簡易檢索 / 詳目顯示

研究生: 朱慶芸
Chu, Ching-Yun
論文名稱: 控制面和用戶面分離異質網路下藉由移動式中繼站於高速鐵路上之位置輔助換手程序
Location-Assisted Handover for C/U-Plane Split Heterogeneous Network with Mobile Relay in High-Speed Railway
指導教授: 劉光浩
Liu, Kuang-Hao
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 56
中文關鍵詞: 控制/用戶面分離異質性網路幻影基地台換手程序使用者定位移動式中繼站高速鐵路
外文關鍵詞: C/U-plane split network, heterogeneous network, phantom BSs, handover procedure, LTE positioning, mobile relay, high-speed railway
相關次數: 點閱:119下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著近年用戶端設備數量與其無線網路需求量急遽增加,未來在基地台的佈建上將會傾向密集建設低傳輸率的小基地台,然而低傳輸率的小基地台可提供的覆蓋範圍遠小於大基地台所提供的覆蓋範圍,這樣的佈建方式將會導致高速移動的使用者在移動過程中換手次數急遽增加,以及浪費大量的時間在解決網路連線問題。因此我們提出了在控制面和用戶面分離之異質性網路下,藉由架設於車廂上之移動式中繼站,於高速鐵路上之位置輔助換手程序。在控制面和用戶面分離式網路架構下,大基地台可清楚地掌握其覆蓋範圍下小基地台之位置訊息,並管理其連線狀況,進而指派合適的基地台給用戶端。由於高速鐵路有移動路徑固定的特性,因此我們可以準確的預測即將經過的基地台並且即時地完成換手程序。我們將大基地台的覆蓋範圍區分為中心區及邊界區域,並藉由期演進技術所提供的使用者定位方法,判斷使用者即時的所在區域,位於中心區域時優先換手連線至同個大基地台訊號品質較佳的扇區,若位於邊界區域則優先換手至由大基地台透過位置訊息所選定的小基地台,為了更即時換手至大基地台所選定的目標基地台,位置輔助換手程序將不計算事件觸發時間,直接進入換手準備階段。
    我們透過系統層級模擬器來模擬實際連線情況,並利用使用者接收資料的吞吐量及連線需花費的時間,評斷位置輔助換手程序,是否有效改善使用者在傳統長期演進技術網路架構下標準換手程序所造成的問題。

    Recently, network densification is considered an important solution to the unrelentingly increased of mobile users and their traffic demands. However, User Equipment (UE) in High Speed Railway (HSR) suffer from frequently handovers that cause dramatical network overhead since the coverage region of small Base Stations (BSs) are far less than that of macro BSs. We propose a location-assisted handover for C/U-plane split network architecture. In the considered scenario, a Mobile Relay (MR) is installed on the HSR and serves in-train UEs who execute handover simultaneously. Based on C/U-plane split network architecture, the macro BS assigns an appropriate target BS for the MR during movement. We consider the unique characteristic of HSR, i.e., the train moves in a fixed trajectory, and it is thus possible to predict the forthcoming BSs and complete the handover procedure in a timely fashion. We divide the coverage of the macro BS into the center region and border region. When the MR is in the center region, the handover request is sent immediately when macro BS detects a target sector with better Received Signal Received Power (RSRP). For the MR in the border region, the approaching BS is chosen as the target BS and counting Time to Trigger (TTT) used in the standard handover procedure is eliminated to speed up the handover procedure. System-level simulations are conducted and the results indicate that the proposed handover scheme provides higher UE throughput and reduce the connection cost compared to the standard Long Term Evolution (LTE) handover scheme.

