簡易檢索 / 詳目顯示

研究生: 謝沅任
Hsieh, Yuan-Jen
論文名稱: 以化學共沉法製備鑭銦鎵氧化物並摻入鉛、鎳、銅或銀及其性質研究
Preparation and Characterization of Pb,Ni,Cu or Ag doped Lanthanum Indium Gallium Oxides
指導教授: 高振豐
Kao, Chen-Feng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 81
中文關鍵詞: 化學共沉法鑭銦鎵氧化物摻入鉛鎳銅銀
外文關鍵詞: Coprecipitation, LaGa1-xInxO3, Pb,Ni,Cu or Ag doped
相關次數: 點閱:55下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗著力於以化學共沉法製備最佳比例之鑭銦鎵氧化物陶瓷粉末,並摻入不同比例的鉛、鎳、銅、銀等元素,探討此化合物的合成法式以及特性分析;此乃由於化學共沉法具有高均勻性、高反應性、高品質,以及精確的化學計量比。
    以化學共沉法製得鑭銦鎵之前導化合物,經冷凍乾燥後,分別於900oC、1000 oC、 1100 oC煆燒2小時。將煆燒後之產物壓錠,於1200 oC、1300 oC、 1400 oC下燒結8小時,經XRD分析得知,沒有其他雜相產生。
    以化學共沉法製備摻入各比例之鉛、鎳、銅、銀,經冷凍乾燥後,以1100 oC煆燒2小時,由XRD分析得知摻入少量的鉛、鎳、銅、銀並沒其他雜相出現。將煆燒後之產物壓錠,於1200 oC下燒結8小時。
    由高阻抗儀在室溫下量測其直流阻抗與電壓的關係,發現鑭銦鎵氧化物在1400 oC下燒結之阻抗為1010 Ω-cm,1300 oC下燒結之阻抗為107 Ω-cm,1200 oC下燒結之阻抗為106 Ω-cm。摻入鉛、鎳、銅、銀可有效降低阻抗,且摻入量達0.8%時可得到較低之阻抗。其值分別為:2.41~7.07×106 Ω-cm、2.11~4.66×106 Ω-cm、1.48~3.10×106 Ω-cm、1.09~1.32×106 Ω-cm。
    利用LCR測量儀在室溫下測量其電容值經公式換算成介電常數,得知鑭銦鎵氧化物1400 oC下燒結之介電常數為13~14,1300 oC下燒結之介電常數為14~17,1200 oC下燒結之介電常數為17~25。介電常數隨著燒結溫度和LCR量測頻率的升高而降低。摻入不同的元素可以使介電常數增加,摻入鉛之介電常數為22~31,摻入鎳之介電常數為35~49,摻入銅之介電常數為47~51,摻入銀之介電常數為59~67。

    Chemical coprecipitation has high homogeneity, high reactivity, high quality and exact stochiometry. The goal of this study is that the lanthanum-indium -gallium oxide powders Pb,Ni,Cu or Ag doped were prepared by coprecipitation method. The synthesis, characterization and electrical properties of the above compounds were investigated.
    The precursors of lanthanum-indium- gallium oxide with OH- ligands were prepared by coprecipitation. After freeze drying, the precursors were calcined at 900,1000 and 1100 ℃ for 2 h to obtain the corresponding compounds without Pb,Ni,Cu or Ag doped respectively. It indicated from XRD patterns that the major compounds were lanthanum-indium-gallium oxide.Pb,Ni,Cu or Ag doped lanthanum-indium- gallium oxide indicated from XRD patterns that the major compounds had not other phase presently.
    Calcined powders were pressed into disks and then were sintered for 8h at 1200 ℃、1300 ℃、1400 ℃. From XRD patterns, it revealed that they formed solid solution systems of LaInO3-LaGaO3.
    High resistance meter was used to measure the D.C. resistance of the samples. It was found that the resistance of the lanthanum-indium- gallium oxides are 1010 Ω-cm which sintered at 1400 oC, 107 Ω-cm which sintered at 1300 oC,and 106 Ω-cm which sintered at 1200 oC.When Pb,Ni,Cu or Ag doped lanthanum-indium- gallium oxide,the resistance decreases with increasing ratio of doping.The D.C. resistance of the sample with Pb doped is 2.41~7.07×106 Ω-cm,with Ni doped is 2.11~4.66×106 Ω-cm,with Cu doped is 1.48~3.10×106 Ω-cm,and with Ag doped is 1.09~1.32×106 Ω-cm.
    LCR meter was used to measure the electrical capacity of the samples. Dielectric constants were calculated from the electrical capacity via the formula. It was found that lanthanum-indium- gallium oxides has low dielectric constants. The dielectric constant of lanthanum-indium- gallium oxide sintered at 1400 oC is 13~14, sintered at 1300 oC is 14~17,and sintered at 1400 oC is 17~25.The dielectric constant decreases with increasing sintering temperature and frequency, measured by the LCR.And the dielectric constant increase with increasing doping ratio and element. The dielectric constant of the sample with Pb doped is 22~31,with Ni doped is 35~49,with Cu doped is 47~51,and with Ag doped is 59~67.

