| 研究生: |
李孟錫 Li, Meng-Hsi |
|---|---|
| 論文名稱: |
高共軛有機小分子永續電極材料應用於低成本水系鉀離子電池 Highly Conjugated Small Organic Molecule as Sustainable Electrode Material for Low-cost Aqueous Potassium-ion Batteries |
| 指導教授: |
柯碧蓮
Kaveevivitchai, Watchareeya |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 鉀離子電池 、永續性 、有機小分子 、大規模儲能系統 、低成本 |
| 外文關鍵詞: | Potassium-ion batteries, Sustainable, Small organic molecule, Large-scale energy storage system, Low-cost |
| 相關次數: | 點閱:23 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於化石燃料的枯竭、環境問題以及朝向碳中和發展的趨勢,人們現在積極尋找大規模、乾淨和可再生的能源,確保為後代創造更好的環境。目前以鋰離子電池最具有前景,它已在日常生活中得到廣泛應用。然而,其高成本、複雜的製造過程以及安全問題帶來了重大挑戰。
鉀離子電池在大規模儲能系統中相當具有發展性,因為它們擁有多種優勢,例如在地球的地殼中含量高與其氧化還原電位接近鋰。不僅在有機或是水系電解液系統中都取得了成功。其中水系電解液因其高離子電導率、低製造成本和高安全性而引起了越來越多的關注。
雖然傳統無機電極材料可以提供出色的性能,但它們的毒性、元素蘊藏量低和不環保已成為主要問題。相較之下,有機材料具有永續、環保、可調整性結構及低毒性等特點。因此,以含有苯醌的有機小分子(HATAQ)作為水系鉀離子電池的電極材料,在0.05 A g−1的電流密度下提供了110.3 mAh g−1的高容量。高度延展共軛的π電子特性與羰基和亞胺基多個氧化還原活性點使HATAQ在放電和充電過程中保持穩定和出色性能。超分子結構進一步促進平穩表現和氧化還原可逆性。在20 A g−1的超高速率下, HATAQ在10,000次循環後維持80.3%的平穩容量保持率。這種卓越性能優於其他水系鉀離子電池材料。
為了研究HATAQ在水系鉀離子電池中的氧化還原機制,進行了多種非臨場的化學性質測試。利用傅立葉紅外光譜、拉曼光譜和X光光電子能譜來確認羰基和亞胺基是HATAQ的氧化還原活性點。透過掃描式電子顯微鏡觀察到材料形貌,也使用了粉末X光繞射儀和電子順磁共振儀測量來深入了解機制。
使用HATAQ作為負極材料,普魯士藍類似物作為正極材料組裝全電池。結果顯示出優異的循環性能,在極低的0.2 A g−1電流密度下提供了69.1 mAh g−1的容量,性能優於其他全電池材料。由於有機材料在水系鉀離子電池中的應用還不廣泛,這項研究不僅更深入地了解有機材料的氧化還原機制, 並且往大規模永續儲能系統的發展更近一步。
Because of fossil fuel depletion, environmental issues, and the trend toward carbon neutrality, people nowadays have been actively seeking large-scale, clean, and renewable energy sources to ensure a better environment for future generations. Currently, the most promising option is lithium-ion batteries, which are widely used in daily life. However, their high cost, complex manufacturing, and safety concerns pose significant challenges.
Potassium-ion batteries (PIBs) are promising candidates for large-scale energy storage system, as they offer several advantages, such as high abundance of potassium in the Earth's crust and its low redox potential, which is close to that of lithium leading to high cell voltage. PIBs have been shown successful in both organic and aqueous electrolyte systems. Among them, aqueous electrolytes have received increasing attention due to their merits of high ionic conductivity, low manufacturing cost, and high safety.
Although inorganic electrode materials can contribute to outstanding behavior, their toxicity, low abundance, and lack of environmental friendliness have become major concerns. Organic materials, instead, feature sustainability, environmental friendliness, tunable structures, and low toxicity. Herein, an organic small molecule, hexaazatrianthranylene (HATA) embedded quinone (HATAQ), was studied as electrode material in aqueous potassium-ion batteries (APIBs), providing a remarkably high capacity of 110.3 mAh g−1 at 0.05 A g−1. The highly extended π-conjugation and multiple redox active sites of carbonyl and imine functional groups make HATAQ stable and excellent during discharge and charge processes. Supramolecular structure of HATAQ can further promote stability and redox reversibility in the electrolyte. At the ultrahigh rate of 20 A g−1, HATAQ possesses stable capacity retention of 80.3% over 10,000 cycles. This exceptional performance outperforms the other materials reported for APIBs.
