| 研究生: |
盧美辰 Lu, Mei-Chen |
|---|---|
| 論文名稱: |
氣候變遷下易感族群住宅調適策略之研究 Study on Adjustment Strategies of Residential Building for Susceptible Populations under Climate Change |
| 指導教授: |
蔡耀賢
Tsay, Yaw-Shyan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 氣候變遷 、易感族群 、既有建築改善 、建康風險 |
| 外文關鍵詞: | Susceptible Population, Health Risk, Reformed Strategies, EnergyPlus |
| 相關次數: | 點閱:122 下載:12 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來在氣候變遷影響下極端事件發生的頻率逐漸升高,以極端事件後的急診率與就診率便可以發現劇烈的氣候波動將會導致人體健康受到危害。而過去討論建築物改善之研究多以能源及防災角度探討,甚少關切於健康風險之議題。隨著外界氣候條件愈趨惡劣,易感族群在健康條件與行動的限制下,對於環境的調適性便遠不及青壯年,因此本研究以易感族群為評估對象,在氣候變遷的條件下,分別探討現在之一般氣候與未來極端事件頻繁發生的情況下,對於室內熱環境與居住者的健康影響。希望能了解台灣住宅建築之室內環境於氣候變遷下將面臨之氣候衝擊程度,並嘗試提出可行之改善策略,做為未來因應劇烈氣候變化之建築物改造參考。
本研究使用EnergyPlus為模擬軟體,探討台北氣候下連棟住宅與公寓住宅兩種不同住宅型態之室內熱環境。首先以敏感度分析找出通風策略、外殼隔熱、玻璃熱性能及遮陽裝置等手法之有效改善因子,接著進一步對具有健康風險的既有建築物進行改善,並以超過健康溫度範圍之累積日數以及超過低、中、高閾值之總日數來評估各種改善策略所能降低室內風險暴露時間與暴露強度之效果,探討如何減緩易感族群面對極端事件時的健康衝擊。
研究結果顯示連棟式住宅與公寓住宅之改善策略結果於趨勢上相似,透過敏感度分析顯示增加流量係數、降低太陽日射取得率、水平遮陽與降低建築外殼之熱傳透率為敏感度較高之設計因子。而以當前氣候條件下之模擬結果顯示,比較熱季與冷季暴露於風險的日數比例發現,冷季暴露於風險的比例較熱季高出許多,顯示臺灣位處亞熱帶區,居民對於冷的適應能力較高溫差,因此建議設計者在降低熱季室內太陽輻射熱得的同時,建築外殼之隔熱保溫設計為必要之策略,建議採用雙層玻璃並降低外殼之熱傳透率之改善策略。
另外,綜合考量現在住宅使用之至未來之效益,由未來氣象資料分析結果顯示,不論2030及2050年熱季之外氣溫度及高溫事件皆顯著提升,而冷季氣溫也呈現增加的趨勢,寒流事件則顯著減少,但仍有日較差極大之現象產生。因此除了現況下建議之改善策略外,於未來建議增加流量係數,以確保住宅得以於現況降低過多之過冷風險,並當此改善後住宅使用至2030年時,能有效降低顯著增加之過熱風險,亦可免於極大日較差所導致之健康風險,使室內風險維持於接近現況之水平,進而減緩氣候變遷之影響。
In recent years, the frequency of extreme weather events has gradually increased in many areas under the impact of climate change. Dramatic change of climate have been found to cause human health problems at hospital emergency visits and attendance rate after the occurrence of extreme events. Previous studies manly focused on the issue of energy and disaster, but not health. However, compared to the healthy adult, susceptible populations are more vulnerable to heat exposure. The objective of this study is to propose reformed strategies of existing residential under the impact of climate change. It is expected to adjust the climate and decrease the health risk of the susceptible population.
EnergyPlus was used as the simulation software to study the influence of changing building construction/material to adjust the indoor thermal environment of townhouse and apartment. Sensitivity analysis was carried out to select the design strategies which sensitive to indoor temperature. We then combined these strategies to simulate the effect of adjusting indoor temperature. Finally, the number of days that exceed the threshold were used to evaluate the improvement of indoor environment and their effect on the health risk of susceptible populations.
