簡易檢索 / 詳目顯示

研究生: 蘇伯憲
Su, Po-Hsien
論文名稱: 探討MORF調控范可尼貧血及同源重組修復路徑上的基因表現
MORF regulates the expression of genes involved in the Fanconi anemia and homologous recombination pathways
指導教授: 廖泓鈞
Liaw, Hung-jiun
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 70
中文關鍵詞: 順鉑DNA修復MORF同源重組范可尼貧血DNA複製叉
外文關鍵詞: Cisplatin, DNA repair, MORF, homologous recombination, Fanconi anemia
相關次數: 點閱:201下載:20
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 順鉑(Cisplatin)廣泛被用於治療卵巢癌、肺癌、乳癌等癌症。但長時間施打順鉑藥物,常造成癌細胞產生抗藥性,增加治療難度。先前研究證實,鼻咽癌細胞抗藥性生成與DNA修復路徑相關。我們認為鼻咽癌細胞在長期順鉑處理下,發生染色質重塑(Chromatin remodeling)現象,強化DNA修復路徑提高抗藥性,而組蛋白乙醯轉移酶會參與染色質重塑。MORF基因屬於MYST家族,其蛋白具組蛋白乙醯轉移酶(Histone acetyltransferase,HAT)功能,與MOZ、BRPF1/2/3、ING5及hEAf6形成複合體,乙醯化組蛋白H3K9、H3K14或H3K23等位點,或與轉錄因子共同調控基因表現。先前實驗發現降低順鉑抗藥性鼻咽癌細胞內MORF基因表現量,會提高對順鉑藥物敏感性,范可尼貧血(Fanconi Anemia,FA)及同源重組(Homologous recombination,HR)等修復路徑相關基因表現減少。本篇研究以MORF基因抑制及MORF基因缺失鼻咽癌細胞株證實,缺少MORF基因使鼻咽癌細胞提高對順鉑敏感性,且減少姊妹染色體交換(Sister chromatid exchange,SCE)與減少范可尼貧血及同源重組路徑基因及蛋白表現,而與核苷酸切除修復(Nucleotide excision repair,NER)或模板置換(Template switching,TS)路徑較無關聯。我們用染色質免疫沉澱實驗(Chromatin Immunoprecipitation,ChIP)證明MORF有類似轉錄因子的功能,結合在FANCD2和BRCA1基因啟動子上,調控范可尼貧血與同源重組修復路徑下游表現。除此之外,發現到MORF會協助啟動停滯的DNA複製叉(DNA stalled fork)。總結以上結果,我們認為MORF能與FANCD2、BRCA1基因啟動子結合,調控細胞范可尼貧血與同源重組修復路徑,提高癌細胞抗藥性。為未來鼻咽癌治療提供一個新方向。

    Cisplatin is a platinum based chemotherapeutic drug used to treat solid tumors. However, chronic treatment of cancer cells with cisplatin will induce cisplatin resistant phenotype, which is the major obstacle for the efficacy of the treatment. Previous studies have shown that DNA repair pathways, including Fanconi anemia, homologous recombination, and postreplication repair, contribute to the drug resistant phenotype of nasopharyngeal cancer cells (NPC). We hypothesize that the cisplatin resistant NPC cells undergo chromatin remodeling to enhance DNA repair pathways to repair cisplatin caused DNA lesions. MORF belongs to the MYST family of histone acetyltransferase (HAT). MORF forms a complex with its homolog MOZ, which is able to acetylate histones H3. Additionally, the MORF/MOZ complex can interact with some transcription factors, such as TP53, to regulate gene expression. Here we demonstrate that the MORF deficient HONE6 cells show increased sensitivity to cisplatin, reduced numbers of sister chromatid exchange (SCE), and down-regulation of Fanconi anemia (FA) and homologous recombination (HR) pathways. Consistent with these results, MORF is able to bind to the promoters of FANCD2 and BRCA1 by using the chromatin immunoprecipitation (ChIP) assay. Furthermore, MORF is also involved in the restart of DNA replication. In summary, our results suggest that MORF can regulate FA and HR pathways by increasing the expression of FANCD2 and BRCA1, thereby causing the cisplatin-resistant phenotype.