Several ex-situ characterization techniques were conducted to study the redox mechanism of HATAQ in APIBs. Fourier-transform infrared spectroscopy (FT-IR), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) were used to confirm carbonyl (C=O) and imine (C=N) functional groups to be the redox-active sites for HATAQ. Morphology study was further conducted by scanning electron microscopy (SEM). Powder X-ray diffraction (PXRD) and electron paramagnetic resonance (EPR) measurements were carried out to gain more insight.
Full cells were also assembled by using HATAQ as the anode and Prussian blue analogue (PBA) as the cathode material. The results show excellent cycling performance with capacity of 69.1 mAh g−1 at low rate 0.2 A g−1, surpassing the performance of other materials in full cells. Since organic materials have not been widely used in APIBs, this study not only allows for a deeper understanding of organic material mechanisms, but also enables further advancements in large-scale sustainable energy storage systems.
(1) Chao, D.; Zhou, W.; Xie, F.; Ye, C.; Li, H.; Jaroniec, M.; Qiao, S.-Z. Roadmap for Advanced Aqueous Batteries: From Design of Materials to Applications. Sci. Adv. 2020, 6, 4098.
(2) Hosaka, T.; Kubota, K.; Hameed, A. S.; Komaba, S. Research Development on K-Ion Batteries. Chem. Rev. 2020, 120, 6358‒6466.
(3) Xue, Z.; Guan, D.; Zeng, J.; Cao, Y.; Peng, Z.; Hu, G.; Du, K. Research on the Assembly Process of Full Coin Cells: Key Factors Affecting Data Reliability. Ionics 2023, 29, 5285‒5293.
(4) Rowden, B.; Garcia-Araez, N. Estimating Lithium-Ion Battery Behavior from Half-Cell Data. Energy Rep. 2021, 7, 97‒103.
(5) Mo, Y.; Zhou, W.; Wang, K.; Xiao, K.; Chen, Y.; Wang, Z.; Tang, P.; Xiao, P.; Gong, Y.; Chen, S. Engineering Electrode/Electrolyte Interphase Chemistry toward High-Rate and Long-Life Potassium Ion Full-Cell. ACS Energy Lett. 2023, 8, 995‒1002.
(6) Elgrishi, N.; Rountree, K. J.; McCarthy, B. D.; Rountree, E. S.; Eisenhart, T. T.; Dempsey, J. L. A Practical Beginner’s Guide to Cyclic Voltammetry. J. Chem. Educ. 2018, 95, 197‒206.
(7) Fahmy Taha, M. H.; Ashraf, H.; Caesarendra, W. A Brief Description of Cyclic Voltammetry Transducer-Based Non-Enzymatic Glucose Biosensor Using Synthesized Graphene Electrodes. Appl. Syst. Innov. 2020, 3, 32.
(8) Xiao, N.; McCulloch, W. D.; Wu, Y. Reversible Dendrite-Free Potassium Plating and Stripping Electrochemistry for Potassium Secondary Batteries. J. Am. Chem. Soc. 2017, 139, 9475‒9478.
(9) Min, X.; Xiao, J.; Fang, M.; Wang, W. A.; Zhao, Y.; Liu, Y.; Abdelkader, A. M.; Xi, K.; Kumar, R. V.; Huang, Z. Potassium-Ion Batteries: Outlook on Present and Future Technologies. Energy Environ. Sci. 2021, 14, 2186‒2243.
(10) Suo, L.; Borodin, O.; Gao, T.; Olguin, M.; Ho, J.; Fan, X.; Luo, C.; Wang, C.; Xu, K. “Water-in-Salt” Electrolyte Enables High-Voltage Aqueous Lithium-Ion Chemistries. Sci. 2015, 350, 938‒943.