    目錄 中文摘要.............................Ⅰ 英文摘要.............................Ⅲ 誌謝...............................V 目錄...............................VI 表目錄..............................IX 圖目錄..............................X 第一章 緒論 ...........................1 1-1 簡介.........................1 1-2 研究目的.......................2 1-3 文獻回顧.......................3 1-3-1 氧化鑭(La2O3).................3 1-3-2氧化鎵(Ga2O3).................4 1-3-3氧化銦(In2O3).................5 1-3-4鑭鎵氧化物..................6 1-3-5鑭銦氧化物..................8 1-3-5鑭銦鎵氧化物.................8 1-4 研究動機及方向............. 9 第二章 理論基礎................10 2-1 化學溶液共沉法....................10 2-2 鈣鈦礦結構......................12 2-3 煆燒.........................13 2-4 燒結.........................14 2-5 X光繞射(XRD)原理與應用................16 2-5-1原理......................16 2-5-2 X-ray的繞射現象和布拉格定律..........17 2-5-3應用.....................18 2-6 動態光散射儀原理...................19 2-7 掃描式電子顯微鏡(SEM)原理...............20 第三章 實驗......................21 3-1 實驗藥品.......................21 3-2 實驗儀器.......................22 3-3-1 試片製作部份.................22 3-3-2 性質測試部份.................23 3-3 鑭銦鎵氧化物摻入鉛、鎳、銅或銀之製備及性質測試...25 3-3-1 實驗流程...................25 3-3-2 溶液配製...................25 3-3-3 摻入不同比例元素(Pb、Ni、Cu或Ag)......25 3-3-4 共沉.....................26 3-3-5 靜置及過濾..................26 3-3-6 乾燥及研磨..................26 3-3-7 共沉粉體性質分析...............28 3-3-8 煆燒及煆燒後粉末性質分析...........28 3-3-9 壓錠及燒結..................29 3-3-10燒結體的性質分析...............29 第四章 結果與討論:鑭銦鎵氧化物............31 4-1共沉粉體性質之分析..................31 4-1-1 熱重分析...................31 4-1-2 粉末煆燒條件的探討..............31 4-2煆燒及煆燒後粉末性質的分析..........33 4-2-1粉末之X光繞射圖探討.............33 4-2-2粒徑分佈及掃描式電子顯微鏡分析........33 4-3 燒結體的性質測定................40 4-3-1 X光繞射分析.................40 4-3-2 掃描式電子顯微鏡分析.............40 4-3-3 阻抗量測分析.................43 4-3-4 交流電阻介電性質分析.............44 第五章 結果與討論:鑭銦鎵氧化物摻入鉛、鎳、銅或銀...48 5-1 共沉粉體性質之分析...............48 5-1-1 熱重分析...................48 5-2 煆燒及煆燒後粉末性質的分析..............51 5-2-1 粉末之X光繞射圖探討.............49 5-3 燒結體的性質測定...................51 5-3-1 X光繞射分析.................51 5-3-2 阻抗量測分析.................60 5-3-3 交流電阻與介電性質分析............61 第六章 結論與建議..................74 參考文獻......................77

    1. S.J. Schneider, Jr. ,Ed ; Engineer Materials Handbooks, Vol.4 Ceramics and Glasses, ASM International,1991.

    2. 工業技術研究院工業材料研究所與經濟部中小企業處聯合編印
    “精密陶瓷科技” , p4-5, 1987.

    3.國科會計畫編號:NSC-92-2214-E006-007,主持人:高振豐,“超離子導體LaGaxIn1-xO3及載入鎂鈣鍶或鋇的LaGaxIn1-xO3製備及其性質研究”.

    4. M. P. Rosynek , D. T. Magnuson, “Preparation and Characterization
    of Catalytic Lanthanum Oxide “, J. Catalyst. , 46, 402-413, 1977.

    5. Edited by A. J. Downs , “Chemistry Of Aluminium, Gallium, Indium, Thallium”,1st edition, Blackie Academic & Professional, London,
    284,1993.

