| 研究生: |
林蔚星 Lin, Wei-Xing |
|---|---|
| 論文名稱: |
簡單方式製備氮摻雜二氧化鈦-無機廢棄物光觸媒在可見光下降解室內甲醛 A simple method to prepare N-doped TiO2-inorganic wastes as visible-light-responsive photocatalysts for degradation of indoor formaldehyde |
| 指導教授: |
劉守恒
Liu, Shou-Heng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 136 |
| 中文關鍵詞: | 室內空氣品質 、甲醛 、光觸媒 、氮摻雜 、二氧化鈦 、無機廢棄物 |
| 外文關鍵詞: | Indoor Air Quality, Formaldehyde, Photocatalyst, Nitrogen Doping, Titanium Dioxide, Inorganic Waste. |
| 相關次數: | 點閱:112 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來隨著科技的發達,人們待在室內的時間越來越長(約有90%),因此室內空氣品質正受到重視。而室內空氣品質標準中最常見的空氣污染物為甲醛,可見其對於人體健康危害程度的嚴重性,其主要的污染源來自於家具、牆壁粉刷和清潔劑等,故室內甲醛污染的去除技術需要再進一步提升。室內空氣污染控制技術中,以光觸媒氧化法最常見且有效,其優點在於能夠完全碳化甲醛成二氧化碳和水氣。而最常見的光觸媒為二氧化鈦,具有低成本、穩定度高和良好的光催化能力。但若是直接應用於室內其成效有限,因為二氧化鈦主要以吸收紫外光來驅動氧化反應,但室內光源主要以可見光為主。
本研究將透過簡單的氮摻雜來改良二氧化鈦在可見光的活性,再以溶膠-凝膠法與多孔性無機廢棄物結合,以增強其對甲醛降解之成效。二氧化鈦改質的方式主要分為磨碎混合和含浸法,而氮摻雜改質後的樣品會先進行各種特性分析,如UV-vis、PL、XPS、FTIR、XRD、BET、SEM、TEM。由UV-vis光譜的結果可得知,氮摻雜改質後的樣品皆有紅移的現象,而XPS、FTIR和PL能夠觀察到其化學鍵結會因為不同的尿素添加量而有差異。SEM和HR-TEM之結果指出i10周圍有非晶相之CN結構複合物。經由連續式光催化反應系統測試可見光下的甲醛轉換效果,結果顯示以含浸法改質之樣品為優,最佳之樣品為i10。
而後以i10進行改變連續系統之反應參數的實驗,探討不同參數對甲醛之轉換率之影響,結果發現進流濃度、觸媒濃度和反應時間會受到甲醛氣體分子和觸媒的反應位置的質傳作用影響,而相對濕度則是由於水氣會與甲醛產生競爭吸附的作用而有所差異。
最後將i10與無機廢棄物(ESF和sFCCC)結合,製備I-ESF和I-WZ系列樣品,在批次反應器中進行模擬室內甲醛污染去除之研究,以LED燈管作為燈源。結果發現比表面積會隨著i10比例增加而減少,主要是由於其沉積在吸附劑之表面和孔隙中所致;而在光催化降解甲醛的實驗中,I-ESF和I-WZ系列之樣品會隨著i10比例增加降解效果逐漸提升,而最好的樣品為90%I-WZ,其甲醛轉換率達90%優於商業用P25 (72%)和純i10 (82%).
In recent years, people spend more and more time (about 90% times) staying in indoor environments with the development of science and technology. Therefore, the indoor air quality should be highly addressed. In terms of indoor air quality, the formaldehyde is seriously harmful to the human health. The sources of formaldehyde are mostly from furnishing, paints and cleaning agents in the indoor environment. Thus, it is crucial to develop the cost-effective technology for elimination of the indoor formaldehyde. For many available technologies, photocatalytic oxidation, which can be used to completely convert formaldehyde to carbon dioxide and water, is one of promising methods. TiO2 is the most common and effective photocatalyst, which has low cost, high stability and surpassing photocatalytic activity. But the efficiency is limited for direct use in indoor due to the limited absorption of visible light.