(11) Ji, D.; Kim, J. Trend of Developing Aqueous Liquid and Gel Electrolytes for Sustainable, Safe, and High-Performance Li-Ion Batteries. Nano-Micro Lett. 2024, 16, 2.
(12) Jiao, S.; Ren, X.; Cao, R.; Engelhard, M. H.; Liu, Y.; Hu, D.; Mei, D.; Zheng, J.; Zhao, W.; Li, Q. Stable Cycling of High-Voltage Lithium Metal Batteries in Ether Electrolytes. Nat. Energy 2018, 3, 739‒746.
(13) Matsumoto, K.; Inoue, K.; Nakahara, K.; Yuge, R.; Noguchi, T.; Utsugi, K. Suppression of Aluminum Corrosion by Using High Concentration LiTFSI Electrolyte. J. Power Sources 2013, 231, 234‒238.
(14) Leonard, D. P.; Wei, Z.; Chen, G.; Du, F.; Ji, X. Water-in-Salt Electrolyte for Potassium-Ion Batteries. ACS Energy Lett. 2018, 3, 373‒374.
(15) Liang, G.; Gan, Z.; Wang, X.; Jin, X.; Xiong, B.; Zhang, X.; Chen, S.; Wang, Y.; He, H.; Zhi, C. Reconstructing Vanadium Oxide with Anisotropic Pathways for a Durable and Fast Aqueous K-Ion Battery. ACS Nano 2021, 15, 17717‒17728.
(16) Yamada, Y.; Usui, K.; Sodeyama, K.; Ko, S.; Tateyama, Y.; Yamada, A. Hydrate-Melt Electrolytes for High-Energy-Density Aqueous Batteries. Nat. Energy 2016, 1, 1‒9.
(17) Lannelongue, P.; Bouchal, R.; Mourad, E.; Bodin, C.; Olarte, M.; Le Vot, S.; Favier, F.; Fontaine, O. “Water-in-Salt” for Supercapacitors: a Compromise between Voltage, Power Density, Energy Density and Stability. J. Electrochem. Soc. 2018, 165, 657.
(18) Chao, D.; Qiao, S.-Z. Toward High-Voltage Aqueous Batteries: Super- or Low-Concentrated Electrolyte. Joule 2020, 4, 1846‒1851.
(19) Wang, F.; Borodin, O.; Gao, T.; Fan, X.; Sun, W.; Han, F.; Faraone, A.; Dura, J. A.; Xu, K.; Wang, C. Highly Reversible Zinc Metal Anode for Aqueous Batteries. Nat. Mater. 2018, 17, 543‒549.
(20) Liang, T.; Hou, R.; Dou, Q.; Zhang, H.; Yan, X. The Applications of Water‐in‐Salt Electrolytes in Electrochemical Energy Storage Devices. Adv. Funct. Mater. 2021, 31, 2006749.
(21) Mao, Y.; Xie, M.; Zhao, W.; Yuan, K.; Fang, Y.; Huang, F. K0.36(H2O)yWS2: a New Layered Compound for Reversible Hydrated Potassium Ion Intercalation in Aqueous Electrolyte. RSC Adv. 2019, 9, 32323‒32327.
(22) Qin, T.; Chu, X.; Deng, T.; Wang, B.; Zhang, X.; Dong, T.; Li, Z.; Fan, X.; Ge, X.; Wang, Z. Reinventing the Mechanism of High-Performance Bi Anode in Aqueous K+ Rechargeable Batteries. J. Energy Chem. 2020, 48, 21‒28.
(23) Li, C.; Wang, X.; Deng, W.; Liu, C.; Chen, J.; Li, R.; Xue, M. Size Engineering and Crystallinity Control Enable High‐Capacity Aqueous Potassium‐ion Storage of Prussian White Analogues. ChemElectroChem 2018, 5, 3887‒3892.
(24) Wang, F.; Lin, Y.; Suo, L.; Fan, X.; Gao, T.; Yang, C.; Han, F.; Qi, Y.; Xu, K.; Wang, C. Stabilizing High Voltage LiCoO2 Cathode in Aqueous Electrolyte with Interphase-Forming Additive. Energy Environ. Sci. 2016, 9, 3666‒3673.
