| 研究生: |
李維農 Lee, Wei-Nong |
|---|---|
| 論文名稱: |
應用於靜態影像壓縮的重要係數鏈結連通要素分析 Significance Linked Connected Component Analysis for Still Image Compression |
| 指導教授: |
郭淑美
Guo, Shu-Mei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 英文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 餘弦轉換 、小波轉換 、無失真壓縮編碼 、小波編碼演算法 、影像壓縮 |
| 外文關鍵詞: | entropy coding, image compression, discrete wavelet transform, wavelet coder, discrete cosine transform |
| 相關次數: | 點閱:83 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來由於網際網路以及數位相機的盛行,個人的影像資料不斷地增加是可預期的結果。根據近期的研究,人們發現到採用離散小波轉換discrete wavelet transform (DWT) [4]為基礎的壓縮技巧,其壓縮效率往往勝過以離散餘弦轉換discrete cosine transform (DCT)為基礎的壓縮技術。因此近年來許多以DWT為基礎的壓縮技巧不斷的被提出與發表。
在小波影像壓縮應用中,Significance linked connected component analysis (SLCCA) [6]是一種有效率的小波係數呈現和組織的策略。以小波轉換為基礎。首先,一張數位影像先由空間域的訊號轉換為頻率域的訊號。在轉換的過程中,小波係數將以影像金字塔的方式進行排列。隨後這些金字塔中的係數將會以一個特定的量化值進行量化。而量化值的選擇將會由預先設定的壓縮位元率以及影像還原品質所決定。在量化程序後,剩餘的係數(非零項係數)將會經過significance link和connected component 兩個程序進行組織以及整理。在最後,和一般的壓縮演算法相同,SLCCA 編碼系統也採用了一系列的無失真壓縮編碼技巧來增進整體的壓縮效率。
依照相關文獻和期刊上實驗結果的探討,與其他常見的小波編碼演算法相比,SLCCA具有相當優異的壓縮效能。然而在我們試著實際建立SLCCA壓縮編碼系統的過程中,卻發現到在目前的文獻中,對於SLCCA演算法的陳述和實作上所需要的相關技術細節都沒有完整的說明,在其中不是資料不完全,就是沒有描述。因此在相關資料缺乏的情形下,也連帶對於SLCCA其他相關領域的研究產生很大的影響。
因此基於以上的原因,在本論文中,我們除了將詳細探討與說明SLCCA編碼系統的理論基礎以及運作原理,進而完整的建立SLCCA編碼系統的關鍵技術。另一方面,由於SLCCA演算法所產生出的資料序列間具有相當程度機率分佈的差異性。因此利用這些資料序列間不同的機率分佈特性,我們將提出幾種相關的壓縮機制,來進一步增加整體的影像壓縮效率。
Popularization of Internet and digital camera, the increase of the personal image data is an anticipated result. In recent years, many researchers have found that image compression techniques adopting discrete wavelet transform (DWT) [4] frequently outperform techniques adopting discrete cosine transform (DCT). So a lot of compression techniques involved DWT have been proposed recently.
For wavelet image compression coding, Significance linked connected component analysis (SLCCA) [6] is an efficient strategy for wavelet coefficients organization and representation. SLCCA coding system is based on wavelet transform. First, a digital image is transformed from time domain signal to frequency domain signal. During transforming process, the wavelet decomposition pyramid is constructed. Then, the wavelet coefficients in the pyramid are quantized by a uniform scalar quantizer. The quantizer is chosen by that the target bit rate and quality are satisfied. After quantization process, the remainder coefficients (nonzero coefficients) are organized and arranged by significance link process and connected component process. As in most image compression algorithms, the last step of SLCCA coding system involves entropy coding to compress further.
According to the literatures and papers of SLCCA, the performance of SLCCA is better than several other wavelet coders. But after studying these literatures about SLCCA, we find that many details of programming algorithm and information about implementation have not been mentioned in these literatures of SLCCA.