In this study, there use simple methods to modify TiO2¬ including grinding-mixed and impregnation methods, then combination of the photocatalyst with inorganic wastes by the sol-gel method to further enhance its photocatalytic performance in formaldehyde degradation. These photocatalysts are characterized by UV-vis, PL, XPS, FTIR, XRD, BET, SEM and TEM.
In the UV-visible absorption spectrum, slightly red-shifted absorption can be observed for all prepared photocatalysts. It also can be seen from XPS and FTIR that chemical bonding on the surface are varied with the different amounts of N-doping in these two preparation routes. It is worthy to note that SEM and TEM images indicate the samples prepared by grinding-mixed have the decoration of g-C3N4 with TiO2. However, only amorphous CN composites covered with TiO2 can be observed for the samples prepared by impregnation method. Photocatalytic activities of formaldehyde conversion by these prepared samples are tested in flow system. The results show that the impregnation method is better than grinding-mixed method and the best sample is i10. The effects of reaction parameters on formaldehyde conversion are studied. The results show that the conversions are effected by inlet formaldehyde concentrations, photocatalyst concentrations and syngas retention time which may be due to effective mass transfer between formaldehyde and active sites of photocatalysts. In addition, the influence of relative humidity during the photocatalysis is caused by the competitive adsorption between water vapor and formaldehyde on the surface of photocatalyst and formaldehyde properties itself.
The combination of photocatalyst with inorganic wastes, i.e., enhanced silica fume (donated as ESF) and waste zeolite-type catalyst of spend fluid catalytic cracking catalysts (donated as WZ) by sol-gel method is carried out to prepare I-ESF and I-WZ series samples. In the batch reactor experiments, the superior photocatalytic performance of I-WZ series samples may be ascribed to the dispersion of i10 inside the pores of WZ. Also, photocatalytic degradation of formaldehyde is increased as the ratios of prepared photocatalysts are increased. Among them, the 90%I-WZ photocatalysts possess over 90% of formaldehyde conversion which is superior to those of commercial P25 (72%) and pure i10 (82%).
Ahmed, S., Chughtai, S., & Keane, M. A. (1998). The removal of cadmium and lead from aqueous solution by ion exchange with Na Y zeolite. Separation and Purification Technology, 13(1), 57-64.
Ajmal, A., Majeed, I., Malik, R. N., Iqbal, M., Nadeem, M. A., Hussain, I., . . . Nadeem, M. A. (2016). Photocatalytic degradation of textile dyes on Cu 2 O-CuO/TiO 2 anatase powders. Journal of Environmental Chemical Engineering, 4(2), 2138-2146. doi:10.1016/j.jece.2016.03.041
Ao, C., & Lee, S. (2005). Indoor air purification by photocatalyst TiO 2 immobilized on an activated carbon filter installed in an air cleaner. Chemical engineering science, 60(1), 103-109.
Banerjee, S., Dionysiou, D. D., & Pillai, S. C. (2015). Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis. Applied Catalysis B: Environmental, 176-177, 396-428. doi:10.1016/j.apcatb.2015.03.058
Behnajady, M. A., & Eskandarloo, H. (2013). Silver and copper co-impregnated onto TiO2-P25 nanoparticles and its photocatalytic activity. Chemical Engineering Journal, 228, 1207-1213. doi:10.1016/j.cej.2013.04.110
Beydoun, D., Amal, R., Low, G. K.-C., & McEvoy, S. (2000). Novel Photocatalyst: Titania-Coated Magnetite. Activity and Photodissolution. The Journal of Physical Chemistry, 104, 4387-4396.
Bhattacharyya, A., Kawi, S., & Ray, M. B. (2004). Photocatalytic degradation of orange II by TiO2 catalysts supported on adsorbents. Catalysis Today, 98(3), 431-439. doi:10.1016/j.cattod.2004.08.010
Brinker, C., Keefer, K., Schaefer, D., & Ashley, C. (1982). Sol-gel transition in simple silicates. Journal of Non-Crystalline Solids, 48(1), 47-64.
Camacho, L. M., Torres, A., Saha, D., & Deng, S. (2010). Adsorption equilibrium and kinetics of fluoride on sol-gel-derived activated alumina adsorbents. J Colloid Interface Sci, 349(1), 307-313. doi:10.1016/j.jcis.2010.05.066
Chen, C.-C., Jaihindh, D., Hu, S.-H., & Fu, Y.-P. (2017). Magnetic recyclable photocatalysts of Ni-Cu-Zn ferrite@SiO2@TiO2@Ag and their photocatalytic activities. Journal of Photochemistry and Photobiology A: Chemistry, 334, 74-85. doi:10.1016/j.jphotochem.2016.11.005
Chen, H., Rui, Z., Wang, X., & Ji, H. (2015). Multifunctional Pt/ZSM-5 catalyst for complete oxidation of gaseous formaldehyde at ambient temperature. Catalysis Today, 258, 56-63. doi:10.1016/j.cattod.2015.03.043
Chen, Q., Zhang, Y., Zhang, D., & Yang, Y. (2017). Ag and N co-doped TiO 2 nanostructured photocatalyst for printing and dyeing wastewater. Journal of Water Process Engineering, 16, 14-20. doi:10.1016/j.jwpe.2016.11.007
Choucair, M., Thordarson, P., & Stride, J. A. (2009). Gram-scale production of graphene based on solvothermal synthesis and sonication. Nature nanotechnology, 4(1), 30-33.
Corma, A. (1997). From microporous to mesoporous molecular sieve materials and their use in catalysis. Chemical reviews, 97(6), 2373-2420.
De Jong, K. P. (2009). Synthesis of solid catalysts: John Wiley & Sons.
Deng, X. Q., Liu, J. L., Li, X. S., Zhu, B., Zhu, X., & Zhu, A. M. (2017). Kinetic study on visible-light photocatalytic removal of formaldehyde from air over plasmonic Au/TiO2. Catalysis today, 281, 630-635.
Di Valentin, C., & Fittipaldi, D. (2013). Hole Scavenging by Organic Adsorbates on the TiO2 Surface: A DFT Model Study. The Journal of Physical Chemistry letters, 4(11), 1901-1906.
Doong, R.-a., & Liao, C.-Y. (2017). Enhanced photocatalytic activity of Cu-deposited N-TiO 2 /titanate nanotubes under UV and visible light irradiations. Separation and Purification Technology, 179, 403-411. doi:10.1016/j.seppur.2017.02.028
Doong, R. A., & Liao, C. Y. (2017). Enhanced visible-light-responsive photodegradation of bisphenol A by Cu, N-codoped titanate nanotubes prepared by microwave-assisted hydrothermal method. J Hazard Mater, 322(Pt A), 254-262. doi:10.1016/j.jhazmat.2016.02.065
Dozzi, M. V., Chiarello, G. L., Pedroni, M., Livraghi, S., Giamello, E., & Selli, E. (2017). High photocatalytic hydrogen production on Cu(II) pre-grafted Pt/TiO 2. Applied Catalysis B: Environmental, 209, 417-428. doi:10.1016/j.apcatb.2017.03.007
Du, J., Zhao, G., Shi, Y., Zhu, G., Mao, Y., Sa, R., & Wang, W. (2013). A facile method for synthesisof N-doped TiO2 nanooctahedra, nanoparticles, and nanospheres and enhanced photocatalytic activity. . Applied Surface Science, 273, 278-286.
Ehrhart, P., Jung, P., Schultz, H., & Ullmaier, H. (1991). Atomic Defects in Metals/Atomare Fehlstellen in Metallen.
Etacheri, V., Di Valentin, C., Schneider, J., Bahnemann, D., & Pillai, S. C. (2015). Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments. journal of Photochemistry and Photobiology C: Photochemistry Reviews, 25, 1-29. doi:10.1016/j.jphotochemrev.2015.08.003
Ferella, F., Innocenzi, V., & Maggiore, F. (2016). Oil refining spent catalysts: A review of possible recycling technologies. Resources, Conservation and Recycling, 108, 10-20. doi:10.1016/j.resconrec.2016.01.010
Fujishima, A., Rao, T. N., & Tryk, D. A. (2000). Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 1, 1-21.
Fukahori, S., Ichiura, H., Kitaoka, T., & Tanaka, H. (2003). Capturing of bisphenol A photodecomposition intermediates by composite TiO 2–zeolite sheets. Applied Catalysis B: Environmental, 46(3), 453-462.
Golden, R. (2011). Identifying an indoor air exposure limit for formaldehyde considering both irritation and cancer hazards. Critical reviews in toxicology, 41(8), 672-721.
Grätzel, M. (1989). Heterogeneous photochemical electron transfer: CRC Press.
Hao, R., Wang, G., Tang, H., Sun, L., Xu, C., & Han, D. (2016). Template-free preparation of macro/mesoporous g-C 3 N 4 /TiO 2 heterojunction photocatalysts with enhanced visible light photocatalytic activity. Applied Catalysis B: Environmental, 187, 47-58. doi:10.1016/j.apcatb.2016.01.026
Ichiura, H., Kitaoka, T., & Tanaka, H. (2003). Removal of indoor pollutants under UV irradiation by a composite TiO 2–zeolite sheet prepared using a papermaking technique. Chemosphere, 50(1), 79-83.
Jones, D.S.J., Pujadò, P.R., 2006. Handbook of Petroleum Processing, first ed.Springer, The Netherlands.
Kanakidou, M., Seinfeld, J., Pandis, S., Barnes, I., Dentener, F., Facchini, M., . . . Nielsen, C. (2005). Organic aerosol and global climate modelling: a review. Atmospheric Chemistry and Physics, 5(4), 1053-1123.
Khraisheh, M., Wu, L., Al-Muhtaseb, A. a. H., & Al-Ghouti, M. A. (2015). Photocatalytic disinfection of Escherichia coli using TiO2 P25 and Cu-doped TiO2. Journal of Industrial and Engineering Chemistry, 28, 369-376. doi:10.1016/j.jiec.2015.02.023
Li, X., Liu, P., Mao, Y., Xing, M., & Zhang, J. (2015). Preparation of homogeneous nitrogen-doped mesoporous TiO2 spheres with enhanced visible-light photocatalysis. Applied Catalysis B: Environmental, 164, 352-359. doi:10.1016/j.apcatb.2014.09.053
Liu, G., Han, C., Pelaez, M., Zhu, D., Liao, S., Likodimos, V., . . . Dionysiou, D. D. (2013). Enhanced visible light photocatalytic activity of CN-codoped TiO2 films for the degradation of microcystin-LR. Journal of Molecular Catalysis A: Chemical, 372, 58-65. doi:10.1016/j.molcata.2013.02.006
Liu, R., Wang, J., Zhang, J., Xie, S., Wang, X., & Ji, Z. (2017). Honeycomb-like micro-mesoporous structure TiO2/sepiolite composite for combined chemisorption and photocatalytic elimination of formaldehyde. Microporous and Mesoporous Materials, 248, 234-245.
Maira, A. J., Yeung, K. L., Lee, C. Y., Yue, P. L., & Chan, C. K. (2000). Size Effects in Gas-Phase Photo-oxidation of Trichloroethylene Using Nanometer-Sized TiO2 Catalysts. Journal of Catalysis, 192(1), 185-196.
Mo, S.-D., & Ching, W. (1995). Electronic and optical properties of three phasesof titanium dioxode: rutile, anatase, and broolite. Physical Review B, 51(19), 13023.
Monga, A., Rather, R. A., & Pal, B. (2017). Enhanced co-catalytic effect of Cu-Ag bimetallic core-shell nanocomposites imparted to TiO 2 under visible light illumination. Solar Energy Materials and Solar Cells, 172, 285-292. doi:10.1016/j.solmat.2017.08.002
Mozia, S., Toyoda, M., Inagaki, M., Tryba, B., & Morawski, A. W. (2007). Application of carbon-coated TiO2 for decomposition of methylene blue in a photocatalytic membrane reactor. J Hazard Mater, 140(1-2), 369-375. doi:10.1016/j.jhazmat.2006.10.016
MSDS. (2005). Material Safety Data Sheet - Titanium dioxide MSDS. Science Lab. com - Chemicals & Laboratory Equipment.
MSDS. (2012). Material Safety Data Sheet Formaldehyde 37% solution MSDS. Science Lab. com - Chemicals & Laboratory Equipment.
Nath, R. K., Zain, M., & Jamil, M. (2016). An environment-friendly solution for indoor air purification by using renewable photocatalysts in concrete: A review. Renewable and Sustainable Energy Reviews, 62, 1184-1194.
Nevers, N. D., 賴以賢, & 李王永泉. (2002). 空氣污染防制工程(第二版). 美商麥格囉‧希爾-環境工程系列叢書.
Nikazar, M., Gholivand, K., & Mahanpoor, K. (2007). Enhancement of photocatalytic efficiency of TiO2 by supporting on clinoptilolite in the decolorization of azo dye direct yellow 12 aqueous solutions. Journal of the Chinese Chemical Society, 54(5), 1261-1268.
Nikazar, M., Gholivand, K., & Mahanpoor, K. (2008). Photocatalytic degradation of azo dye Acid Red 114 in water with TiO2 supported on clinoptilolite as a catalyst. Desalination, 219(1-3), 293-300.
NIOSH. (2016). Formaldehyde. Immediately Dangerous to Life and Health.
Noorjahan, M., Kumari, V. D., Subrahmanyam, M., & Boule, P. (2004). A novel and efficient photocatalyst: TiO 2-HZSM-5 combinate thin film. Applied Catalysis B: Environmental, 47(3), 209-213.
Ohno, T., Akiyoshi, M., Umebayashi, T., Asai, K., Mitsui, T., & Matsumura, M. (2004). Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Applied Catalysis A: General, 265(1), 115-121. doi:10.1016/j.apcata.2004.01.007
Ohtani, B. (2010). Photocatalysis A to Z—What we know and what we do not know in a scientific sense. journal of Photochemistry and Photobiology C: Photochemistry Reviews, 11(4), 157-178.
Pais, I., & Jones Jr, J. B. (1997). The handbook of trace elements.
Perera, F. P., & Petito, C. (1982). Formaldehyde: a question of cancer policy.
Pei, J., & Zhang, J. S. (2011). On the performance and mechanisms of formaldehyde removal by chemi-sorbents. Chemical Engineering Journal, 167(1), 59-66.
Revah, S., & Morgan-Sagastume, J. (2005). Methods of odor and VOC control. Biotechnology for odour and air pollution control. ed. Z. Shareefdeen and A. Singh: Springer. Verlag, Berlin, Heidelberg.
Robinson, J., & Nelson, W. (1995). National human activity pattern survey data base. USEPA, Research Triangle Park, NC.
Sakai, H., Baba, R., Hashimoto, K., Fujishima, A., & Heller, A. (1995). Local detection of photoelectrochemically produced H2O2 with a wired horseradish-peroxidase microsensor. Journal of Physical Chemistry, 99(31), 11896-11900.
Salthammer, T. (2013). Formaldehyde in the ambient atmosphere: from an indoor pollutant to an outdoor pollutant? Angewandte Chemie International Edition, 52(12), 3320-3327.
Salthammer, T. (2015). The formaldehyde dilemma. International journal of hygiene and environmental health, 218(4), 433-436.
Salthammer, T., Fuhrmann, F., Kaufhold, S., Meyer, B., & Schwarz, A. (1995). Effects of climatic parameters on formaldehyde concentrations in indoor air. Indoor Air, 5(2), 120-128.
Sarathy, S. M., Oßwald, P., Hansen, N., & Kohse-Höinghaus, K. (2014). Alcohol combustion chemistry. Progress in energy and Combustion Science, 44, 40-102.
Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M., & Bahnemann, D. W. (2014). Understanding TiO2 photocatalysis: mechanisms and materials. Chemical reviews, 114(19), 9919-9986.
Setthaya, N., Chindaprasirt, P., Yin, S., & Pimraksa, K. (2017). TiO 2 -zeolite photocatalysts made of metakaolin and rice husk ash for removal of methylene blue dye. Powder Technology, 313, 417-426. doi:10.1016/j.powtec.2017.01.014
Shanmugam, M., Alsalme, A., Alghamdi, A., & Jayavel, R. (2016). In-situ microwave synthesis of graphene–TiO2 nanocomposites with enhanced photocatalytic properties for the degradation of organic pollutants. Journal of Photochemistry and Photobiology B: Biology, 163, 216-223.
Slimen, H., Houas, A., & Nogier, J. P. (2011). Elaboration of stable anatase TiO2 through activated carbon addition with high photocatalytic activity under visible light. Journal of Photochemistry and Photobiology A: Chemistry, 221(1), 13-21. doi:10.1016/j.jphotochem.2011.04.013
Spengler, J. D., & Sexton, K. (1983). Indoor air pollution: a public health perspective. Science, 221(4605), 9-17.
Tachikawa, T., Fujitsuka, M., & Majima, T. (2007). Mechanistic insight into the TiO2 photocatalytic reactions: design of new photocatalysts. The Journal of Physical Chemistry C, 111(14), 5259-5275.
Tamiolakis, I., Lykakis, I. N., & Armatas, G. S. (2015). Mesoporous CdS-sensitized TiO 2 nanoparticle assemblies with enhanced photocatalytic properties: selective aerobic oxidation of benzyl alcohols. Catalysis Today, 250, 180-186.
Tavares, J., Swanson, E. J., & Coulombe, S. (2008). Plasma synthesis of coated metal nanoparticles with surface properties tailored for dispersion. Plasma Processes and Polymers, 5(8), 759-769.
Tietenberg, T., & Lewis, L. (2016). Environmental and natural resource econimics.
Troppová, I., Šihor, M., Reli, M., Ritz, M., Praus, P., & Kočí, K. (2018). Unconventionally prepared TiO 2 /g-C 3 N 4 photocatalysts for photocatalytic decomposition of nitrous oxide. Applied Surface Science, 430, 335-347. doi:10.1016/j.apsusc.2017.06.299
V. Durgakumari, M. Subrahmanyam, K.V. Subba Rao, A. Ratnamala, M. Noorjahan, & Tanak, K. (2002). An easy and efficient use of TiO2 supported HZSM-5 and TiO2 + HZSM-5 zeolite combinate in the photodegradation of aqueous phenol and p-chlorophenol. Applied Catalysis A: General, 234, 155-165.
Wang, J., Tang, L., Zeng, G., Deng, Y., Liu, Y., Wang, L., . . . Zhang, C. (2017). Atomic scale g-C 3 N 4 /Bi 2 WO 6 2D/2D heterojunction with enhanced photocatalytic degradation of ibuprofen under visible light irradiation. Applied Catalysis B: Environmental, 209, 285-294. doi:10.1016/j.apcatb.2017.03.019
Wang, S., Ang, H., & Tade, M. O. (2007). Volatile organic compounds in indoor environment and photocatalytic oxidation: state of the art. Environment international, 33(5), 694-705.
Wang, W., Fang, J., Shao, S., Lai, M., & Lu, C. (2017). Compact and uniform TiO 2 @g-C 3 N 4 core-shell quantum heterojunction for photocatalytic degradation of tetracycline antibiotics. Applied Catalysis B: Environmental, 217, 57-64. doi:10.1016/j.apcatb.2017.05.037
Wang, Y., Chen, J., Lei, X., & Ren, Y. (2017). Preparation of microporous zeolites TiO 2 /SSZ-13 composite photocatalyst and its photocatalytic reactivity. Microporous and Mesoporous Materials, 250, 9-17. doi:10.1016/j.micromeso.2017.05.011
Warwick, M. E., Dunnill, C. W., Goodall, J., Darr, J. A., & Binions, R. (2011). Hybrid chemical vapour and nanoceramic aerosol assisted deposition for multifunctional nanocomposite thin films. Thin Solid Films, 519(18), 5942-5948.
WHO. (1983). Indoor air pollutants: exposure and health effects. EURO reports and studies, 78, 1-42.
WHO. (1987). Air quality Guidelines for Europe. Copenhagen: World Health Organization Regional Office for Europe., 105-117.
Xiong, H., Nolan, M., Shanks, B. H., & Datye, A. K. (2014). Comparison of impregnation and deposition precipitation for the synthesis of hydrothermally stable niobia/carbon. Applied Catalysis A: General, 471, 165-174.
Xu, M., Wang, Y., Geng, J., & Jing, D. (2017). Photodecomposition of NOx on Ag/TiO 2 composite catalysts in a gas phase reactor. Chemical Engineering Journal, 307, 181-188. doi:10.1016/j.cej.2016.08.080
Yahiro, H., Miyamoto, T., Watanabe, N., & Yamaura, H. (2007). Photocatalytic partial oxidation of α-methylstyrene over TiO 2 supported on zeolites. Catalysis Today, 120(2), 158-162.
Yang, J., Bai, H., Tan, X., & Lian, J. (2006). IR and XPS investigation of visible-light photocatalysis—Nitrogen–carbon-doped TiO 2 film. Applied Surface Science, 253(4), 1988-1994. doi:10.1016/j.apsusc.2006.03.078
Yang, L., Gao, Y., Wang, F., Liu, P., & Hu, S. (2017). Enhanced photocatalytic performance of cementitious material with TiO 2 @Ag modified fly ash micro-aggregates. Chinese Journal of Catalysis, 38(2), 357-364. doi:10.1016/s1872-2067(16)62590-1
Yang, L., Wang, F., Hakki, A., Macphee, D. E., Liu, P., & Hu, S. (2017). The influence of zeolites fly ash bead/TiO 2 composite material surface morphologies on their adsorption and photocatalytic performance. Applied Surface Science, 392, 687-696. doi:10.1016/j.apsusc.2016.09.023
Yao, S., Wang, S., Sun, S., & Shi, Z. (2017). Preparation, Characterization of Fe, Ce Co-doped Flower-like TiO2 Photocatalysts and Their Properties in Photocatalytic Oxidation of Arsenite. Russian Journal of Physical Chemistry A, 91(6), 1132-1137.
Yoo, J.S., 1998. Metal recovery and rejuvenation of metal-loaded spent catalysts.Catal. Today 44, 27–46.
Yu, J., Wang, S., Low, J., & Xiao, W. (2013). Enhanced photocatalytic performance of direct Z-scheme g-C3N4-TiO2 photocatalysts for the decomposition of formaldehyde in air. Phys Chem Chem Phys, 15(39), 16883-16890. doi:10.1039/c3cp53131g
Zhang, H., Pan, X., Liu, J. J., Qian, W., Wei, F., Huang, Y., & Bao, X. (2011). Enhanced Catalytic Activity of Sub‐nanometer Titania Clusters Confined inside Double‐Wall Carbon Nanotubes. ChemSusChem, 4(7), 975-980.
Zhao, Y., Xu, S., Sun, X., Xu, X., & Gao, B. (2018). Unique bar-like sulfur-doped C 3 N 4 /TiO 2 nanocomposite: Excellent visible light driven photocatalytic activity and mechanism study. Applied Surface Science, 436, 873-881. doi:10.1016/j.apsusc.2017.12.061
Zhou, S., Liu, Y., Li, J., Wang, Y., Jiang, G., Zhao, Z., . . . Wei, Y. (2014). Facile in situ synthesis of graphitic carbon nitride (g-C3N4)-N-TiO2 heterojunction as an efficient photocatalyst for the selective photoreduction of CO2 to CO. Applied Catalysis B: Environmental, 158, 20-29.
Zhu, Z., & Wu, R.-J. (2015). The degradation of formaldehyde using a Pt@TiO2 nanoparticles in presence of visible light irradiation at room temperature. Journal of the Taiwan Institute of Chemical Engineers, 50, 276-281. doi:10.1016/j.jtice.2014.12.022
白曛綾, & 林亮毅. (2008). 以Ti-MCM-41與V-Ti-MCM-41分子篩光觸媒同時處理VOCs及NOx之研究.pdf>. 國立交通大學環境工程研究所碩士論文.
白曛綾, & 詹彥暉. (2007). Photocatalyst and zeolite composites for the simultaneous removals of NOx and VOCs. 國立交通大學環境工程研究所碩士論文.
朱信, & 蔡昀諺. (2017). Photocatalytic degradation of formaldehyde in indoor air by graphene/ S,N/TiO2 nanocomposite photocatalyst using a fluorescent lamp. 國立成功大學環境工程學系碩士論文.
張向華, 劉文釗, 徐桓泳, & 劉鴻. (2004). 分子篩在光催化中的應用. 化學進展.
曹文雄, & 林王亮. (2014). 紡織污泥利用廢熱氣做乾燥與再利用之淺談. 絲織園地(90).
陳志成, & 林孟棋. (2014). 焚化飛灰化學處理與合成沸石再利用. 弘光科技大學環境工程研究所.
校內:2023-06-30公開