(25) Guo, S.; Qin, L.; Zhang, T.; Zhou, M.; Zhou, J.; Fang, G.; Liang, S. Fundamentals and Perspectives of Electrolyte Additives for Aqueous Zinc-Ion Batteries. Energy Storage Mater. 2021, 34, 545‒562.
(26) Zhang, S. S. A Review on Electrolyte Additives for Lithium-Ion Batteries. J. Power Sources 2006, 162, 1379‒1394.
(27) Bi, H.; Wang, X.; Liu, H.; He, Y.; Wang, W.; Deng, W.; Ma, X.; Wang, Y.; Rao, W.; Chai, Y. A Universal Approach to Aqueous Energy Storage via Ultralow‐Cost Electrolyte with Super‐Concentrated Sugar as Hydrogen‐Bond‐Regulated Solute. Adv. Mater. 2020, 32, 2000074.
(28) Yuan, X.; Li, Y.; Zhu, Y.; Deng, W.; Li, C.; Zhou, Z.; Hu, J.; Zhang, M.; Chen, H.; Li, R. Low Concentration DMF/H2O Hybrid Electrolyte: a New Opportunity for Anode Materials in Aqueous Potassium-Ion Batteries. ACS Appl. Mater. Interfaces 2021, 13, 38248‒38255.
(29) Wu, S.; Su, B.; Sun, M.; Gu, S.; Lu, Z.; Zhang, K.; Yu, D. Y.; Huang, B.; Wang, P.; Lee, C. S. Dilute Aqueous‐Aprotic Hybrid Electrolyte Enabling a Wide Electrochemical Window through Solvation Structure Engineering. Adv. Mater. 2021, 33, 2102390.
(30) Chen, J.; Lei, S.; Zhang, S.; Zhu, C.; Liu, Q.; Wang, C.; Zhang, Z.; Wang, S.; Shi, Y.; Yin, L. Dilute Aqueous Hybrid Electrolyte with Regulated Core‐Shell‐Solvation Structure Endows Safe and Low‐Cost Potassium‐Ion Energy Storage Devices. Adv. Funct. Mater. 2023, 33, 2215027.
(31) Wang, Z.; Li, H.; Tang, Z.; Liu, Z.; Ruan, Z.; Ma, L.; Yang, Q.; Wang, D.; Zhi, C. Hydrogel Electrolytes for Flexible Aqueous Energy Storage Devices. Adv. Funct. Mater. 2018, 28, 1804560.
(32) Gao, H.; Xue, L.; Xin, S.; Goodenough, J. B. A High‐Energy‐Density Potassium Battery with a Polymer‐Gel Electrolyte and a Polyaniline Cathode. Angew. Chem. Int. Ed. 2018, 130, 5547‒5551.
(33) Lu, K.; Zhang, H.; Gao, S.; Cheng, Y.; Ma, H. High Rate and Stable Symmetric Potassium Ion Batteries Fabricated with Flexible Electrodes and Solid-State Electrolytes. Nanoscale 2018, 10, 20754‒20760.
(34) Zhang, L.; Liu, Z.; Cui, G.; Chen, L. Biomass-Derived Materials for Electrochemical Energy Storages. Prog. Polym. Sci. 2015, 43, 136‒164.
(35) Han, J.; Mariani, A.; Zhang, H.; Zarrabeitia, M.; Gao, X.; Carvalho, D. V.; Varzi, A.; Passerini, S. Gelified Acetate-Based Water-in-Salt Electrolyte Stabilizing Hexacyanoferrate Cathode for Aqueous Potassium-Ion Batteries. Energy Storage Mater. 2020, 30, 196‒205.
(36) Peng, J.; Zhang, W.; Liu, Q.; Wang, J.; Chou, S.; Liu, H.; Dou, S. Prussian Blue Analogues for Sodium‐Ion Batteries: Past, Present, and Future. Adv. Mater. 2022, 34, 2108384.
(37) Qian, J.; Wu, C.; Cao, Y.; Ma, Z.; Huang, Y.; Ai, X.; Yang, H. Prussian Blue Cathode Materials for Sodium‐Ion Batteries and Other Ion Batteries. Adv. Energy Mater. 2018, 8, 1702619.
(38) Chen, J.; Wei, L.; Mahmood, A.; Pei, Z.; Zhou, Z.; Chen, X.; Chen, Y. Prussian Blue, Its Analogues and Their Derived Materials for Electrochemical Energy Storage and Conversion. Energy Storage Mater. 2020, 25, 585‒612.
(39) Shokouhimehr, M.; Soehnlen, E. S.; Hao, J.; Griswold, M.; Flask, C.; Fan, X.; Basilion, J. P.; Basu, S.; Huang, S. D. Dual Purpose Prussian Blue Nanoparticles for Cellular Imaging and Drug Delivery: a New Generation of T1-Weighted MRI Contrast and Small Molecule Delivery Agents. J. Mater. Chem. 2010, 20, 5251‒5259.
(40) Roy, X.; Hui, J. K.-H.; Rabnawaz, M.; Liu, G.; MacLachlan, M. J. Prussian Blue Nanocontainers: Selectively Permeable Hollow Metal–Organic Capsules from Block Ionomer Emulsion-Induced Assembly. J. Am. Chem. Soc. 2011, 133, 8420‒8423.
(41) Huang, Y.; Ye, D.; Yang, J.; Lu, H.; Li, L.; Ding, Y. A Novel Dual-Signal Molecularly Imprinted Electrochemical Sensor Based on NiFe Prussian Blue Analogue and SnS2 for Detection of p-Hydroxyacetophenone. Chem. Eng. J. 2022, 435, 134981.
(42) Kaye, S. S.; Long, J. R. Hydrogen Storage in the Dehydrated Prussian Blue Analogues M3[Co(CN)6]2 (M= Mn, Fe, Co, Ni, Cu, Zn). J. Am. Chem. Soc. 2005, 127, 6506‒6507.
(43) Zhao, G.; Feng, J.-J.; Zhang, Q.-L.; Li, S.-P.; Chen, H.-Y. Synthesis and Characterization of Prussian Blue Modified Magnetite Nanoparticles and Its Application to the Electrocatalytic Reduction of H2O2. Chem. Mater. 2005, 17, 3154‒3159.
(44) Yang, Y.; Zhou, J.; Wang, L.; Jiao, Z.; Xiao, M.; Huang, Q.-a.; Liu, M.; Shao, Q.; Sun, X.; Zhang, J. Prussian Blue and Its analogues as Cathode Materials for Na-, K-, Mg-, Ca-, Zn- and Al-Ion Batteries. Nano Energy 2022, 99, 107424.
(45) Xia, M.; Zhang, X.; Liu, T.; Yu, H.; Chen, S.; Peng, N.; Zheng, R.; Zhang, J.; Shu, J. Commercially Available Prussian Blue Get Energetic in Aqueous K-Ion Batteries. Chem. Eng. J. 2020, 394, 124923.
(46) Wessells, C. D.; Peddada, S. V.; Huggins, R. A.; Cui, Y. Nickel Hexacyanoferrate Nanoparticle Electrodes for Aqueous Sodium and Potassium Ion Batteries. Nano Lett. 2011, 11, 5421‒5425.
(47) Wessells, C. D.; Huggins, R. A.; Cui, Y. Copper Hexacyanoferrate Battery Electrodes with Long Cycle Life and High Power. Nat. Commun. 2011, 2, 550.
(48) Wei, X.; Wei, J.; Song, Y.; Wu, D.; Liu, X. D.; Chen, H.; Xiao, P.; Zhang, Y. Potassium Mediated Co–Fe-Based Prussian Blue Analogue Architectures for Aqueous Potassium-Ion Storage. Chem. Commun. 2021, 57, 7019‒7022.
(49) Ren, W.; Chen, X.; Zhao, C. Ultrafast Aqueous Potassium‐Ion Batteries Cathode for Stable Intermittent Grid‐Scale Energy Storage. Adv. Energy Mater. 2018, 8, 1801413.
(50) Kolek, M.; Otteny, F.; Schmidt, P.; Mück-Lichtenfeld, C.; Einholz, C.; Becking, J.; Schleicher, E.; Winter, M.; Bieker, P.; Esser, B. Ultra-High Cycling Stability of Poly (vinylphenothiazine) as a Battery Cathode Material Resulting from π–π Interactions. Energy Environ. Sci. 2017, 10, 2334‒2341.
(51) Chang, C.-H.; Li, A.-C.; Popovs, I.; Kaveevivitchai, W.; Chen, J.-L.; Chou, K.-C.; Kuo, T.-S.; Chen, T.-H. Elucidating Metal and Ligand Redox Activities of a Copper-Benzoquinoid Coordination Polymer as the Cathode for Lithium-Ion Batteries. J. Mater. Chem. A 2019, 7, 23770‒23774.
(52) Xu, F.; Wang, H.; Lin, J.; Luo, X.; Cao, S.-a.; Yang, H. Poly (anthraquinonyl imide) as a High Capacity Organic Cathode Material for Na-Ion Batteries. J. Mater. Chem. A 2016, 4, 11491‒11497.
(53) Tang, M.; Zhu, S.; Liu, Z.; Jiang, C.; Wu, Y.; Li, H.; Wang, B.; Wang, E.; Ma, J.; Wang, C. Tailoring π-Conjugated Systems: from π-π Stacking to High-Rate-Performance Organic Cathodes. Chem 2018, 4, 2600‒2614.
(54) Lu, Y.; Chen, J. Prospects of Organic Electrode Materials for Practical Lithium Batteries. Nat. Rev. Chem. 2020, 4, 127‒142.
(55) Bhosale, M. E.; Chae, S.; Kim, J. M.; Choi, J.-Y. Organic Small Molecules and Polymers as an Electrode Material for Rechargeable Lithium Ion Batteries. J. Mater. Chem. A 2018, 6, 19885‒19911.
(56) Wang, C.; Xu, Y.; Fang, Y.; Zhou, M.; Liang, L.; Singh, S.; Zhao, H.; Schober, A.; Lei, Y. Extended π-Conjugated System for Fast-Charge and -Discharge Sodium-Ion Batteries. J. Am. Chem. Soc. 2015, 137, 3124‒3130.
(57) Liang, Y.; Jing, Y.; Gheytani, S.; Lee, K.-Y.; Liu, P.; Facchetti, A.; Yao, Y. Universal Quinone Electrodes for Long Cycle Life Aqueous Rechargeable Batteries. Nat. Mater. 2017, 16, 841‒848.
(58) Jiang, L.; Lu, Y.; Zhao, C.; Liu, L.; Zhang, J.; Zhang, Q.; Shen, X.; Zhao, J.; Yu, X.; Li, H. Building Aqueous K-Ion Batteries for Energy Storage. Nat. Energy 2019, 4, 495‒503.
(59) Chen, H.; Zhang, Z.; Wei, Z.; Chen, G.; Yang, X.; Wang, C.; Du, F. Use of a Water-in-Salt Electrolyte to Avoid Organic Material Dissolution and Enhance the Kinetics of Aqueous Potassium Ion Batteries. Sustain. Energy Fuels 2020, 4, 128‒131.
(60) Tian, B.; Zheng, J.; Zhao, C.; Liu, C.; Su, C.; Tang, W.; Li, X.; Ning, G.-H. Carbonyl-Based Polyimide and Polyquinoneimide for Potassium-Ion Batteries. J. Mater. Chem. A 2019, 7, 9997‒10003.
(61) Wang, J.; Li, F.; Qu, Y.; Liu, Y.; Yang, Y.; Li, W.; Zhao, M. PNTCDA: a Promising Versatile Organic Electrode Material for Alkali-Metal Ion Batteries. J. Mater. Chem. A 2018, 6, 24869‒24876.
(62) Wang, M.; Wang, H.; Zhang, H.; Li, X. Aqueous K-Ion Battery Incorporating Environment-Friendly Organic Compound and Berlin Green. J. Energy Chem. 2020, 48, 14‒20.
(63) Zhang, W.; Yin, J.; Wang, W.; Bayhan, Z.; Alshareef, H. N. Status of Rechargeable Potassium Batteries. Nano Energy 2021, 83, 105792.
(64) Rajagopalan, R.; Tang, Y.; Ji, X.; Jia, C.; Wang, H. Advancements and Challenges in Potassium Ion Batteries: a Comprehensive Review. Adv. Funct. Mater. 2020, 30, 1909486.
(65) Qin, T.; Chu, X.; Deng, T.; Wang, B.; Zhang, X.; Dong, T.; Li, Z.; Fan, X.; Ge, X.; Wang, Z. Reinventing the Mechanism of High-Performance Bi Anode in Aqueous K+ Rechargeable Batteries. J. Energy Chem. 2020, 48, 21‒28.
(66) Ma, M.; Chong, S.; Yao, K.; Liu, H. K.; Dou, S. X.; Huang, W. Advanced Anode Materials for Potassium Batteries: Sorting Out Opportunities and Challenges by Potassium Storage Mechanisms. Matter 2023, 6, 3220‒3273.
(67) Han, C.; Zhu, J.; Zhi, C.; Li, H. The Rise of Aqueous Rechargeable Batteries with Organic Electrode Materials. J. Mater. Chem. A 2020, 8, 15479‒15512.
(68) Li, Y.; Deng, W.; Zhou, Z.; Li, C.; Zhang, M.; Yuan, X.; Hu, J.; Chen, H.; Li, R. An Ultra-Long Life Aqueous Full K-Ion Battery. J. Mater. Chem. A 2021, 9, 2822‒2829.
(69) Ge, J.; Yi, X.; Fan, L.; Lu, B. An All-Organic Aqueous Potassium Dual-Ion Battery. J. Energy Chem. 2021, 57, 28‒33.
(70) Ali, U.; Liu, B.; Jia, H.; Li, Y.; Li, Y.; Hao, Y.; Zhang, L.; Xing, S.; Li, L.; Wang, C. In Situ Fe‐Substituted Hexacyanoferrate for High‐Performance Aqueous Potassium Ion Batteries. Small 2024, 20, 2305866.
(71) Li, C.; Deng, W.; Li, Y.; Zhou, Z.; Hu, J.; Zhang, M.; Yuan, X.; Li, R. Iron Phosphate Hydroxide Hydrate as a Novel Anode Material for Advanced Aqueous Full Potassium-Ion Batteries. Chem. Commun. 2022, 58, 7702‒7705.
(72) Ma, C.; Lin, C.; Li, N.; Chen, Y.; Yang, Y.; Tan, L.; Wang, Z.; Zhang, Q.; Zhu, Y. A High‐Entropy Prussian Blue Analog for Aqueous Potassium‐Ion Batteries. Small 2023, 2310184.
(73) Vardhini, G.; Dilip, P. S.; Kumar, S. A.; Suriyakumar, S.; Hariharan, M.; Shaijumon, M. M. Polyimide-Based Aqueous Potassium Energy Storage Systems Using Concentrated WiSE Electrolyte. ACS Appl. Mater. Interfaces 2024.
(74) Huang, M.; Wang, X.; Meng, J.; Liu, X.; Yao, X.; Liu, Z.; Mai, L. Ultra-Fast and High-Stable Near-Pseudocapacitance Intercalation Cathode for Aqueous Potassium-Ion Storage. Nano Energy 2020, 77, 105069.
(75) Huang, M.; Meng, J.; Huang, Z.; Wang, X.; Mai, L. Ultrafast Cation Insertion-Selected Zinc Hexacyanoferrate for 1.9 V K–Zn Hybrid Aqueous Batteries. J. Mater. Chem. A 2020, 8, 6631‒6637.
(76) Wu, M. S.; Luu, N. T.; Chen, T. H.; Lyu, H.; Huang, T. W.; Dai, S.; Sun, X. G.; Ivanov, A. S.; Lee, J. C.; Popovs, I. Supramolecular Self‐Assembled Multi‐Electron‐Acceptor Organic Molecule as High‐Performance Cathode Material for Li‐Ion Batteries. Adv. Energy Mater. 2021, 11, 2100330.
(77) Su, D.; McDonagh, A.; Qiao, S.-Z.; Wang, G. High-Capacity Aqueous Potassium-Ion Batteries for Large-Scale Energy Storage. Adv. Mater. 2016, 29, 1604007.
(78) Lei, Z.; Yang, Q.; Xu, Y.; Guo, S.; Sun, W.; Liu, H.; Lv, L.-P.; Zhang, Y.; Wang, Y. Boosting Lithium Storage in Covalent Organic Framework via Activation of 14-Electron Redox Chemistry. Nat. Commun. 2018, 9, 1‒13.
