簡易檢索 / 詳目顯示

研究生: 陳宥儒
Chen, You-Ru
論文名稱: 以γ-氧化鋁擔載鍶離子催化甘油醚化反應之研究
Study on Etherification of Glycerol over γ-Alumina Supported Strontium Catalysts for Glycerol Oligomers
指導教授: 陳炳宏
Chen, Bing-Hung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 118
中文關鍵詞: 醚化反應甘油二聚甘油三聚甘油
外文關鍵詞: Etherification, γ-Alumina, Glycerol, Diglycerol, Triglycerol, Strontium
相關次數: 點閱:49下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人類科技文明的迅速發展導致能源的議題日益受到重視,傳統石化燃料除了對環境上造成了負荷,在可預見的未來終將會被消耗殆盡,因此,低汙染、具有永續性的再生能源在近年來已逐漸受到重視,生質柴油更是被相當看好的替代性能源之一,然而,在大量生產生質柴油之後,其主要副產物¬¬¬甘油則出現了供過於求的情形,供需失衡的甘油市場導致甘油價格大跌而衝擊生質柴油產業,尋找甘油的高值化應用成為穩定生質柴油產業相當重要的解決途徑。
    本研究以Dean-Stark反應系統進行甘油醚化反應,並以生成直鏈型二聚甘油與三聚甘油為目標,將商用與自行合成之γ-alumina (γ-Al2O3)以含浸法擔載鍶作為催化甘油醚化反應之觸媒並比較其催化效果與探討醚化反應之參數,包含動力學分析、觸媒甘油重量比、改質鍛燒溫度以及含浸濃度。同時使用XRD, FT-IR, SEM, TPD, BET以及TGA等儀器分析觸媒特性,接著嘗試將鍶改質後之觸媒造粒成型,並將反應規模放大以測試觸媒之耐用性與催化效果。
    本實驗成功以溶膠凝膠法合成出γ-alumina,並在鍶改質後具有相當良好的孔洞性質,它能同時提升甘油醚化反應的甘油轉化率與直鏈型二聚甘油及三聚甘油選擇率,以改質條件為含浸濃度2.0 M與鍛燒溫度500°C的自行合成鍶改質觸媒Sr/as-syn. γ-alumina-2.0-500,在250°C的溫度下反應4小時可得到88%的甘油轉化率以及80%以上的直鏈型二聚甘油與三聚甘油選擇率。

    With the mass production of biodiesel from vegetable oils, animal fats and waste cooking oils in lieu of petro-diesel in the past two decades to alleviate the excessive emission of anthropogenic carbon, the by-product, glycerol, was inevitably manufactured in surplus. The oversupply of glycerol has led to a dramatic reduction of the market prices and, consequently, decreases the revenue of biodiesel production process, alternatively increasing the production cost of biodiesel. Therefore, one goal of this work is to convert the glycerol to value-added products. Explicitly, the catalytic etherification of glycerol to diglycerols and triglycerols is studied. The catalysts used were mainly Sr-supported on γ-alumina (γ-Al2O3) by wetness impregnation method. These catalysts were characterized mainly with BET, TPD, XRD, FT-IR and SEM/EDS. The solvent-free etherification reaction was conducted with 2.5 wt% Sr/γ-alumina in glycerol under inert atmosphere. The optimal reaction condition was found as reaction proceeding at 250C for 4h with 2.5 wt% Sr/γ-alumina. Under the optimal condition, the glycerol conversion near 90 % with a selectivity of di- and tri-glycerol above 80 % could be reached.

