| 研究生: |
謝沅任 Hsieh, Yuan-Jen |
|---|---|
| 論文名稱: |
以化學共沉法製備鑭銦鎵氧化物並摻入鉛、鎳、銅或銀及其性質研究 Preparation and Characterization of Pb,Ni,Cu or Ag doped Lanthanum Indium Gallium Oxides |
| 指導教授: |
高振豐
Kao, Chen-Feng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 化學共沉法 、鑭銦鎵氧化物 、摻入鉛鎳銅銀 |
| 外文關鍵詞: | Coprecipitation, LaGa1-xInxO3, Pb,Ni,Cu or Ag doped |
| 相關次數: | 點閱:55 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗著力於以化學共沉法製備最佳比例之鑭銦鎵氧化物陶瓷粉末,並摻入不同比例的鉛、鎳、銅、銀等元素,探討此化合物的合成法式以及特性分析;此乃由於化學共沉法具有高均勻性、高反應性、高品質,以及精確的化學計量比。
以化學共沉法製得鑭銦鎵之前導化合物,經冷凍乾燥後,分別於900oC、1000 oC、 1100 oC煆燒2小時。將煆燒後之產物壓錠,於1200 oC、1300 oC、 1400 oC下燒結8小時,經XRD分析得知,沒有其他雜相產生。
以化學共沉法製備摻入各比例之鉛、鎳、銅、銀,經冷凍乾燥後,以1100 oC煆燒2小時,由XRD分析得知摻入少量的鉛、鎳、銅、銀並沒其他雜相出現。將煆燒後之產物壓錠,於1200 oC下燒結8小時。
由高阻抗儀在室溫下量測其直流阻抗與電壓的關係,發現鑭銦鎵氧化物在1400 oC下燒結之阻抗為1010 Ω-cm,1300 oC下燒結之阻抗為107 Ω-cm,1200 oC下燒結之阻抗為106 Ω-cm。摻入鉛、鎳、銅、銀可有效降低阻抗,且摻入量達0.8%時可得到較低之阻抗。其值分別為:2.41~7.07×106 Ω-cm、2.11~4.66×106 Ω-cm、1.48~3.10×106 Ω-cm、1.09~1.32×106 Ω-cm。
利用LCR測量儀在室溫下測量其電容值經公式換算成介電常數,得知鑭銦鎵氧化物1400 oC下燒結之介電常數為13~14,1300 oC下燒結之介電常數為14~17,1200 oC下燒結之介電常數為17~25。介電常數隨著燒結溫度和LCR量測頻率的升高而降低。摻入不同的元素可以使介電常數增加,摻入鉛之介電常數為22~31,摻入鎳之介電常數為35~49,摻入銅之介電常數為47~51,摻入銀之介電常數為59~67。
Chemical coprecipitation has high homogeneity, high reactivity, high quality and exact stochiometry. The goal of this study is that the lanthanum-indium -gallium oxide powders Pb,Ni,Cu or Ag doped were prepared by coprecipitation method. The synthesis, characterization and electrical properties of the above compounds were investigated.
The precursors of lanthanum-indium- gallium oxide with OH- ligands were prepared by coprecipitation. After freeze drying, the precursors were calcined at 900,1000 and 1100 ℃ for 2 h to obtain the corresponding compounds without Pb,Ni,Cu or Ag doped respectively. It indicated from XRD patterns that the major compounds were lanthanum-indium-gallium oxide.Pb,Ni,Cu or Ag doped lanthanum-indium- gallium oxide indicated from XRD patterns that the major compounds had not other phase presently.
Calcined powders were pressed into disks and then were sintered for 8h at 1200 ℃、1300 ℃、1400 ℃. From XRD patterns, it revealed that they formed solid solution systems of LaInO3-LaGaO3.
High resistance meter was used to measure the D.C. resistance of the samples. It was found that the resistance of the lanthanum-indium- gallium oxides are 1010 Ω-cm which sintered at 1400 oC, 107 Ω-cm which sintered at 1300 oC,and 106 Ω-cm which sintered at 1200 oC.When Pb,Ni,Cu or Ag doped lanthanum-indium- gallium oxide,the resistance decreases with increasing ratio of doping.The D.C. resistance of the sample with Pb doped is 2.41~7.07×106 Ω-cm,with Ni doped is 2.11~4.66×106 Ω-cm,with Cu doped is 1.48~3.10×106 Ω-cm,and with Ag doped is 1.09~1.32×106 Ω-cm.
LCR meter was used to measure the electrical capacity of the samples. Dielectric constants were calculated from the electrical capacity via the formula. It was found that lanthanum-indium- gallium oxides has low dielectric constants. The dielectric constant of lanthanum-indium- gallium oxide sintered at 1400 oC is 13~14, sintered at 1300 oC is 14~17,and sintered at 1400 oC is 17~25.The dielectric constant decreases with increasing sintering temperature and frequency, measured by the LCR.And the dielectric constant increase with increasing doping ratio and element. The dielectric constant of the sample with Pb doped is 22~31,with Ni doped is 35~49,with Cu doped is 47~51,and with Ag doped is 59~67.
