研究生: |
許雅慧 Hsu, Ya-Hui |
---|---|
論文名稱: |
以電紡絲法製備奈米碳纖維及其電化學特性之研究 The study on the preparation of electrospun carbon nanofibers and its performance on the electrochemical properties |
指導教授: |
羅介聰
Lo, Chieh-Tsung |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 110 |
中文關鍵詞: | 聚丙烯腈 、聚丙烯腈 、聚丁二烯共聚物 、電紡絲 、超級電容器 |
外文關鍵詞: | PAN, PAN-co-PB, electrospinning, supercapacitors |
相關次數: | 點閱:105 下載:5 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究分成三部分,前兩部分探討於聚丙烯腈 (polyacrylonitrile, PAN)添加不同分子量之聚丙烯腈-聚丁二烯共聚物(poly(acrylonitrile-co-butadiene), PAN-co-PB) S-PAN-co-PB和L-PAN-co-PB對奈米碳纖維電性質之影響。以電紡絲技術將溶於二甲基甲醯胺(N,N-dimethylformamide, DMF)的PAN與PAN-co-PB混合溶液製備成高分子奈米碳纖維,經過250 ℃ 的穩定化及800 ℃ 的碳化程序製成奈米碳纖維膜,並藉由SEM、EDS、BET、TGA、XRD和Raman光譜分析纖維的表面型態和化學結構。利用恆電位儀測量在2M的氫氧化鉀水溶液下,以奈米碳纖維膜作為超級電容電極的電性質。由SEM圖可得知纖維平均直徑隨共聚物含量增加而減少,繼續增加共聚物含量則因共聚物高溫熔融現象導致纖維平均直徑增加。添加共聚物亦有助於石墨化結構的形成,由純PAN所製備之碳纖維比表面積為102 m2/g,石墨面結晶尺寸為1.48 nm。在PAN/S-PAN-co-PB = 9/1時,比表面積和石墨面結晶尺寸增加為271 m2/g和2.35 nm;在PAN/L-PAN-co-PB = 8/2時,比表面積和石墨面結晶尺寸增加為360 m2/g和2.22 nm。由電化學測試顯示適當地添加共聚物可增加碳纖維比電容及可逆性,純PAN所製備之碳纖維比電容值為54.3 F/g,在PAN/S-PAN-co-PB和PAN/L-PAN-co-PB 組成均為 9/1時,有最佳的比電容98.8 F/g和72.7 F/g。經過2000圈充放電後,由純PAN所製備之碳纖維比電容殘留率為78 %,在PAN/S-PAN-co-PB和PAN/L-PAN-co-PB 組成均為 6/4時,殘留率則分別為109 %和106 %。
第三部分探討於PAN/S-PAN-co-PB中添加石墨烯,製備碳纖維/石墨烯複合膜。結果顯示在PAN中添加0.5 wt%石墨烯比純PAN所製備之纖維膜擁有較佳的比電容值57.4 F/g和可逆性。在PAN/S-PAN-co-PB系統中,S-PAN-co-PB可增加石墨烯在纖維膜中的分散性。PAN/S-PAN-co-PB = 9/1添加0.5 wt%石墨烯所製備之纖維膜具有最佳的比電容值60.2 F/g。
This work is separated into three sections. In the first two parts, we investigated the blends containing polycrylonitrile (PAN) and two different molecular weight of poly(acrylonitrile-co-butadiene) (S-PAN-co-PB and L-PAN-co-PB) copolymers on the electrochemical properties of carbon nanofibers (CNFs). The CNFs were prepared through electrospinning a polymer solution composed of PAN, PAN-co-PB, and N,N-dimethylformamide (DMF), followed by post-treatment of stabilization at 250 ℃ and carbonization at 800 ℃. The surface morphology and chemical structure of the CNF films were carried out using scanning electron microscopy (SEM), EDS, BET, TGA, X-ray diffraction, and Raman spectroscopy. The electrochemical behavior of CNF film as supercapacitor electrodes was characterized by potentiostat in 2M KOH aqueous electrolyte. SEM images showed that the fiber diameter decreased with increasing copolymer content. Further addition of copolymer increased the fiber diameter, which was attributed to the melting phenomenon of the fibers. Additionally, the addition of the copolymer developed of the graphite structure. The specific surface area (SA) of neat PAN-based CNFs