    Chinese Abstract i English Abstract ii Acknowledgements iii Table of Contents iv List of Figures vi List of Tables viii List of Symbols ix List of Acronyms xi 1 Introduction 1 1.1 Problem Statement and Literature Review . . . . . . . . . . . . . . . . 1 1.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 Background Review 3 2.1 3GPP LTE-Advanced . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.1 Heterogeneous Network . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Handover Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2.1 Radio Link Failure . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2.2 Handover Failure . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Mobile Relay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4 LTE Positioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3 Proposed Handover Scheme 15 3.1 Radio-Access Network . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.1.1 LTE Conventional Network Architecture . . . . . . . . . . . . . 15 3.1.2 C/U-plane Split Network Architecture . . . . . . . . . . . . . . 16 3.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2.1 Network Con guration and Topology . . . . . . . . . . . . . . . 19 3.2.2 High Speed Rail Trajectory . . . . . . . . . . . . . . . . . . . . 20 3.2.3 Downlink Wireless Channel Model . . . . . . . . . . . . . . . . 20 3.2.4 Received Throughput . . . . . . . . . . . . . . . . . . . . . . . . 21 3.3 Location-Assisted Handover Procedure . . . . . . . . . . . . . . . . . . 22 4 Simulation Results and Discussions 26 4.1 System Level Simulator-WiSE . . . . . . . . . . . . . . . . . . . . . . . 26 4.1.1 Introduction of WiSE . . . . . . . . . . . . . . . . . . . . . . . . 26 4.1.2 PHY Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.1.3 Modi ed Version . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.2 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.2.1 Programming Structure . . . . . . . . . . . . . . . . . . . . . . 31 4.2.2 Setting Up and Parameters . . . . . . . . . . . . . . . . . . . . 33 4.3 Parameters for The Location-Assisted Handover . . . . . . . . . . . . . 38 4.3.1 Impact of Time-to-Trigger . . . . . . . . . . . . . . . . . . . . . 38 4.3.2 Impact of Cell Range Extension Bias . . . . . . . . . . . . . . . 40 4.3.3 Impact of Border distance . . . . . . . . . . . . . . . . . . . . . 42 4.3.4 Impact of Positioning Noise . . . . . . . . . . . . . . . . . . . . 44 4.4 Performance Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.5 Impact of Pico BSs' Topology . . . . . . . . . . . . . . . . . . . . . . . 48 5 Conclusions 50 5.1 Thesis Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 References 53