    中文摘要 I SUMMARY II 目錄 VIII 圖目錄 X 第壹章 緒言 1 第一節 前言 1 1-1 DNA損害反應 1 1-2 DNA修復 2 1-2-1 范可尼貧血(Fanconi Anemia,FA)修復機制 2 1-2-2 同源重組修復(Homologous recombination,HR)機制 3 1-3 基因體不穩定性(Genomic instability)與癌化現象(Tumorigenesis) 4 1-4 順鉑(Cisplatin)藥物機制及抗藥性生成 5 1-5 組蛋白乙醯化轉移酶MORF 6 第二節 實驗目的 8 第貳章 實驗方法與材料 9 第一節 實驗材料 9 2-1-1 人類細胞株 9 2-1-2 引子合成(Oligo primer)設計 9 2-1-3 shRNA 序列 10 2-1-4 導引RNA (Single-guide RNA,sgRNA)序列 11 2-1-5抗體 11 第二節 實驗方法 12 2-2-1 shRNA基因抑制(Knockdown)細胞及CRISPR/Cas9基因敲除(Knockout)HONE6細胞株製備 12 2-2-2 RNA萃取 (Trizol) 13 2-2-3 蛋白質萃取 13 2-2-4 基因體DNA萃取 13 2-2-5 即時聚合酶鏈式反應 (Real-time polymerase chain reaction;qRT-PCR) 14 2-2-6 西方墨點法(Western Bloting) 15 2-2-7 細胞存活率分析(3-(4, 5-dimethylthiazolyl-2)-2, 5-dipheyltetrazolium bromide (MTT) assay) 15 2-2-8 細胞集落形成檢測(Colony formation assay) 16 2-2-9 姊妹染色分體互換(Sister chromatid exchange,SCE) 16 2-2-10 染色質免疫沉澱(Chromatin Immunoprecipitation,ChIP) 17 2-2-11 生長曲線 20 2-2-12 DNA 纖維檢測(Fiber assay) 21 第參章 結果 23 3-1 在HONE6細胞株降低MORF表現提高細胞對順鉑藥物敏感性 23 3-2 在HONE6細胞株降低MORF表現減少姊妹染色體互換(sister chromatid exchange)率 24 3-3 在HONE6細胞株降低MORF表現減少范可尼貧血與同源重組修復路徑基因表現 25 3-4 HONE6細胞株中MORF與范可尼貧血與同源重組修復路徑基因啟動子結合 25 3-5 MORF缺失之HONE6細胞株提高對順鉑藥物敏感性 26 3-6 MORF缺失之HONE6細胞株降低姊妹染色體互換(Sister chromatid exchange)率 27 3-7 MORF缺失之HONE6細胞株減少范可尼貧血與同源重組修復路徑基因表現 28 3-8 HONE6細胞株中MORF調控停滯的複製叉的再啟動 28 第肆章 討論 30 4-1 探討乙醯轉移酶MORF調控DNA修復及抗藥性 30 4-2 探討以CRISPR/Cas9系統製備的MORF缺失細胞株 31 4-3 探討乙醯轉移酶MORF/MOZ複合物與細胞修復 31 4-4 乙醯轉移酶MORF與疾病的關聯 32 參考文獻 33

    Aaltonen, L.A., Peltomaki, P., Leach, F.S., et al. (1993). Clues to the pathogenesis of familial colorectal cancer. Science 260, 812-816.
    Aebi, S., Fink, D., Gordon, R., et al. (1997). Resistance to cytotoxic drugs in DNA mismatch repair-deficient cells. Clin Cancer Res 3, 1763-1767.
    Al-Sohaily, S., Biankin, A., Leong, R., et al. (2012). Molecular pathways in colorectal cancer. J Gastroenterol Hepatol 27, 1423-1431.
    Allis, C.D., Berger, S.L., Cote, J., et al. (2007). New nomenclature for chromatin-modifying enzymes. Cell 131, 633-636.
    Alter, B.P. (2006). The association between FANCD1/BRCA2 mutations and leukaemia. Br J Haematol 133, 446-448.
    Alter, B.P., Greene, M.H., Velazquez, I., et al. (2003). Cancer in Fanconi anemia. Blood 101, 2072.
    Ameziane, N., May, P., Haitjema, A., et al. (2015). A novel Fanconi anaemia subtype associated with a dominant-negative mutation in RAD51. nat commun 6, 8829.
    Auerbach, A.D. (1988). A test for Fanconi's anemia. Blood 72, 366-367.
    Avvakumov, N., and Cote, J. (2007). The MYST family of histone acetyltransferases and their intimate links to cancer. Oncogene 26, 5395-5407.