was 102 m2/g and the lateral size (La) was 1.48 nm, whereas the PAN/S-PAN-co-PB blend with the composition of 9/1 showed an increase in SA and La to 271 m2/g and 2.35 nm, respectively. Similarly, the PAN/L-PAN-co-PB blend with the composition of 8/2 showed an increase in SA and La to 360 m2/g and 2.22 nm, respectively. Electrochemical measurements revealed that the addition of PAN-co-PB improved both the specific capacitance and reversibility of the CNF. The specific capacitance of neat PAN-based CNFs was 54.3 F/g, while the PAN/S-PAN-co-PB and PAN/L-PAN-co-PB blends with the composition of 9/1 showed an enhanced specific capacitance to 98.8 F/g and 72.7 F/g. The specific capacitance retention ratio of neat PAN-based CNFs was 78% after 2000 cycles, while the PAN/S-PAN-co-PB and PAN/L-PAN-co-PB blends with the composition of 6/4 increased to 109 % and 106 %.
In the third part, we incorporated graphenes in PAN/S-PAN-co-PB blends to prepare composite fibers. With the addition of 0.5 wt% graphene in PAN, the specific capacitance improved to 57.4 F/g and had better reversibility when compared to the neat PAN-based CNFs. In PAN/S-PAN-co-PB system, S-PAN-co-PB improved the dispersion of graphene in films. The specific capacitance of PAN/S-PAN-co-PB with the composition of 9/1 and 0.5 wt% graphene increased to 60.2 F/g.
[1]E. J. Ra, E. Raymundo-Piñero, Y. H. Lee, and F. Béguin, Carbon, 2009, 47, 2984.
[2]S. Jagannathan, T. Liu, and S. Kumar, Composites Science and Technology, 2010, 70, 593
[3]S. H. Oh, S. L. Kang, K. U. Jeong, C. Nah, and B. H. Cho, Inyernational Journal of Mordern Physics B, 2009, 23, 1313
[4]A. Formhals, US Patent, 1934, 1-975-504.
[5]L. Ji, Z. Lin, A. J. Medford, and X. Zhang, Carbon, 2009, 47, 3346.
[6]L. Ji, X. Zhang, Electrochemistry Communications, 2009, 11, 795.
[7]L. Ji, X. Zhang, Nanotechnology, 2009, 20, 155705.
[8]S. Prilutsky, E. Zussman, and Y. Cohen, Nanotechnology, 2008, 19, 165603.
[9]M. V. Jose, B. W. Steinert, V. Thomas, D. R. Dean, M. A. Abdalla, G. Price, and G. M. Janowski, Polymer, 2007, 48, 1096.
[10]L. Zhao, Y. Li, Y. Zhao, Y. Feng, W. Feng, and X. Yuan, Applied Physics A, 2012, 106, 863.
[11]S. Y. Kim, B. H. Kim, K. S. Yang, and K. Oshida, Materials Letters, 2012, 87, 157.
[12]Z. Tai, X. Yan, J. Lang, and Q. Xue, Journal of Power Sources, 2012, 199, 373
[13]Z. Zhou, X. F. Wu, Journal of Power Sources, 2013, 222, 410.
[14]D. W. Wang, F. Li, J. Zhao, W. Ren, Z. G. Chen, J. Tan, Z. S. Wu, I. Gentle, G. Q. Lu, and H. M. Cheng, ACS Nano, 2009, 3, 1745.
[15]J. Wei, J. Zhang, Y. Liu, G. Xu, Z. Chen, and Q. Xu, RSC Advances, 2013, 3, 3957.