1. S.J. Schneider, Jr. ,Ed ; Engineer Materials Handbooks, Vol.4 Ceramics and Glasses, ASM International,1991.
2. 工業技術研究院工業材料研究所與經濟部中小企業處聯合編印
“精密陶瓷科技” , p4-5, 1987.
3.國科會計畫編號:NSC-92-2214-E006-007,主持人:高振豐,“超離子導體LaGaxIn1-xO3及載入鎂鈣鍶或鋇的LaGaxIn1-xO3製備及其性質研究”.
4. M. P. Rosynek , D. T. Magnuson, “Preparation and Characterization
of Catalytic Lanthanum Oxide “, J. Catalyst. , 46, 402-413, 1977.
5. Edited by A. J. Downs , “Chemistry Of Aluminium, Gallium, Indium, Thallium”,1st edition, Blackie Academic & Professional, London,
284,1993.
6. P. Breteque,“Kirk-Othmer Encyclopedia of Chemical technology,3rd edition”, Wiely, New York, 11, 604, 1980.
7. T. Fujitani, I. Nakamura, “Methanol Synthesis From CO and CO2 Hydrogenations Over Supported Palladium Catalysts”, Bulletin of the Chemical Society of Japan, 75(6), 1339-1398, 2002.
8. Y. Obana, K. Yashiki, M. Ito, H. Nishiguchi, T. Ishihara, Y. Takita, “Oxidation of Isobutane to Methacrolein Over Ga2O3/BizMo3O12 Catalysts”, Journal of the Japan Petroleum Institute, 46(1) , 53-61,
2003.
9. U. Hoefer, J. Frank, M. Fleischer, “High temperature Ga2O3-gas Sensors and SnO2-gas Sensors : a Comparison”, Sensors and Actuators B-Chemical, 1-3, 78, 2001
10. T. Fujitani, Nakamura, “Methanol synthesis from CO and CO2 Hydrogenations over supported palladium catalysts”, Bulletin of the Chemical Society of Japan, 75(6), 1393-1398, 2002.
11. Edited by A. J. Downs , “Chemistry Of Aluminium, Gallium, Indium, Thallium”,1st edition, Blackie Academic & Professional, London,
286, 1993.
12. E.F. Milner, C.E.T.White, “Kirk-Othmer Encyclopedia of Chemical Technology”, 3rd edn., Wiley, New York, 13, 207, 1981.
13. TKH Starke, GSV Coles , H Ferkel, “High Sensitivity NO2 Sensors for Environmental Monitoring Produced Using Laser Ablated NanoCrystalline Metal Oxides”, Sensors and Actuators B- Chemical,85(3), 239-245, 2002.
14. C. Li, D. H. Zhang, X. L. Liu, S. Han, T. Tang, J. Han, C. W. Zhou, “In2O3 Nanowires as Chemical Sensors”, Applied Physics Letters,82(10), 1613-1615, 2003.
15. M. Mizuno, T.Yamada, T. Ohtake, “Phase Diagram of the SystemGallium Trioxide-Lanthanum Oxide at High Temperatures,” Yogyo-Kyokaishi, 93(6), 295-300, 1985.
16. C. J. Howard, B. J. Kennedy, “The Orthorhombic and Rhombohedral Phases of LaGaO3- a Neutron Powder Diffraction Study”, J. Phys: Condens. Matter, 11, 3229-3236, 1999.
17. B. J. Kennedy, T. Vogt, C. D. Martin, J. B. Parise, J. A. Hrijac, “Pressure-induced Orthorhombic to Rhombohedral Phase Transition in LaGaO3”, J. Phys: Condens Matter,13(48),L925-L930, 2001.
18. L. Vasylechko, R. Niewa, H. Borrmann, M. Knapp, D. Savytskii,A. Matkovski, U. Bismayer, M. Berkowski ,“R-3c-Pbnm Phase Transition of La1-xSmxGaO3(0< x< 0.3) Perovskites and Crystal Structures of the Orthorhombic and Trigonal Phases ”, Solid state ionics, 143, 219-, 2001.
19. M. Berkowski, J. Fink-Finowicki, W. Piekarczyk, L. Perchuc, P. Byszewski, L. O. Vasylechko, D. I. Savytskij, K. Mazur, J. Sass, E. Kowalska, J. Kapusniak, “Czochralski Growth and Structural Investigations of La1-xNdxGaO3 Solid Solution Single Crystals”,Journal of Crystal Growth, 209, 75-80, 2000.
20. T. Ishihara, H. Matsuda, Y. Takita, “Doped LaGaO3 Perovskite Type Oxide as a New Oxide Ionic Conductor”, J. Am. Chem. Soc., 116, 3801-3803, 1994.
21. P. N. Huang, A. Petric, “Super Oxygen Ion Conductivity of Lanthanum Gallate Doped with Strontium and Magnesuium,”
J. Electronchem. Soc., 143(5), 1996.
22. R. Maric, S. Ohara, T. Fukui, H. Yoshida, M. Nishimura, T. Inagaki,
K. Miura, “Solid Oxide Fuel Cell with Doped Lanthanum Gallate Electrolyte and LaSrCoO3 Cathode, and Ni-Samaria-doped Ceria Cermet anode”, J. Electrochem. Soc.,146, 2006-2010, 1999.