For this reason, we discuss and explain the principle and theory of SLCCA in this thesis. Further, we construct the know-how of SLCCA coding system completely. On the other hand, these characters of data strings generated by SLCCA are very different from one to another. So according to differences of data characters of strings, we propose some new techniques to improve the compression performance further.
Reference
[1] Khalid Sayood, Introduction to Data compression, Morgan Kaufmann, 2000.
[2] R. C. Gonzalez and R. E. Woods, Digital Image Processing, Prentice Hall, 2002.
[3] W. B. Pennenbaker and J. L. Mitchell, JPEG Still Image Data Compression, Van Nostrand Reinhard, 1993.
[4] M.Vetterli and J. Kovacevic, Wavelets and Subband Coding, Prentice-Hall, 1995.
[5] Chai, Vass, and X. Zhuang,”Significance-linked connected component analysis for high performance low bit rate wavelet coding,”Multimedia Signal Processing, IEEE First Workshop on 23-25, pp. 145-150, June 1997.
[6] Chai, I. Vass, and X. Zhuang, ”Significance- linked connected component analysis for wavelet image coding,”IEEE Trans. Image Processing, vol. 8, no. 6, pp.774-784,June 1999.
[7] J. M. Shapiro,”Embedded image coding using zerotrees of wavelet coefficients,” IEEE Trans. Signal Processing, vol. 41, pp. 3445-3462, Dec. 1993.
[8] S. Servetto, K. Ramchandran, and M. T. Orchard,”Wavelet based image coding via morphological prediction of significance,”Proc. IEEE Int. Conf. Image Processing, pp. 530-533, Oct. 1995.
[9] A. Said and W. A. Pearlman,”A new, fast, and efficient image codec based on set partitioning in hierarchical trees,”IEEE Trans. Circuits Syst. Video Technol., vol. 6, pp. 243-250, June 1996.
[10] S. G. Mallat,”A theory for multiresolution signal decomposition: The wavelet representation,”IEEE Trans. Pattern Anal. Machine Intell., vol. 11, pp. 674-693, July 1989.
[11] A. Munteanu, J.Corenlis, G. V. D. Auwera and P. Cristea,”Wavelet image compression - the quadtree coding approach,”IEEE Trans. Technology in Biomedicine, vol. 3, pp. 176-185, Sept. 1999.
[12] Cohen A., Daubechies I., and Feauveau I., ”Biorthogonal bases of compactly supported wavelets,”Comm. Pure Appl. Math., pp. 485-560, 1992.
[13] H. Y. Meng and Z. H. Wang,”Fast spatial combinative lifting algorithm of wavelet transform using the 9/7 filter for image block compression,” Electronics Letters, 36(21), pp. 1766-1767, 2000.
[14] 吳炳飛,胡益強,翟忠正,蘇崇彥,JPEG 2000 影像壓縮技術,全華,2003.
[15] http://www.bearcave.com/misl/misl_tech/wavelets/daubechies/
[16] Junqiang Lan, Xinhua Zhuang,”Embedded SLCCA for wavelet image coding,”Multimedia and Expo, ICME '03.International Conference on vol. 2, pp. 357-369, 2003.
[17] 戴顯全,資料壓縮,紳藍,2002.
[18] I. H. Witten, M. Neal, and J. G. Cleary, ”Arithmetic coding for data compression, ”Commun. ACM, vol. 30, pp. 520–540, June 1987.
[19] M. Rabbani and P. W. Jones, Digital Image Compression Techniques.Belingham, WA: SPIE, 1991.
[20] 戴顯全,多媒體通訊,紳藍,2003.
[21] M. Rabbani and P. W. Jones,”Conditioning contexts for the arithmetic coding of bit planes, ”IEEE Trans. Signal Processing, vol. 40, No. 1, pp. 232-236, Jan. 1992.
[22] http://www.bilsen.com/aic/
[23] Athanassios Skodras, Charilaos Christopoulos, and Touradj Ebrahimi,”The JPEG 2000 Still Image Compression Standard, ”IEEE Signal processing magazine, pp. 36-58, Sep. 2001.”