. Martins, J. of Non-Crystalline Solids 338-340, 806(2004)
    [65]H. S. Bae, J. H. Kim, S. Im, Electrochemical and Solid-State Letters
    7,G279-G281(2004)
    [66]黃盈捷,黃淑惠,國科會南區微系統研究中心,”Mask Aligner SOP”
    [67]劉博文,ULSI製程技術,第七章微影製程技術,文京圖書有限司
    [68]莊達人,VLSI 製造技術,第七章微影,高立圖書有限公司(2000)
    [69] X. Duan, Y. Huang, Y. Cui, C. M. Lieber. In Molecular Nanoelectronics, M. A. Reed and T. Lee(Eds.), American Scientific Publishers,pp.199–227 (2003).
    [70]Http://www.phy.fju.edu.tw/experiment/PHYEXP/93/exp18.pdf
    [71]J. R. Heath, P. J. Kuekes, G. S. Snider, R. S. Williams. Science 280,
    1716(1998).
    [72]K. Govender, D. S. Boyle, P. B. Kenway, P. O’Brien, J. Mater.Chem.
    14, 2575 (2004)
    [73] J. B. Baxter, E.S. Aydil , J. Cry. Growth , 274, 407 (2005)
    [74]M. S. Arnold, P. Avouris, Z. W. Pan, Z. L. Wang, J. Phys. Chem. B, 107, 659 (2003)
    [75] P. Avouris, J. Appenzelle, R. Martel, S. J. Wind, IEEE, 91, 1772 (2003)
    [76] H.-S. P. Wong, J. Appenzeller, V. Derycke, R. Martel, S. Wind,
    Ph. Avouris, IEEE International Solid-State Circuits Conference
    [77]http://www.nsc.gov.tw/files/popsc/2003_108/02%B9p%AEg%A5b%BE%C9%C5%E9.pdf
    [78] H. Altug, J. V.kovic, Appl. Phys. Lett. 86, 111102 (2005).
    [79] Yi Cui, Qingqino Wei, Hongkun Park, and C. M. Lieber, Science, 293, 1289 (2001).
    [80]http://www.giichinese.com.tw/chinese/ftm20651_nanotechnology_toc.html
    [81] http://cdnet.stpi.org.tw/techroom/market/nano/nano016.htm

    下載圖示 校內:2012-07-25公開
    校外:2012-07-25公開
    QR CODE