23. J. Drennan, V. Zelizko, D. Hay, FT. Ciacchi, S. Rajendran, SPS. Badwal, “Characterisation, conductivity and mechanical properties of the oxygen-ion conductor La0.9Sr0.1Ga0.8Mg0.2O3-x”, J. Mater. Chem.,
7(1), 79-83, 1997.
24. K. Q. Huang, M. Feng, J. B. Goodenough, “Sol-Gel Synthesis of a New Oxide-Ion Conductor Sr- and Mg-doped LaGaO3 Perovskite”,J. Amer. Ceram. Soc., 79(4), 1100-1104, 1996
25. N. M.Sammes, F. M. Keppeler, H. Nafe, F. Aldinger, “Mechanical Properties of Solid-State-Synthesized Strontium- and Magnesium-doped Lanthanum Gallate”, J. Am. Ceram. Soc., 81, 3104-3108, 1998
26. K. K. Wioletta, K. Dietmar, M. Miroslaw , C. Chatillon, S. Lorenz, H. Klaus, “Vaporization Studies of the La2O3-Ga2O3 System”, Journal of the American Ceramic Society, 85(9), 2299-2305, 2002.
27. M. Ernest, C. R. Robbins , F.M. Howard, ”Phase Diagrams for Ceramists” ,American Ceramic Society. ,135.
28. D. Lybye, F. W. Poulsen, M. Mogensen, “Conductivity of A- and B-site doped LaAlO3, LaGaO3, LaScO3 and LaInO3 perovskites”, Solid State Ionics, 128, 91-103, 2000
29. E. Ruiz-Trejo, G. Tavizon, A. Arroyo-Landeros, “Structure, Point Defects and Ion Migration in LaInO3”, Journal of Physiscs and Chemistry of Solids, 64, 515-521, 2003.
30. H. He, X. Huang, L. Chen, “The Effect of Dopant valence on the Structure and Electrical Conductivity of LaInO3”, Electrochimica Acta, 46, 2871-2877, 2001.
31. Hongpeng He, Xuejie Huang, Liquan Chen, “Sr-doped LaInO3 and Its Possible Application in a Single Layer SOFC”, Solid State Ionics, 130, 9183-193, 2000.
32. Hong Peng He, Huang, Xue Jie Che, Li Quan, “An Effective Way to Detect the Secondary Phase in Sr-doped LaInO3”, Journal of Physics and Chemistry of Solids, 62, 701-709, 2001.
33. D. W. Johnson. , Jr., “Nonconventional Powder Preparation Techniques”, Ceram. Bull., 60, 221-224, 1981
34. J. A. Dean, “Solubility Products,” Lange’s Handbook of Chemistry”,
Chap.5 McGraw-Hill Book Company, New York,1970
35. A. Benedetti, G. Fagherazi, F. Pinna, S. Polizzi, “Structural Properties of Ultra-Fine Zirconia Powders Obtained by Precipitation Methods”, J. Mat. Sci., 25, 1473-1478, 1990
36. B. Duricic, D. Kolar, Milos Komac, “Synthesis and Characteristics of Zirconia Fine Powders from Organic Zirconium Complexs”, J. Mat.Sci., 25, 1132-1136, 1990
37. L. Lerot, F. Legrand, P. De Bruycker, “Chemical Control in Precipitation of Spherical Zirconia Particles”, J. Mat. Sci. , 26, 2353-2358,1991
38. Z. Y. Zheng, B. J. Guo and X. M. Mei, “A New Technology of Coprecipitation Combined with High Temperature Melting for Preparing Single Crystal Ferrite Powder”, J. Magnetism and Magnetic Materials, 78 ,73-76,1989.
39. W. D. Kingery, H. K. Bowen and D. R. Uhlmann, “Introduction to Ceramics”,2nd Edition, John Wiley & Sons, 67-68, 1975
40. F.F. Lange, “Sinterability of Agglomerated Powders,” J. Am. Ceram. Soc., 67, 83-89, 1984
41. 守吉佑介,植松敬三,伊熊泰郎;〝Ceramics的燒結〞;株式會社; p35-p64.
42. 水恭維谷,尾崎義治,木村敏夫;〝工業陶瓷製程〞; 復漢出版社; p99-p128.
43. M. D. Sacks and H. A. Pask,“Sintering of Mullite- Containing Materials :Ⅱ, Effect of Agglomeration,” J. Am. Ceram. Soc., 65, 70-77, 1982.
44. A. A. Zaky and R. Hawley, “Dielectric Solids”, Dover,N.Y., 281-335,1970.
45. W. D. Kingery, H.K. Bowen, D.R. Uhlmann, “Introduction to Ceramics,”2nd Edition, John Wiley & Sons, 913-964, N.Y., 1976.
校內:2015-09-08公開