    6. P. Breteque,“Kirk-Othmer Encyclopedia of Chemical technology,3rd edition”, Wiely, New York, 11, 604, 1980.

    7. T. Fujitani, I. Nakamura, “Methanol Synthesis From CO and CO2 Hydrogenations Over Supported Palladium Catalysts”, Bulletin of the Chemical Society of Japan, 75(6), 1339-1398, 2002.

    8. Y. Obana, K. Yashiki, M. Ito, H. Nishiguchi, T. Ishihara, Y. Takita, “Oxidation of Isobutane to Methacrolein Over Ga2O3/BizMo3O12 Catalysts”, Journal of the Japan Petroleum Institute, 46(1) , 53-61,
    2003.

    9. U. Hoefer, J. Frank, M. Fleischer, “High temperature Ga2O3-gas Sensors and SnO2-gas Sensors : a Comparison”, Sensors and Actuators B-Chemical, 1-3, 78, 2001

    10. T. Fujitani, Nakamura, “Methanol synthesis from CO and CO2 Hydrogenations over supported palladium catalysts”, Bulletin of the Chemical Society of Japan, 75(6), 1393-1398, 2002.

    11. Edited by A. J. Downs , “Chemistry Of Aluminium, Gallium, Indium, Thallium”,1st edition, Blackie Academic & Professional, London,
    286, 1993.

    12. E.F. Milner, C.E.T.White, “Kirk-Othmer Encyclopedia of Chemical Technology”, 3rd edn., Wiley, New York, 13, 207, 1981.

    13. TKH Starke, GSV Coles , H Ferkel, “High Sensitivity NO2 Sensors for Environmental Monitoring Produced Using Laser Ablated NanoCrystalline Metal Oxides”, Sensors and Actuators B- Chemical,85(3), 239-245, 2002.

    14. C. Li, D. H. Zhang, X. L. Liu, S. Han, T. Tang, J. Han, C. W. Zhou, “In2O3 Nanowires as Chemical Sensors”, Applied Physics Letters,82(10), 1613-1615, 2003.

    15. M. Mizuno, T.Yamada, T. Ohtake, “Phase Diagram of the SystemGallium Trioxide-Lanthanum Oxide at High Temperatures,” Yogyo-Kyokaishi, 93(6), 295-300, 1985.

    16. C. J. Howard, B. J. Kennedy, “The Orthorhombic and Rhombohedral Phases of LaGaO3- a Neutron Powder Diffraction Study”, J. Phys: Condens. Matter, 11, 3229-3236, 1999.

    17. B. J. Kennedy, T. Vogt, C. D. Martin, J. B. Parise, J. A. Hrijac, “Pressure-induced Orthorhombic to Rhombohedral Phase Transition in LaGaO3”, J. Phys: Condens Matter,13(48),L925-L930, 2001.

    18. L. Vasylechko, R. Niewa, H. Borrmann, M. Knapp, D. Savytskii,A. Matkovski, U. Bismayer, M. Berkowski ,“R-3c-Pbnm Phase Transition of La1-xSmxGaO3(0< x< 0.3) Perovskites and Crystal Structures of the Orthorhombic and Trigonal Phases ”, Solid state ionics, 143, 219-, 2001.

    19. M. Berkowski, J. Fink-Finowicki, W. Piekarczyk, L. Perchuc, P. Byszewski, L. O. Vasylechko, D. I. Savytskij, K. Mazur, J. Sass, E. Kowalska, J. Kapusniak, “Czochralski Growth and Structural Investigations of La1-xNdxGaO3 Solid Solution Single Crystals”,Journal of Crystal Growth, 209, 75-80, 2000.

    20. T. Ishihara, H. Matsuda, Y. Takita, “Doped LaGaO3 Perovskite Type Oxide as a New Oxide Ionic Conductor”, J. Am. Chem. Soc., 116, 3801-3803, 1994.

    21. P. N. Huang, A. Petric, “Super Oxygen Ion Conductivity of Lanthanum Gallate Doped with Strontium and Magnesuium,”
    J. Electronchem. Soc., 143(5), 1996.

    22. R. Maric, S. Ohara, T. Fukui, H. Yoshida, M. Nishimura, T. Inagaki,
    K. Miura, “Solid Oxide Fuel Cell with Doped Lanthanum Gallate Electrolyte and LaSrCoO3 Cathode, and Ni-Samaria-doped Ceria Cermet anode”, J. Electrochem. Soc.,146, 2006-2010, 1999.

    23. J. Drennan, V. Zelizko, D. Hay, FT. Ciacchi, S. Rajendran, SPS. Badwal, “Characterisation, conductivity and mechanical properties of the oxygen-ion conductor La0.9Sr0.1Ga0.8Mg0.2O3-x”, J. Mater. Chem.,
    7(1), 79-83, 1997.