(79) Zhu, Y.; Chen, P.; Zhou, Y.; Nie, W.; Xu, Y. New Family of Organic Anode without Aromatics for Energy Storage. Electrochim. Acta 2019, 318, 262‒271.
(80) Wang, D.; You, X.; Wu, M.; Huang, H.; Chen, L.; Wu, D.; Xia, J. Molecular Regulation on Carbonyl-Based Organic Cathodes: Toward High-Rate and Long-Lifespan Potassium–Organic Batteries. ACS Appl. Mater. Interfaces 2021, 13, 16396‒16406.
(81) Zhou, M.; Bai, P.; Ji, X.; Yang, J.; Wang, C.; Xu, Y. Electrolytes and Interphases in Potassium Ion Batteries. Adv. Mater. 2021, 33, 2003741.
(82) Wang, H.; Zhai, D.; Kang, F. Solid Electrolyte Interphase (SEI) in Potassium Ion Batteries. Energy Environ. Sci. 2020, 13, 4583‒4608.
(83) Tie, Z.; Liu, L.; Deng, S.; Zhao, D.; Niu, Z. Proton Insertion Chemistry of a Zinc–Organic Battery. Angew. Chem. Int. Ed. 2020, 132, 4950‒4954.
(84) Zhao, Q.; Huang, W.; Luo, Z.; Liu, L.; Lu, Y.; Li, Y.; Li, L.; Hu, J.; Ma, H.; Chen, J. High-Capacity Aqueous Zinc Batteries Using Sustainable Quinone Electrodes. Sci. Adv. 2018, 4, 1761.
(85) Byeon, H.; Gu, B.; Kim, H.-J.; Lee, J. H.; Seo, I.; Kim, J.; Yang, J. W.; Kim, J.-K. Redox Chemistry of Nitrogen-Doped CNT-Encapsulated Nitroxide Radical Polymers for High Energy Density and Rate-Capability Organic Batteries. Chem. Eng. J. 2021, 413, 127402.
(86) Xue, Q.; Li, D.; Huang, Y.; Zhang, X.; Ye, Y.; Fan, E.; Li, L.; Wu, F.; Chen, R. Vitamin K as a High-performance Organic Anode Material for Rechargeable Potassium Ion Batteries. J. Mater. Chem. A 2018, 6, 12559‒12564.
(87) Qin, K.; Holguin, K.; Huang, J.; Mohammadiroudbari, M.; Chen, F.; Yang, Z.; Xu, G. L.; Luo, C. A Fast‐Charging and High‐Temperature All‐Organic Rechargeable Potassium Battery. Adv. Sci. 2022, 9, 2106116.
(88) Zou, J.; Fu, C.; Zhang, Y.; Fan, K.; Chen, Y.; Zhang, C.; Zhang, G.; Dai, H.; Cao, Y.; Ma, J. A Novel Hexaazatriphenylene Carboxylate with Compatible Binder as Anode for High‐Performance Organic Potassium‐Ion Batteries. Adv. Funct. Mater. 2023, 33, 2303678.
(89) Wang, J.; Jia, H.; Liu, Z.; Yu, J.; Cheng, L.; Wang, H. G.; Cui, F.; Zhu, G. Anchoring π‐d Conjugated Metal–Organic Frameworks with Dual‐Active Centers on Carbon Nanotubes for Advanced Potassium‐Ion Batteries. Adv. Mater. 2024, 36, 2305605.
(90) Desai, A. V.; Morris, R. E.; Armstrong, A. R. Advances in Organic Anode Materials for Na‐/K‐Ion Rechargeable Batteries. ChemSusChem 2020, 13, 4866‒4884.
(91) Gu, S.; Wu, S.; Cao, L.; Li, M.; Qin, N.; Zhu, J.; Wang, Z.; Li, Y.; Li, Z.; Chen, J. Tunable Redox Chemistry and Stability of Radical Intermediates in 2D Covalent Organic Frameworks for High Performance Sodium Ion Batteries. J. Am. Chem. Soc. 2019, 141, 9623‒9628.
校內:2029-08-01公開