The sensitivity analysis results show that discharge coefficient, solar heating gain coefficient, insulation and shading are more sensitive to adjust indoor temperature. The simulation results in TMY3 show that days of overcool are much more than overheat. It means that the effect of insulation is necessary to improve the adjustment of overcool in Taiwan currently. Then, considering the effect of reformed strategies until 2030, the future weather data shows that the health risk will increase, especially in the hot season. So, the double low-e glass, increasing discharge coefficient and reducing the U value of construction were the adjusting strategies that suggested. It is expected to reduce the days of overcool currently by insulation and also decrease the days of overheat in 2030 by reducing indoor solar heat gain and increasing the effect of ventilation.
(一)中文文獻
1. 內政部營建署,建築技術規則,2012。
2. 內政部建築研究所,建築節能法令之玻璃建材參數適用性驗證,2007。
3. 內政部建築研究所,綠建築評估手冊 – 基本型,2012。
4. 內政部建築研究所,臺灣建築能源模擬解析用逐時標準氣象資料 TMY3 之建置與研究,2013。
5. 內政部營建署,住宅狀況調查報告書,2006。
6. 內政部營建署,住宿類建築物節約能源設計技術規範,2011。
7. 周鼎金,建築物理,裕祥出版社,1999。
8. 許晃雄、陳正達、盧孟明、陳永明、周佳、吳宜昭,臺灣氣候變遷科學報告2011,行政院國家科學委員會,2011。
9. 駱彥均,探討預測之室內溫度對於心血管及呼吸道疾病之影響,國立成功大學環境醫學研究所碩士論文,2017。
10. 賴科仁,建築外殼改善之節能效益評估與舒適度研究,國立台北科技大學冷凍與低溫科技研究所碩士論文,2004。
(二) 外文文獻
1. Arima Y., Ooka R., Kikumoto H. 2016. Impact of climate on annual cooling and heating load in Tokyo using prototype of near-future weather data. 9th International Conference on Indoor Air Quality Ventilation & Energy Conservation In Buildings.
2. Braga ALF., Zanobetti A., Schwartz J. 2002. The effect of weather on respiratory and cardiovascular deaths in 12 US cities. Environmental Health Perspectives, 110, 859-863.
3. Bunker A., Wildenhain J., Vanddenbergh A., Henschke N., Rocklov J., Hajat S. and Sauerborn R. 2016. Effect of air temperature on climate-sensitive mortality and morbidity outcomes in the elderly; a systematic review and meta-analysis of epidemiological evidence. EBioMedicine, 6, 258-268.
4. Chen X., Yang H., Sun K. 2016. A holistic passive design approach to optimize indoor environmental quality of a typical residential building in Hong Kong. Energy, 113, 267-281.
5. Chung J.Y., Honda Y., Hong Y.C., Pan X.C., Guo Y.L. and Kim H. 2009. Ambient temperature and mortality: An international study in four capital cities of East Asia. Science of the Total Environment, 408, 390-396.
6. Doant MG, Dunn RJH, Perkins-Kirkpatrick SE. 2016. Land Surface Temperature Extremes. State of the Climate in 2015, 97, S19-S20.
7. Figueiredo A., Figueira J., Vicente R., Maio R. 2016. Thermal comfort and energy performance: Sensitivity analysis to apply the Passive House concept to the Portuguese climate. Energy and Environment, 103, 276-288.
8. Hoffmann S., Lee E.S., McNeil A., Fernandes L., Vidanovic D. and Thanachareonkit A. 2016. Balancing daylight, glare, and energy-efficiency goals: An evaluation of exterior coplanar shading systems using complex fenestration modeling tools. Energy and Buildings, 112, 279-298.
9. Huynen M.M., Martens P., Schram D., Weijenberg M.P., Kunst A.E., 2001. The impact of heat waves and cold spells on mortality rates in the Dutch population. Environ Health Perspect, 109, 463-470.
10. Huang K.T., Hwang R. L., 2016. Future trends of residential building cooling energy and passive adaptation measures to counteract climate change: The case of Taiwan. Applied Energy. 194, 1230-1240.
11. Hwang R.L., Lin C.Y., Huang K.T., 2016 Spatial and temporal analysis of urban heat island and global warming on residential thermal comfort and cooling energy in Taiwan. Energy and Building.