[16]S. He, X. Hu, S. Chen, H. Hu, M. Hanif, and H. Hou, Journal of Materials Chemistry, 2012, 22, 5114.
[17]L. F. Chen, X. D. Zhang, H. W. Liang, M. Kong, Q. F. Guan, P. Chen, Z. Y. Wu, and S. H. Yu, ACS Nano, 2012, 6, 7092.
[18]胡啟章,電化學原理與方法,2002,五南圖書出版社。
[19]A. J. Bard, and L. R. Faulkner, Electrochemistry: Principles, Methods, and Applications, 1996, Britain.
[20]P. Simon, and Y. Gogotsi, Nature Materials, 2008, 7, 845.
[21]I. Tanahashi, A. Yoshida, and A. Nishino, Chemical Society of Japan, 1990, 63, 2755.
[22]G. Wang, L. Zhang, and J. Zhang, Chemical Society Reviews, 2012, 41, 797.
[23]A. Burke, Journal of Power Sources, 2000, 91, 37.
[24]A. Frenot, and I. S. Chronakis, Current Opinion in Colloid and Interface Science, 2003, 8, 64.
[25]G. M. Bose, Recherches sur la cause et sur la veritable theorie del’electricite, 1745, Wittenberg.
[26]K. H. Lee, H. Y. Kim, H. J. Bang, Y. H. Jung, and S.G. Lee, Polymer, 2003, 44, 4029.
[27]M. L. Clingerman, Development and modelling of electrically conductive composite materials. PhD thesis, 2001, Michigan Technological University.
[28]M. S. A. Rahaman, A. F. Ismail, and A. Mustafa, Polymer Degradation and Stability, 2007, 92, 1421.
[29]D. Zhu, C. Xu, N. Nakura, and M. Mastsuo, Carbon, 2002, 40, 363.
[30]E. Fitzer, W. Frohs, and M. Heine, Carbon, 1986, 24, 387.
[31]J. Mittal, R. B. Mathur, and O. P. Bahl, Carbon, 1997, 35, 1196.
[32]F. Rodríguez-Reinoso, and M. Molina-Sabio, Carbon, 1992, 30, 1111.
[33]C. Kim, K. S. Yang, M. Kojima, K. Yoshida, Y. J. Kim, Y. A. Kim, and M. Endo, Advanced Functional Materials, 2006, 16, 2393.
[34]F. Chen, and J. Qian, Fuel Processing Technology, 2000, 67, 53.
[35]C. Kim, and K. S. Yang, Applied Physics Letters, 2003, 83, 1216.
[36]T. Wigmans, Carbon, 1989, 27, 13
[37]J. Li, E. H. Liu, W. Li, X. Y. Meng, and S. T. Tan, Journal of Alloys and Compounds, 2009,478, 371.
[38]H. L. Chiang, Y.S. Ho, K. H. Lin, and C. H. Leu, Journal of Alloys and Compounds, 2007, 434, 846.
[39]G. J. Lee, and S. I. Pyum, Electrochimica Acta, 2006, 51, 3029.
[40]Substances and Technologies, www.substech.com.
[41]D, Hulicova-Jurcakova, M. Kodama, S. Shiraishi, H. Hatori, Z. H. Zhu, and G. Q. Lu, Advanced Functional Materials, 2009, 19, 1800.
[42]M. Chowdhury, and G. Stylios, International Journal of Basic & Applied Sciences, 2010, 10, 116.
[43]A. F. Ismail, and A. Mustafa, Modern Applied Science, 2008, 2, 131.
[44]S. H. Yoon, S. Lim, Y. Song, Y. Ota, W. Qiao, A. Tanaka, and I. Mochida, Carbon, 2004, 42, 1723.
[45]F. Kapteijna , J. A. Moulijna, S. Matznerb, and H. P. Boehmb, Carbon, 1999, 37,1143.
[46]B. K. Sarma, A. R. Pal, H. Bailung, and J. Chutia, Plasma Chemistry and Plasma Processing, 2011, 31, 741.