    摘要 I Abstract II 致謝 IX 目錄 X 表目錄 XV 圖目錄 XVI 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 3 第二章 文獻回顧 6 2.1 甘油與聚甘油介紹 6 2.1.1 甘油 6 2.1.1.1 甘油之發展與介紹 6 2.1.1.2 粗甘油的純化 7 2.1.2 聚甘油 9 2.1.2.1二聚甘油 9 2.1.2.2三聚甘油與聚甘油 11 2.1.3 甘油與聚甘油之物理與化學性質 12 2.1.4 甘油與聚甘油之定量檢測 15 2.2 甘油醚化反應機制與觸媒 16 2.2.1 均相觸媒 16 2.2.1.1均相酸性觸媒 16 2.2.1.2均相鹼性觸媒 17 2.2.2 異相觸媒 18 2.2.2.1異相酸性觸媒 19 2.2.2.2異相鹼性觸媒 20 2.3 γ-alumina(γ-Al2O3) 21 2.3.1 γ-alumina之性質與應用 21 2.3.2 γ-alumina之合成製備 22 第三章 實驗儀器與研究方法 24 3.1 實驗架構 24 3.2 實驗藥品 25 3.3 實驗儀器與分析原理 26 3.3.1 聚甘油產率分析 27 3.3.2 觸媒特性分析 28 3.3.2.1 X光繞射分析儀 (X-ray Diffraction Analyzer, XRD) 28 3.3.2.2比表面積與孔隙分佈分析儀 (Specific Surface Area & Pore Size Distribution Analyzer, BET) 30 3.3.2.3傅立葉紅外線光譜儀 (Fourier Transform Infrared Spectrometer , FTIR) 32 3.3.2.4掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 32 3.3.2.5能量散佈X-射線光譜儀(Energy-dispersive X-ray spectroscopy, EDS) 33 3.3.2.6全自動程序升溫化學吸附儀 (Chemisorption Analyzer) 34 3.3.2.7感應耦合電漿放射光譜儀 (Inductively coupled plasma optical emission spectrometer, ICP-OES) 35 3.3.2.8熱重分析儀 (Thermogravimetric analysis, TGA) 36 3.3.2.9高溫反應裝置 37 3.4 實驗方法 39 3.4.1 含浸法改質觸媒 39 3.4.2 自行合成γ-alumina 40 3.4.3 觸媒造粒成型 41 3.4.4 觸媒催化活性測試 42 3.4.4.1甘油醚化反應 42 3.4.4.2觸媒回收 43 3.4.4.3聚甘油產率分析方法 44 第四章 結果與討論 46 4.1 聚甘油產物定量分析 46 4.2 γ-alumina觸媒改質 50 4.2.1 XRD晶型鑑定 50 4.2.1.1含浸濃度對觸媒改質之影響 50 4.2.1.2鍛燒溫度對觸媒改質之影響 51 4.2.1.3以其他鹼土金屬對觸媒改質 53 4.2.1.4自行合成之γ-alumina與觸媒改質 55 4.2.1.5觸媒造粒 56 4.2.2 傅立葉紅外線光譜分析 (FTIR) 57 4.2.2.1商用改質之γ-alumina 57 4.2.2.2自行合成之γ-alumina 60 4.2.3 掃描式電子顯微鏡分析 (SEM) 61 4.2.3.1含浸濃度對觸媒的影響 61 4.2.3.2鍛燒溫度對觸媒的影響 62 4.2.3.3自行合成之γ-alumina 64 4.2.4 元素分析 66 4.2.4.1能量散佈X-射線光譜儀分析 (EDS) 66 4.2.4.2感應耦合電漿放射光譜儀分析 (ICP-OES) 67 4.2.5 程序升溫脫附法分析 (TPD) 69 4.2.5.1 NH3-TPD分析 69 4.2.5.2 CO2-TPD 73 4.2.6 比表面積與孔隙分佈分析儀分析 (BET) 74 4.2.6.1改質後之商用γ-alumina 76 4.2.6.2自行合成之γ-alumina 77 4.2.7 熱重分析儀分析 (TGA) 79 4.2.7.1商用γ-alumina 80 4.2.7.2自行合成之γ-alumina 81 4.3 醚化反應參數探討 82 4.3.1 反應動力學探討 82 4.3.2 鍛燒溫度對反應之影響 93 4.3.3 均相觸媒與異相觸媒之比較 95 4.3.4 含浸濃度對反應之影響 97 4.3.5 鈣改質觸媒之催化活性 98 4.3.6 觸媒與甘油比例對反應之影響 99 4.4 改質觸媒的造粒與催化效果 100 4.5 自行合成γ-alumina的改質與催化效果 102 4.6 觸媒的回收 104 4.6.1 商用改質觸媒 105 4.6.2 自行合成改質觸媒 108 4.7 造粒觸媒之放大反應 109 第五章 結論與未來展望 112 5.1 結論 112 5.2 未來展望 113 參考文獻 114 附錄 117

    Anitha, M., Kamarudin, S.K., & Kofli, N.T. (2016). The potential of glycerol as a value-added commodity. Chemical Engineering Journal, 295, 119-130.

    Bagheri, S., Julkapli, N.M., & Yehye, W.A. (2015). Catalytic conversion of biodiesel derived raw glycerol to value added products. Renewable and Sustainable Energy Reviews, 41, 113-127.

    Bookong, P., Ruchirawat, S., & Boonyarattanakalin, S. (2015). Optimization of microwave-assisted etherification of glycerol to polyglycerols by sodium carbonate as catalyst. Chemical Engineering Journal, 275, 253-261.

    Bukhtiyarova, M.V., Ivanova, A.S., Slavinskaya, E.M., Plyasova, L.M., Rogov, V.A., Kaichev, V.V., & Noskov, A.S. (2011). Catalytic combustion of methane on substituted strontium ferrites. Fuel, 90(3), 1245-1256.

    Christoph, R., Schmidt, B., Steinberner, U., Dilla, W., & Karinen, R. (2006). Glycerol.

    Ciriminna, R., Pina, C.D., Rossi, M., & Pagliaro, M. (2014). Understanding the glycerol market. European Journal of Lipid Science and Technology, 116(10), 1432-1439.

    Dhabhai, R., Ahmadifeijani, E., Dalai, A.K., & Reaney, M. (2016). Purification of crude glycerol using a sequential physico-chemical treatment, membrane filtration, and activated charcoal adsorption. Separation and Purification Technology, 168, 101-106.