    [1] M. S. Pan, T. M. Lin, and W. T. Chen, “An enhanced handover scheme for mobile relays in LTE-A high-speed rail networks,” IEEE Transactions on Vehicular Technology, vol. 64, no. 2, pp. 743–756, Feb. 2015.
    [2] T. Deng, Z. Zhang, X. Wang, and P. Fan, “A network assisted fast handover scheme for high speed rail wireless networks,” in Proc. IEEE 83rd Vehicular Technology Conference (VTC Spring), May 2016, pp. 1–5.
    [3] X. Qian and H. Wu, “Mobile relay assisted handover for LTE system in highspeed railway,” in Proc. International Conference on Control Engineering and Communication Technology, Dec 2012, pp. 632–635.
    [4] L. Tian, J. Li, Y. Huang, J. Shi, and J. Zhou, “Seamless dual-link handover scheme in broadband wireless communication systems for high-speed rail,” IEEE Journal on Selected Areas in Communications, vol. 30, no. 4, pp. 708–718, May 2012.
    [5] O. B. Karimi, J. Liu, and C. Wang, “Seamless wireless connectivity for multimedia services in high speed trains,” IEEE Journal on Selected Areas in Communications, vol. 30, no. 4, pp. 729–739, May 2012.
    [6] M. Fei and P. Fan, “Position-assisted fast handover schemes for LTE-advanced network under high mobility scenarios,” Journal of Modern Transportation, vol. 20, no. 4, pp. 268–273, 2012.
    [7] R. Arshad, H. ElSawy, S. Sorour, T. Y. Al-Naffouri, and M. S. Alouini, “Velocityaware handover management in two-tier cellular networks,” IEEE Transactions on Wireless Communications, vol. 16, no. 3, pp. 1851–1867, Mar. 2017.
    [8] C. Gessner, A. Roessler, and M. Kottkamp, “UMTS long term evolution (LTE) technology introduction,” Rohde and Schwarz Tech. Report. Disponıvel em: http://karriere.rohdeschwarz.de/fileadmin/customer/downloads/PDF/UMTS Eng. pdf, pp. 1–32, 2008.
    [9] E. Dahlman, S. Parkvall, and J. Skold, 4G: LTE/LTE-Advanced for Mobile Broadband. Academic Press, 2013.
    [10] A. Roessler and M. Kottkamp, “White Paper: LTE-Advanced Technology Introduction(3GPP Release10),” Tech. Rep.
    [11] H. Ibrahim, H. ElSawy, U. T. Nguyen, and M. S. Alouini, “Mobility-aware modeling and analysis of dense cellular networks with C-plane/ U-plane split architecture,” IEEE Transactions on Communications, vol. 64, no. 11, pp. 4879–4894, Nov. 2016.
    [12] 3GPP TS 36.331, “Evolved Universal Terrestrial Radio Access (E-UTRA); Radio
    Resource Control (RRC); Protocol specification,” v12.7.0, Oct. 2015.
    [13] D. Singhal, M. Kunapareddy, V. Chetlapalli, V. B. James, and N. Akhtar, “LTEAdvanced: Handover interruption time analysis for IMT-A evaluation,” in Proc. 2011 International Conference on Signal Processing, Communication, Computing and Networking Technologies, Jul. 2011, pp. 81–85.
    [14] L. C. Gimenez, M. C. Cascino, M. Stefan, K. I. Pedersen, and A. F. Cattoni,
    “Mobility performance in slow- and high-speed LTE real scenarios,” in Proc. 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), May 2016, pp. 1–5.
    [15] 3GPP TS 36.300, “Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall Description; ,” 3rd Generation Partnership Project (3GPP), TS.
    [16] 3GPP TS 36.133, “Evolved Universal Terrestrial Radio Access (E-UTRA); Requirements for support of radio resource management ,” 3rd Generation Partnership Project (3GPP), TS.
    [17] C. Mehlfu¨hrer, M. Wrulich, J. C. Ikuno, D. Bosanska, and M. Rupp, “Simulating the long term evolution physical layer,” in Proc. IEEE Signal Processing Conference, 2009 17th European. IEEE, 2009, pp. 1471–1478.
    [18] J. C. Ikuno, M. Wrulich, and M. Rupp, “System level simulation of LTE networks,” in Proc. IEEE 71st Vehicular Technology Conference, May 2010, pp. 1–5.
    [19] 3GPP TR 36.839, “Evolved Universal Terrestrial Radio Access (E-UTRA); Mobility enhancements in heterogeneous networks,” v11.1.0, Dec. 2012.
    [20] K. Vasudeva, M. Simsek, D. Perez, and I. Guvenc, “Analysis of handover failures in heterogeneous networks with fading,” IEEE Transactions on Vehicular Technology, vol. PP, no. 99, pp. 1–1, 2017.
    [21] 3GPP TR 36.836, “Evolved Universal Terrestrial Radio Access (E-UTRA); Study on mobile relay,” v12.0.0, Jun. 2014.
    [22] M. Thorpe, M. Kottkamp, A. R¨ossler, and J. Schu¨tz, “LTE location based services technology introduction,” Rohde & Schwarz, 2013.
    [23] 3GPP TS 36.355, “Evolved Universal Terrestrial Radio Access (E-UTRA); LTE
    Positioning Protocol (LPP); Release 9 ,” v10.0.0, Jan. 2011.
    [24] D. Roessler and M. Kottkamp, “White Paper: LTE-Advanced (3GPP Release 11)
    Technology Introduction,” Tech. Rep.
    [25] T. A. H. Bressner, “Development and evaluation of UTDoA as a positioning method in LTE,” Dissertation, 2015. [Online]. Available: http://urn.kb.se/ resolve?urn=urn:nbn:se:kth:diva-176499
    [26] H. Ishii, Y. Kishiyama, and H. Takahashi, “A novel architecture for LTE-B :cplane/u-plane split and phantom cell concept,” in Proc. IEEE Globecom Workshops, Dec. 2012, pp. 624–630.
    [27] H. Lokhandwala, V. Sathya, and B. R. Tamma, “Phantom cell realization in LTE and its performance analysis,” in Proc. IEEE International Conference on
    Advanced Networks and Telecommuncations Systems (ANTS), Dec. 2014, pp. 1–6.
    [28] 3GPP TR 36.814, “Evolved Universal Terrestrial Radio Access (E-UTRA); Further advancements for E-UTRA physical layer aspects,” v9.0.0, Mar. 2010.
    [29] 3GPP TR 36.828, “Evolved Universal Terrestrial Radio Access (E-UTRA); Further enhancements to LTE Time Division Duplex (TDD) for Downlink-Uplink (DL-UL) interference management and traffic adaptation,” v11.0.0, Jun. 2012.

    下載圖示 校內:2020-07-14公開
    校外:2020-07-14公開
    QR CODE