    Bagby, G.C., Jr. (2003). Genetic basis of Fanconi anemia. Curr Opin Hematol 10, 68-76.
    Barabas, K., Milner, R., Lurie, D., et al. (2008). Cisplatin: a review of toxicities and therapeutic applications. Vet Comp Oncol 6, 1-18.
    Bartek, J., and Lukas, J. (2010). The DNA damage response in tumorigenesis and cancer treatment. Nat Rev Cancer.
    Boram, W.R., and Roman, H. (1976). Recombination in Saccharomyces cerevisiae: a DNA repair mutation associated with elevated mitotic gene conversion. Proc Natl Acad Sci U S A 73, 2828-2832.
    Borrow, J., Stanton, V.P., Jr., Andresen, J.M., et al. (1996). The translocation t(8;16)(p11;p13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB-binding protein. Nat Genet 14, 33-41.
    Bristow, C.A.P., and Shore, P. (2003). Transcriptional regulation of the human MIP-1α promoter by RUNX1 and MOZ. Nucleic Acids Res 31, 2735-2744.
    Camos, M., Esteve, J., Jares, P., et al. (2006). Gene expression profiling of acute myeloid leukemia with translocation t(8;16)(p11;p13) and MYST3-CREBBP rearrangement reveals a distinctive signature with a specific pattern of HOX gene expression. Cancer Res 66, 6947-6954.
    Carrozza, M.J., Utley, R.T., Workman, J.L., et al. (2003). The diverse functions of histone acetyltransferase complexes. Trends Genet 19, 321-329.
    Ceccaldi, R., Sarangi, P., and D'Andrea, A.D. (2016). The Fanconi anaemia pathway: new players and new functions. Nat Rev Mol Cell Biol 17, 337-349.
    Chaffanet, M., Gressin, L., Preudhomme, C., et al. (2000). MOZ is fused to p300 in an acute monocytic leukemia with t(8;22). Genes Chromosomes Cancer 28, 138-144.
    Champagne, N., Bertos, N.R., Pelletier, N., et al. (1999). Identification of a human histone acetyltransferase related to monocytic leukemia zinc finger protein. J Biol Chem 274, 28528-28536.
    Chang, Y.-T. (2016). The function of histone acetyltransferase MORF and methyltransferases, SETD2 and SETMAR, in regulation of Homologous Recombination repair (National Cheng Kung University).
    Chen, X.B., Melchionna, R., Denis, C.M., et al. (2001). Human Mus81-associated endonuclease cleaves Holliday junctions in vitro. Mol Cell 8, 1117-1127.
    Cheng, K.C., and Loeb, L.A. (1993). Genomic instability and tumor progression: mechanistic considerations. Adv Cancer Res 60, 121-156.
    Ciccia, A., McDonald, N., and West, S.C. (2008). Structural and functional relationships of the XPF/MUS81 family of proteins. Annu Rev Biochem 77, 259-287.
    D'Andrea, A.D., and Grompe, M. (2003). The Fanconi anaemia/BRCA pathway. Nat Rev Cancer 3, 23-34.
    Dasari, S., and Tchounwou, P.B. (2014). Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol 740, 364-378.
    de Laat, W.L., Appeldoorn, E., Jaspers, N.G., et al. (1998). DNA structural elements required for ERCC1-XPF endonuclease activity. J Biol Chem 273, 7835-7842.
    de Winter, J.P., Waisfisz, Q., Rooimans, M.A., et al. (1998). The Fanconi anaemia group G gene FANCG is identical with XRCC9. Nat Genet 20, 281-283.
    Doyon, Y., Cayrou, C., Ullah, M., et al. (2006). ING tumor suppressor proteins are critical regulators of chromatin acetylation required for genome expression and perpetuation. Mol Cell 21, 51-64.
    Ellegren, H. (2004). Microsatellites: simple sequences with complex evolution. Nat Rev Genet 5, 435-445.
    Enoiu, M., Jiricny, J., and Scharer, O.D. (2012). Repair of cisplatin-induced DNA interstrand crosslinks by a replication-independent pathway involving transcription-coupled repair and translesion synthesis. Nucleic Acids Res 40, 8953-8964.
    Fekairi, S., Scaglione, S., Chahwan, C., et al. (2009). Human SLX4 is a Holliday junction resolvase subunit that binds multiple DNA repair/recombination endonucleases. Cell 138, 78-89.