    Dharmadi, Y., Murarka, A., & Gonzalez, R. (2006). Anaerobic fermentation of glycerol by Escherichia coli: a new platform for metabolic engineering. Biotechnology and bioengineering, 94(5), 821-829.

    division, T.S.a.D.A.-G.a.O. (1990). Glycerine-an overview.

    Gholami, Z., Abdullah, A.Z., & Lee, K.T. (2014). Heterogeneously catalyzed etherification of glycerol to diglycerol over calcium–lanthanum oxide supported on MCM-41: A heterogeneous basic catalyst. Applied Catalysis A: General, 479, 76-86.

    Ji, G., Li, M., Li, G., Gao, G., Zou, H., Gan, S., & Xu, X. (2012). Hydrothermal synthesis of hierarchical micron flower-like γ-AlOOH and γ-Al2O3 superstructures from oil shale ash. Powder Technology, 215-216, 54-58.

    Kong, P.S., Aroua, M.K., & Daud, W.M.A.W. (2016). Conversion of crude and pure glycerol into derivatives: A feasibility evaluation. Renewable and Sustainable Energy Reviews, 63, 533-555.

    Krisnandi, Y.K., Eckelt, R., Schneider, M., Martin, A., & Richter, M. (2008). Glycerol upgrading over zeolites by batch-reactor liquid-phase oligomerization: heterogeneous versus homogeneous reaction. ChemSusChem, 1(10), 835-844.

    Li, H., Niu, S., Lu, C., & Li, J. (2016). Calcium oxide functionalized with strontium as heterogeneous transesterification catalyst for biodiesel production. Fuel, 176, 63-71.

    Liu, Y., Ma, D., Han, X., Bao, X., Frandsen, W., Wang, D., & Su, D. (2008). Hydrothermal synthesis of microscale boehmite and gamma nanoleaves alumina. Materials Letters, 62(8-9), 1297-1301.

    Martin, A., & Richter, M. (2011). Oligomerization of glycerol - a critical review. European Journal of Lipid Science and Technology, 113(1), 100-117.

    Nosal, H., Nowicki, J., Warzała, M., Nowakowska-Bogdan, E., & Zarębska, M. (2015). Synthesis and characterization of alkyd resins based on Camelina sativa oil and polyglycerol. Progress in Organic Coatings, 86, 59-70.

    Osman, A.I., Abu-Dahrieh, J.K., Rooney, D.W., Halawy, S.A., Mohamed, M.A., & Abdelkader, A. (2012). Effect of precursor on the performance of alumina for the dehydration of methanol to dimethyl ether. Applied Catalysis B: Environmental, 127, 307-315.

    Quispe, C.A.G., Coronado, C.J.R., & Carvalho Jr, J.A. (2013). Glycerol: Production, consumption, prices, characterization and new trends in combustion. Renewable and Sustainable Energy Reviews, 27, 475-493.

    Ruppert, A.M., Meeldijk, J.D., Kuipers, B.W., Erne, B.H., & Weckhuysen, B.M. (2008). Glycerol etherification over highly active CaO-based materials: new mechanistic aspects and related colloidal particle formation. Chemistry, 14(7), 2016-2024.
    Sayoud, N., De Oliveira Vigier, K., Cucu, T., De Meulenaer, B., Fan, Z., Lai, J., . . . Jérôme, F. (2015). Homogeneously-acid catalyzed oligomerization of glycerol. Green Chem., 17(8), 4307-4314.

    Sivaiah, M.V., Robles-Manuel, S., Valange, S., & Barrault, J. (2012). Recent developments in acid and base-catalyzed etherification of glycerol to polyglycerols. Catalysis Today, 198(1), 305-313.

    Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K.S.W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9-10).

    Tomiie, A., Shinozaki, M., Yamada, T., & Kuriyama, J. (2016). Moisturizing Effects of Diglycerol Combined with Glycerol on Human Stratum Corneum. Journal of oleo science, 65(8), 681-684.

    Trueba, M., & Trasatti, S.P. (2005). γ-Alumina as a Support for Catalysts: A Review of Fundamental Aspects. European Journal of Inorganic Chemistry, 2005(17), 3393-3403.

    Xu, J., Ibrahim, A.-R., Hu, X., Hong, Y., Su, Y., Wang, H., & Li, J. (2016). Preparation of large pore volume γ-alumina and its performance as catalyst support in phenol hydroxylation. Microporous and Mesoporous Materials, 231, 1-8.

    Yacob, A.R., Bello, A.M., & Kabo, K.S. (2016). The effect of polyoxyethylene (40) stearate surfactant on novel synthesis of mesoporous γ-alumina from Kano kaolin. Arabian Journal of Chemistry, 9(2), 297-304.

    Yang, F., Hanna, M.A., & Sun, R. (2012). Value-added uses for crude glycerol--a byproduct of biodiesel production. Biotechnology for biofuels, 5, 13.

    陳勁愷. 擔載鈣離子之沸石觸媒應用於甘油醚化反應合成聚甘油之研究. 碩士論文, 化學工程學系, 國立成功大學, 台南市 (2016)

    下載圖示 校內:2022-09-01公開
    校外:2022-09-01公開
    QR CODE