12. Lin C.Y., Chua Y.J., Sheng Y.F., Hsu H.H., Cheng C.T., Lin Y.Y. 2014. Altitudinal and latitudinal dependence of future warming in Taiwan simulated by WRF nested with ECHAM5/MPIOM. International Journal of Climatology, 35(8), 1800-1809.
13. Lin Y.K., Ho T.J. and Wang Y.C. 2011. Mortality risk associated with temperature and prolonged temperature extremes in elderly populations in Taiwan. Environmental Research, 111, 1156-1163.
14. Lin YK, Chang CK, Wang YC, Ho TJ. 2014. Acute and prolonged adverse effects of temperature on mortality from cardiovascular diseases. PLoS One, 8, e82678.
15. Loenhout J.A.F., Grand A., Duijm F., Vink N.M. and Hoek G. 2016. The effect of high indoor temperature on self-perceived health of elderly persons. Environmental Research, 146, 27-34.
16. Kitamura E., Shibata Y. and Matsubara N. 2016. A study on the prevention of heat shock from the viewpoint of residents. Japanese Journal of Biometerology, 53(1), 13-29. (in Japanese)
17. Ma W., Yang C., Chu C., Li T., Tan J., Kan H. 2013. The impact of the 2008 cold spell on mortality in Shanghai, China. Int J Biometeorol, 57, 179-184.
18. Park T.W., Ho C.H., Jeong S.J., Choi Y.S., Park S.K., Song C.K. 2011. Different characteristics of cold day and cold surge frequency over East Asia in a global warming situation. Journal of geophysical research, 116, D12118.
19. Quinn A., Tamerius J.D., Perzanowski M., Jacobson J.S., Goldstein I., Acosta L. and Shaman J. 2014. Predicting indoor heat exposure risk during extreme heat events. Science of the Total Environment, 490, 686-693.
20. Stazi F., Marinelli S., Perna C.D. and Munafo P. 2014. Comparison on solar shadings: Monitoring of the thermos-physical behavior, assessment of the energy saving, thermal comfort, natural lighting and environmental impact. Solar Energy, 105, 512-528.
21. Kisi O, Parmar KS. 2016. Application of least square support vector machine and multivariate adaptive regression spline models in long term prediction of river water pollution. Journal of Hydrology, 534, 104-12.
22. Kovats RS, Hajat S. 2008. Heat stress and public health: a critical review. Annu Rev Public Health, 29, 41-55.
23. Matthies F, Menne B. 2009. Prevention and management of health hazards related to heat waves. Int J Circumpolar Health, 68, 8-22.
24. Tucker CJ, Vanpraet CL, Sharman M, Van Ittersum G. 1985. Satellite remote sensing of total herbaceous biomass production in the Senegalese Sahel: 1980–1984. Remote sensing of environment, 17, 233-49.
25. Wang Y.C. and Lin Y.K. 2014. Association between temperature and emergency room visit for cardiorespiratory diseases, metabolic syndrome-related diseases, and accidents in metropolitan Taipei. Public Library of Science, 9 (Issue 6).
26. Wang Y.C. and Lin Y.K. 2015. Temperature effects on outpatient visits of respiratory diseases, asthma, and chronic airway obstruction in Taiwan. International Journal of Biometeorology, 59, 815-825.
27. Weng Q, Lu D, Schubring J. 2004. Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote sensing of Environment, 89, 467-83.
28. Wu PC, Lin CY, Lung SC, Guo HR, Chou CH, Su HJ. 2011. Cardiovascular mortality during heat and cold events: determinants of regional vulnerability in Taiwan. Occupational and Environmental Medicine, 68, 525-530.
29. WMO. The Global Climate 2001-2010. World Meteorological Organization; 2013.
30. Xu W., Thach T.Q., Chau Y.K., Lai H.K., Lam T.H., Chan W.M., Lee R.S.Y., Hedley A.J. and Wong C.M. 2013. Thermal stress associated mortality risk and effect modification by sex and obesity in an elderly cohort of Chinese in Hong Kong. Environmental Pollution, 178, 288-293.
31. Zeng W., Lao X., Rutherford S., Xu Y., Xu X., Lin H., Liu T., Luo Y., Xiao J., Hu M., Chu C. and Ma W. 2014. The effect of heat waves on mortality and effect modifiers in four communities of Guangdong Province, China. Science of the Total Environment, 482-483, 214-221.