    Foe, J.R., Rooimans, M.A., Bosnoyan-Collins, L., et al. (1996). Expression cloning of a cDNA for the major Fanconi anaemia gene, FAA. Nat Genet 14, 488.
    Frezza, M., Hindo, S., Chen, D., et al. (2010). Novel metals and metal complexes as platforms for cancer therapy. Curr Pharm Des 16, 1813-1825.
    Garcia-Higuera, I., Taniguchi, T., Ganesan, S., et al. (2001). Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol Cell 7, 249-262.
    Genschel, J., Littman, S.J., Drummond, J.T., et al. (1998). Isolation of MutSbeta from human cells and comparison of the mismatch repair specificities of MutSbeta and MutSalpha. J Biol Chem 273, 19895-19901.
    German, J., Schonberg, S., Caskie, S., et al. (1987). A test for Fanconi's anemia. Blood 69, 1637-1641.
    Gisselsson, D. (2011). Mechanisms of whole chromosome gains in tumors--many answers to a simple question. Cytogenet Genome Res 133, 190-201.
    Grasso, C.S., Wu, Y.M., Robinson, D.R., et al. (2012). The mutational landscape of lethal castration-resistant prostate cancer. Nature 487, 239-243.
    Gregory, R.C., Taniguchi, T., and D'Andrea, A.D. (2003). Regulation of the Fanconi anemia pathway by monoubiquitination. Semin Cancer Biol 13, 77-82.
    Harper, J.W., and Elledge, S.J. (2007). The DNA damage response: ten years after. Mol Cell 28, 739-745.
    Harrison, J.C., and Haber, J.E. (2006). Surviving the breakup: the DNA damage checkpoint. Annu Rev Genet 40, 209-235.
    Helleday, T. (2010). Homologous recombination in cancer development, treatment and development of drug resistance. Carcinogenesis 31, 955-960.
    Holbert, M.A., Sikorski, T., Carten, J., et al. (2007). The human monocytic leukemia zinc finger histone acetyltransferase domain contains DNA-binding activity implicated in chromatin targeting. J Biol Chem 282, 36603-36613.
    Hosking, L.K., Whelan, R.D., Shellard, S.A., et al. (1990). An evaluation of the role of glutathione and its associated enzymes in the expression of differential sensitivities to antitumour agents shown by a range of human tumour cell lines. Biochem Pharmacol 40, 1833-1842.
    Houtgraaf, J.H., Versmissen, J., and van der Giessen, W.J. (2006). A concise review of DNA damage checkpoints and repair in mammalian cells. Cardiovasc Revasc Med 7, 165-172.
    Hsu, Y.-Y. (2015). The mechanism of histone acetyltransferase, MORF, regulates sister chromatid exchange (National Cheng Kung University).
    Iizuka, M., and Stillman, B. (1999). Histone acetyltransferase HBO1 interacts with the ORC1 subunit of the human initiator protein. J Biol Chem 274, 23027-23034.
    Jackson, S.P., and Bartek, J. (2009). The DNA-damage response in human biology and disease. Nature 461, 1071-1078.
    Joenje, H., and Patel, K.J. (2001). The emerging genetic and molecular basis of Fanconi anaemia. Nat Rev Genet 2, 446-457.
    Kamine, J., Elangovan, B., Subramanian, T., et al. (1996). Identification of a cellular protein that specifically interacts with the essential cysteine region of the HIV-1 Tat transactivator. Virology 216, 357-366.
    Katsumoto, T., Aikawa, Y., Iwama, A., et al. (2006). MOZ is essential for maintenance of hematopoietic stem cells. Genes Dev 20, 1321-1330.
    Kee, Y., and D'Andrea, A.D. (2010). Expanded roles of the Fanconi anemia pathway in preserving genomic stability. Genes Dev 24, 1680-1694.
    Klein, B.J., Lalonde, M.E., Cote, J., et al. (2014). Crosstalk between epigenetic readers regulates the MOZ/MORF HAT complexes. Epigenetics 9, 186-193.
    Knipscheer, P., Raschle, M., Smogorzewska, A., et al. (2009). The Fanconi anemia pathway promotes replication-dependent DNA interstrand cross-link repair. Science 326, 1698-1701.
    Kojima, K., Kaneda, K., Yoshida, C., et al. (2003). A novel fusion variant of the MORF and CBP genes detected in therapy-related myelodysplastic syndrome with t(10;16)(q22;p13). Br J Haematol 120, 271-273.
    Kouzarides, T. (1999). Histone acetylases and deacetylases in cell proliferation. Curr Opin Genet Dev 9, 40-48.
    Kunkel, T.A. (1995). DNA-mismatch repair. The intricacies of eukaryotic spell-checking. Curr Biol 5, 1091-1094.
    Lengauer, C., Kinzler, K.W., and Vogelstein, B. (1998). Genetic instabilities in human cancers. Nature 396, 643-649.
    Lindahl, T., and Barnes, D.E. (2000). Repair of endogenous DNA damage. Cold Spring Harb Symp Quant Biol 65, 127-133.
    Lobitz, S., and Velleuer, E. (2006). Guido Fanconi (1892-1979): a jack of all trades. Nat Rev Cancer 6, 893-898.
    Lobo, I., and Shaw, K. (2008). Thomas Hunt Morgan, genetic recombination, and gene mapping. Nature Education 1, 205.
    Lynch, H., Wen, H., Kim, Y.C., et al. (2013). Can unknown predisposition in familial breast cancer be family-specific? Breast J 19, 520-528.
    Merson, T.D., Dixon, M.P., Collin, C., et al. (2006). The transcriptional coactivator Querkopf controls adult neurogenesis. J Neurosci 26, 11359-11370.
    Michl, J., Zimmer, J., and Tarsounas, M. (2016). Interplay between Fanconi anemia and homologous recombination pathways in genome integrity. EMBO J 35, 909-923.
    Moore, S.D., Herrick, S.R., Ince, T.A., et al. (2004). Uterine leiomyomata with t(10;17) disrupt the histone acetyltransferase MORF. Cancer Res 64, 5570-5577.
    Neal, K.C., Pannuti, A., Smith, E.R., et al. (2000). A new human member of the MYST family of histone acetyl transferases with high sequence similarity to Drosophila MOF. Biochim Biophys Acta 1490, 170-174.
    Nehme, A., Baskaran, R., Nebel, S., et al. (1999). Induction of JNK and c-Abl signalling by cisplatin and oxaliplatin in mismatch repair-proficient and -deficient cells. Br J Cancer 79, 1104-1110.
    Northcott, P.A., Nakahara, Y., Wu, X., et al. (2009). Multiple recurrent genetic events converge on control of histone lysine methylation in medulloblastoma. Nat Genet 41, 465-472.
    Nowell, P.C. (1976). The clonal evolution of tumor cell populations. Science 194, 23-28.
    Panagopoulos, I., Fioretos, T., Isaksson, M., et al. (2001). Fusion of the MORF and CBP genes in acute myeloid leukemia with the t(10;16)(q22;p13). Hum Mol Genet 10, 395-404.
    Pandis, N., Bardi, G., Mitelman, F., et al. (1997). Deletion of the short arm of chromosome 3 in breast tumors. Genes Chromosomes Cancer 18, 241-245.
    Pelletier, N., Champagne, N., Stifani, S., et al. (2002). MOZ and MORF histone acetyltransferases interact with the Runt-domain transcription factor Runx2. Oncogene 21, 2729-2740.
    Petermann, E., Helleday, T., and Caldecott, K.W. (2008). Claspin promotes normal replication fork rates in human cells. Mol Biol Cell 19, 2373-2378.
    Poll, E.H., Arwert, F., Joenje, H., et al. (1985). Differential sensitivity of Fanconi anaemia lymphocytes to the clastogenic action of cis-diamminedichloroplatinum (II) and trans-diamminedichloroplatinum (II). Hum Genet 71, 206-210.
    Prives, C., and Lowe, S.W. (2015). Cancer: mutant p53 and chromatin regulation. Nature 525, 199-200.
    Puig, P.E., Guilly, M.N., Bouchot, A., et al. (2008). Tumor cells can escape DNA-damaging cisplatin through DNA endoreduplication and reversible polyploidy. Cell Biol Int 32, 1031-1043.
    Ran, F.A., Hsu, P.D., Wright, J., et al. (2013). Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8, 2281-2308.
    Rao, C.V., Yamada, H.Y., Yao, Y., et al. (2009). Enhanced genomic instabilities caused by deregulated microtubule dynamics and chromosome segregation: a perspective from genetic studies in mice. Carcinogenesis 30, 1469-1474.
    Raschle, M., Knipscheer, P., Enoiu, M., et al. (2008). Mechanism of replication-coupled DNA interstrand crosslink repair. Cell 134, 969-980.
    Reifsnyder, C., Lowell, J., Clarke, A., et al. (1996). Yeast SAS silencing genes and human genes associated with AML and HIV-1 Tat interactions are homologous with acetyltransferases. Nat Genet 14, 42-49.
    Rokudai, S., Laptenko, O., Arnal, S.M., et al. (2013). MOZ increases p53 acetylation and premature senescence through its complex formation with PML. PNAS 110, 3895.
    Roos, W.P., and Kaina, B. (2006). DNA damage-induced cell death by apoptosis. Trends Mol Med 12, 440-450.
    Roschke, A.V., and Kirsch, I.R. (2010). Targeting karyotypic complexity and chromosomal instability of cancer cells. Curr Drug Targets 11, 1341-1350.
    Rouse, J., and Jackson, S.P. (2002). Interfaces between the detection, signaling, and repair of DNA damage. Science 297, 547-551.
    Sawyer, S.L., Tian, L., Kahkonen, M., et al. (2015). Biallelic mutations in BRCA1 cause a new Fanconi anemia subtype. Cancer Discov 5, 135-142.
    Schwartz, M., and Hakim, O. (2014). 3D view of chromosomes, DNA damage, and translocations. Curr Opin Genet Dev 25, 118-125.
    Shen, D.W., Pouliot, L.M., Hall, M.D., et al. (2012). Cisplatin resistance: a cellular self-defense mechanism resulting from multiple epigenetic and genetic changes. Pharmacol Rev 64, 706-721.
    Strathdee, C.A., Duncan, A.M., and Buchwald, M. (1992). Evidence for at least four Fanconi anaemia genes including FACC on chromosome 9. Nat Genet 1, 196-198.
    Szostak, J.W., Orr-Weaver, T.L., Rothstein, R.J., et al. (1983). The double-strand-break repair model for recombination. Cell 33, 25-35.
    Terui, K., Sato, T., Sasaki, S., et al. (2008). Two novel variants of MOZ-CBP fusion transcripts in spontaneously remitted infant leukemia with t(1;16;8)(p13;p13;p11), a new variant of t(8;16)(p11;p13). Haematologica 93, 1591-1593.
    Thomas, T., Voss, A.K., Chowdhury, K., et al. (2000). Querkopf, a MYST family histone acetyltransferase, is required for normal. Development 127, 2537-2548.
    Wang, A.T., and Smogorzewska, A. (2015). SnapShot: Fanconi anemia and associated proteins. Cell 160, 354-354.
    Wang, X., Andreassen, P.R., and D'Andrea, A.D. (2004). Functional interaction of monoubiquitinated FANCD2 and BRCA2/FANCD1 in chromatin. Mol Cell Biol 24, 5850-5862.
    Ward, J.F. (1988). DNA damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation, and reparability. Prog Nucleic Acid Res Mol Biol 35, 95-125.
    Wyman, C., Ristic, D., and Kanaar, R. (2004). Homologous recombination-mediated double-strand break repair. DNA Repair (Amst) 3, 827-833.
    Yang, X.J. (2004). The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases. Nucleic Acids Res 32, 959-976.
    Yang, X.J. (2015). MOZ and MORF acetyltransferases: molecular interaction, animal development and human disease. Biochim Biophys Acta 1853, 1818-1826.
    Yang, X.J., and Ullah, M. (2007). MOZ and MORF, two large MYSTic HATs in normal and cancer stem cells. Oncogene 26, 5408.
    Yao, Y., and Dai, W. (2014). Genomic Instability and Cancer. J Carcinog Mutagen 5, 1000165.
    Yarbro, J.W. (1992). Mechanism of action of hydroxyurea. Semin Oncol 19, 1-10.
    Zack, T.I., Schumacher, S.E., Carter, S.L., et al. (2013). Pan-cancer patterns of somatic copy number alteration. Nat Genet 45, 1134-1140.
    Zheng, J. (2013). Oncogenic chromosomal translocations and human cancer (review). Oncol Rep 30, 2011-2019.
    Zhou, B.B., and Elledge, S.J. (2000). The DNA damage response: putting checkpoints in perspective. Nature 408, 433-439.

    下載圖示 校內:2022-07-09公開
    校外:2022-07-09公開
    QR CODE