    24. K. Q. Huang, M. Feng, J. B. Goodenough, “Sol-Gel Synthesis of a New Oxide-Ion Conductor Sr- and Mg-doped LaGaO3 Perovskite”,J. Amer. Ceram. Soc., 79(4), 1100-1104, 1996

    25. N. M.Sammes, F. M. Keppeler, H. Nafe, F. Aldinger, “Mechanical Properties of Solid-State-Synthesized Strontium- and Magnesium-doped Lanthanum Gallate”, J. Am. Ceram. Soc., 81, 3104-3108, 1998

    26. K. K. Wioletta, K. Dietmar, M. Miroslaw , C. Chatillon, S. Lorenz, H. Klaus, “Vaporization Studies of the La2O3-Ga2O3 System”, Journal of the American Ceramic Society, 85(9), 2299-2305, 2002.

    27. M. Ernest, C. R. Robbins , F.M. Howard, ”Phase Diagrams for Ceramists” ,American Ceramic Society. ,135.

    28. D. Lybye, F. W. Poulsen, M. Mogensen, “Conductivity of A- and B-site doped LaAlO3, LaGaO3, LaScO3 and LaInO3 perovskites”, Solid State Ionics, 128, 91-103, 2000

    29. E. Ruiz-Trejo, G. Tavizon, A. Arroyo-Landeros, “Structure, Point Defects and Ion Migration in LaInO3”, Journal of Physiscs and Chemistry of Solids, 64, 515-521, 2003.

    30. H. He, X. Huang, L. Chen, “The Effect of Dopant valence on the Structure and Electrical Conductivity of LaInO3”, Electrochimica Acta, 46, 2871-2877, 2001.

    31. Hongpeng He, Xuejie Huang, Liquan Chen, “Sr-doped LaInO3 and Its Possible Application in a Single Layer SOFC”, Solid State Ionics, 130, 9183-193, 2000.

    32. Hong Peng He, Huang, Xue Jie Che, Li Quan, “An Effective Way to Detect the Secondary Phase in Sr-doped LaInO3”, Journal of Physics and Chemistry of Solids, 62, 701-709, 2001.

    33. D. W. Johnson. , Jr., “Nonconventional Powder Preparation Techniques”, Ceram. Bull., 60, 221-224, 1981

    34. J. A. Dean, “Solubility Products,” Lange’s Handbook of Chemistry”,
    Chap.5 McGraw-Hill Book Company, New York,1970

    35. A. Benedetti, G. Fagherazi, F. Pinna, S. Polizzi, “Structural Properties of Ultra-Fine Zirconia Powders Obtained by Precipitation Methods”, J. Mat. Sci., 25, 1473-1478, 1990

    36. B. Duricic, D. Kolar, Milos Komac, “Synthesis and Characteristics of Zirconia Fine Powders from Organic Zirconium Complexs”, J. Mat.Sci., 25, 1132-1136, 1990

    37. L. Lerot, F. Legrand, P. De Bruycker, “Chemical Control in Precipitation of Spherical Zirconia Particles”, J. Mat. Sci. , 26, 2353-2358,1991

    38. Z. Y. Zheng, B. J. Guo and X. M. Mei, “A New Technology of Coprecipitation Combined with High Temperature Melting for Preparing Single Crystal Ferrite Powder”, J. Magnetism and Magnetic Materials, 78 ,73-76,1989.

    39. W. D. Kingery, H. K. Bowen and D. R. Uhlmann, “Introduction to Ceramics”,2nd Edition, John Wiley & Sons, 67-68, 1975

    40. F.F. Lange, “Sinterability of Agglomerated Powders,” J. Am. Ceram. Soc., 67, 83-89, 1984

    41. 守吉佑介,植松敬三,伊熊泰郎;〝Ceramics的燒結〞;株式會社; p35-p64.

    42. 水恭維谷,尾崎義治,木村敏夫;〝工業陶瓷製程〞; 復漢出版社; p99-p128.

    43. M. D. Sacks and H. A. Pask,“Sintering of Mullite- Containing Materials :Ⅱ, Effect of Agglomeration,” J. Am. Ceram. Soc., 65, 70-77, 1982.

    44. A. A. Zaky and R. Hawley, “Dielectric Solids”, Dover,N.Y., 281-335,1970.

    45. W. D. Kingery, H.K. Bowen, D.R. Uhlmann, “Introduction to Ceramics,”2nd Edition, John Wiley & Sons, 913-964, N.Y., 1976.

    無法下載圖示 校內:2015-09-08公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE