| 研究生: |
蔡承濂 Tsai, Cheng-Lien |
|---|---|
| 論文名稱: |
以更有效率之方式結合控制變量於完全連續選擇程序 More Efficient Fully Sequential Selection Procedures with Control Variates |
| 指導教授: |
蔡青志
Tsai, Shing-Chih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系 Department of Industrial and Information Management |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 排序與選擇程序 、控制變量 、變異減免技術 |
| 外文關鍵詞: | Ranking & Selection, Control Variates, Variance Reduction |
| 相關次數: | 點閱:101 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現實生活中存在許多複雜且具隨機性的問題,當問題難以使用數學模式分析時,均可以使用系統模擬產生樣本觀察值並用以幫助決策。而決策者在面對模擬問題時,若問題全部的候選解個數不多,則可使用排序與選擇程序來選擇最佳系統,其中完全連續選擇程序被廣泛用以解決這些候選解個數不多之模擬問題;但由於完全連續選擇程序之效率受模擬系統變異程度影響,若系統之績效表現值之變異程度過大,將使得抽樣成本及運算時間提高。模擬領域中發展之變異減免技術則用以改善此問題,其將原本樣本平均數估計量用新的估計量取代,則新的樣本變異數較原本樣本變異數小,使得完全連續選擇程序更加有效率。本研究分析變異減免技術中之控制變量 (Control Variate; CV),探討其結合於完全連續選擇程序中造成的影響,並提出更有效率之完全連續選擇程序。
在過往文獻中,合併控制變量之完全連續選擇程序為了使程序具有統計保證性,使得樣本數有浪費之情況發生,在本研究中提出兩種程序FSP-A與FSP-B,其藉由同時更新CV 模型之線性參數 β̂(r) 與樣本變異數以提升程序之效率,針對兩種程序對於樣本數與統計保證性之影響進行探討,並同時驗證其為更有效率之程序且正確選擇機率滿足統計保證性。另外使用Biased Control Variate (BCV) 與 Control Variate using Estimated Mean (CVEM) 於新程序中,並藉由兩種不同之線性參數提升程序之效率與可用性。
本研究所提出之FSP-A 與FSP-B其抽樣數皆較過往文獻之程序少,並且同時滿足信心水準;在CV模型之線性參數收斂速度較慢之情境下,FSP-B之表現則優於FSP-A。而控制值期望值未知之程序,由於可供選擇之控制值增加,若是其估計控制值期望值之額外抽樣數夠多,而且控制值與輸出值之間相關性夠大,則可在滿足信心水準之條件下,其效率較控制值期望值已知之程序高。
In past studies, the Fully Sequential Selection Procedure (FSP) algorithm combined with Control Variates (CV) required an initial stage to estimate the linear parameter (β̂) without updating the linear parameter and variance when taking more samples in the screening stage. We propose two FSP algorithms with CV that update the linear parameter and sample variance when we take more samples. The first algorithm uses the new β̂ between the next sample and the next updating point when updating β̂; the second algorithm uses the newest β̂ for all samples when updating β̂. Since the second algorithm uses the best β̂ in all samples, the variance reduction will be more significant. These two algorithms perform better than past procedures with CV. By continuing to update β̂ and the variance, the variance reduction effectiveness is close to that of the scenario for actual linear parameters. One limitation of CV is the expectation of CV has to be known. In real practice, there are more effective CV which their expectations are unknown. If we introduce the unknown mean CV into a fully sequential procedure, the estimator will be a biased estimator. We propose a method which uses the β̂ to minimize the mean square error of estimators and continue updating β̂ to reduce the bias of estimators. The numerical experiments indicate that the probability of correct selection is higher than that of the procedure using original β̂ to minimize the variance of estimators.
宋奇檠, 2016。合併變異數縮減技術於完全連續選擇程序。國立成功大學工業與資訊管理學系碩士論文
Añonuevo, R., Nelson, B.L., 1988. Automated estimation and variance reduction via control variates for infinite-horizon simulations. Computers and Operations Research 15, 447–456.
Avramidis, A.N., Wilson, J.R., 1993. A splitting scheme for control variates. Operations Research Letters 14, 187–198.
Avramidis, A.N., Wilson, J.R., 1996. Integrated variance reduction strategies for simulation. Operations Research 44, 327–346.
Bauer, K.W., Venkatraman, S., Wilson, J.R., 1987. Estimation procedures based on control variates with known covariance matrix. Proceddings 1987 Winter Simulation Conference, 334–341.
Bauer, K.W., Wilson, J.R., 1992. Control-variate selection criteria. Naval Research Logistics, 39, 307–321.
Bechhofer, R.E., 1954. A single-sample multiple decision procedure for ranking means of normal populations with known variances. The Annals of Mathematical Statistics 25, 16–39.
Fabian, V., 1974. Note on Anderson’s sequential procedures with triangular boundary. The Annals of Statistics 2, 170–176.
Gupta, S.S., 1956. On a decision rule for a problem in ranking means. Ph.D. dissertation Institute of Statistics, University of North Carolina, Chapel Jill, NC.
Kim, S.-H., Nelson, B.L., 2001. A fully sequential procedure for indifference-zone selection in simulation. ACM Transactions on Modeling and Computer Simulation 11, 251–273.
Kim, S.-H., Nelson, B.L., 2006a. On the asymptotic validity of fully sequential selection procedures for steady-state simulation. Operations Research 54, 475–488.
Kim, S.-H., Nelson, B.L., 2006b. Selecting the best system. Handbooks in Operations Research and Management Science 13, 501–534.
Kim, S.-H., Nelson, B.L., Wilson, J.R., 2005. Some almost-sure convergence properties useful in sequential analysis. Sequential Analysis 24, 411–419.
Kwon, C., Tew, J.D., 1994. Strategies for combining antithetic variates and control variates in designed simulation experiments. Management Science 40, 1021–1034.
Lavenberg, S.S., Welch, P.D., 1981. A perspective on the use of control variables to increase the efficiency of monte carlo simulations. Management Science 27, 322–335.
Lesnevski, V., Nelson, B.L., Staum, J., 2007. Simulation of coherent risk measures based on generalized scenarios. Management Science 53, 1756–1769.
Luo, J., Hong, L.J., Nelson, B.L., Wu, Y., 2015. Fully sequential procedures for large scale ranking-and-selection problems in parallel computing environments. Operations Research 63, 1177–1194.
Nelson, B.L., 1989. Batch size effects on the efficiency of control variates in simulation. European Journal of Operational Research 43, 184–196.
Nelson, B.L., 1990. Control-variate remedies. Operations Research 38, 974–992.
Nelson, B.L., Hsu, J.C., 1993. Control-variate models of common random numbers for multiple comparisons with the best. Management Science 39, 989–1001.
Nelson, B.L., Staum, J., 2006. Control variates for screening, selection, and estimation of the best. ACM Transactions on Modeling and Computer Simulation 16, 52–75.
Pasupathy, R., Schmeiser, B.W., Taaffe, M.R., Wang, J., 2012. Control-variate estimation using estimated control means. IIE Transactions 44, 381–385.
Pichitlamken, J., Nelson, B.L., Hong, L.J., 2006. A sequential procedure for neighborhood selection-of-the-best in optimization via simulation. European Journal of Operational Research 173, 283–298.
Rinott, Y., 1978. On two-stage selection procedures and related probability-inequalities. Communications in Statistics–Theory and Methods 7, 799–811.
Ripley, B.D., 1987. Stochastic simulation. John Wiley & Sons, New York, NY.
Sabuncuoglu, I., Fadiloglu, M.M., Celik, S., 2008. Variance reduction techniques: experimental comparison and analysis for single systems. IIE Transactions 40, 538–551.
Schmeiser, B.W., Taaffe, M.R., Wang, J., 2001. Biased control-variate estimation. IIE Transactions 33, 219–228.
Tsai, S.C., Kuo, C.H., 2012. Screening and selection procedures with control variates and correlation induction techniques. Naval Research Logistics 59, 340–361.
Tsai, S.C., Nelson, B.L., 2010. Fully sequential selection procedures with control variates. IIE Transactions 42, 71–82.
Tsai, S.C., Nelson, B.L., Staum, J., 2009. Combined screening and selection of the best with control variates. Advancing the Frontiers of Simulation: A Festschrift in Honor of George S. Fishman, Kluwer, 263–289.
Whitt, W., 2002. Stochastic-process limits. Springer Series in Operations Research. New York: Springer-Verlag.
Yang, W.N., Liou, W.W., 1996. Combining antithetic variates and control variates in simulation experiments. ACM Transactions on Modeling and Computer Simulation 6, 243–260.
Yang, W.N., Nelson, B.L., 1991. Using common random numbers and control variates in multiple-comparison procedures. Operations Research, 39, 583–591.
Yang, W.N., Nelson, B.L., 1992. Multivariate batch means and control variates. Management Science 38, 1415–1431.
校內:2022-07-01公開