簡易檢索 / 詳目顯示

研究生: 沈艾霖
Shen, Ai-Lin
論文名稱: 濺鍍製造的非晶質碳之532 nm可見光拉曼光譜數據分析方法探討與類鑽碳相關研究
On the Data Analytic Method Applied to the 532nm Visible Raman Spectra of Sputtered Amorphous Carbon and the Related Researches of Diamond-like Carbon
指導教授: 周澤川
Chou, Tse-Chuan
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 188
中文關鍵詞: 類鑽碳可見光拉曼光譜數據分析方法
外文關鍵詞: diamond-like carbon, visible Raman spectra, the data analytic method
相關次數: 點閱:76下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 類鑽碳材料的光譜研究,隨著量測條件與數據處理方法的差異,會得到不同的光譜分析結果,造成學者常以自由心證的方式解釋,導致相關研究的理論與結果解讀呈現混亂狀態。
    本研究分析與回顧一些已發表的期刊文獻,找出可能影響類鑽碳成份光譜分析的因素與疑點以供參考,如其他成份(主要為氫成份)、表面粗糙度、基材與多峰曲線擬合法等,皆可能會造成影響與偏差。
    本研究使用濺鍍製備不含氫的非晶質碳膜,以濺鍍時間、濺鍍壓力與碳膜底下的金屬層種類為變因,探討數據處理對於相同雷射聚焦條件下連續量測之532 nm可見光拉曼光譜的影響,確認一般處理光譜數據常使用的多峰曲線擬合法與基線修正法,皆會造成光譜分析的結果更為混亂。本研究率先使用不經過多峰曲線擬合法的高度比值法(扣除基線)與積分面積法分析相同量測條件的可見光拉曼光譜,得到的結果較有一致性。
    本研究使用積分面積法處理三個不同樣本之連續量測(n=3)原始拉曼光譜的最大標準差為0.040,遠小於使用兩峰、三峰或四峰高斯曲線擬合的標準差(分別為1.460、0.912與1.205),可降低數據處理對光譜分析結果的影響,作為光譜分析數據處理的較佳方法參考。

    Spectral correlation results for diamond-like carbon materials are changed by the measuring conditions applied and the data analysis methods used. Present researchers, by using different methods and not justifying the basis of their analytic approaches, have introduced serious disorder into the theory and conclusions presented in the literature representing diamond-like carbon research.
    This study by analyzing and discussing published papers, revealed factors and questionable points which affect the diamond-like carbon spectral results: other elements (especially, hydrogen), the roughness of the surface, substrates, and the multi-curve fitting method all variously introduce influences and errors.
    This study prepared sputtered amorphous carbon without hydrogen, using sputtering time, sputtering pressure, and the substrates supporting the carbon films as variable factors to discuss the effect of the data analytic method for the 532 nm visible Raman spectra which were measured several times, under constant conditions. The multi-curve fitting method and the baseline correction method are both commonly usually used and make the spectral results more disorderly. This study employs for the first time the use of peak height ratios HD/HG (dependent on the distance from the peak to the baseline) and analysis by direct area integration (AD/AG ratios) – techniques both of which omit the requirement for multi-curve fitting, and lead to more regular results.
    In this study, the largest standard deviation was 0.040, measured using multiple determinations with three separate samples (n=3); with the area integration methods being applied to the original Raman spectra under constant conditions. The deviations determined were lower than standard deviations determined by using two-Gaussian, three-Gaussian, or four-Gaussian curve fitting methods, which were 1.460, 0.912, and 1.205 respectively. Using the area integration method we were able to reduce the influence of the data analytic method when applied to the spectral results and as such apply it as a better reference method for spectral analysis.

    中文摘要………………………………………………………………………………I 英文摘要………………………………………………………………………………II 致謝……………………………………………………………………………………IV 目錄……………………………………………………………………………………VI 表目錄…………………………………………………………………………………X 圖目錄…………………………………………………………………………………XII 符號…….……………………………………………………………………………XXV 第一章 緒論……………………………………………………………………………1 1-1 前言 ………………………………………………………………………………1 1-2 類鑽碳文獻回顧 …………………………………………………………………2 1-3 類鑽碳性質與其它(非碳)成份影響探討…………………………………………7 1-4 研究主題…………………………………………………………………………17 第二章 類鑽碳常用分析光譜與多峰曲線擬合公式探討 …………………………19 2-1 類鑽碳應用光譜文獻回顧與共同疑點探討……………………………………19 2-2 各光譜常應用之多峰曲線擬合公式……………………………………………30 (a) 使用三個參數之Gaussian function [49, 50] …………………………………34 (b) 使用四個參數之Gaussian function [50]………………………………………35 (c) 使用三個參數之Lorentzian function [49, 50]…………………………………35 (d) 使用四個參數之Lorentzian function [50]………………………………………36 (e) Breit-Wigner-Fano (BWF) function [2, 15]……………………………………37 2-3應用於類鑽碳成份定量分析之各光譜簡介與評析 ……………………………38 2-3-1 拉曼光譜(Raman) ……………………………………………………………38 2-3-2 X-ray 光電子光譜(X-ray photoelectron spectroscopy, XPS)………………48 2-3-3紅外線光譜(infrared spectroscopy, IR)………………………………………52 2-3-4歐傑電子光譜(Auger electron spectroscopy or X-ray induced Auger electron spectroscopy, AES or XAES) ……………………………………………………54 2-3-5電子能量損失光譜(electron energy loss spectroscopy, EELS …………56 2-3-6核磁共振光譜(nuclear magnetic resonance, NMR) ………………………60 2-3-7 近邊X光吸收細微結構光譜(near-edge X-ray absorption fine structure, NEXAFS or 另簡稱 XANES) ………………………………………………………61 第三章 非晶質碳膜製備 ……………………………………………………………64 3-1 實驗主要設備與材料介紹………………………………………………………64 3-2 非晶質碳膜製備條件……………………………………………………………66 3-3 非晶質碳膜表面狀況……………………………………………………………68 (a) 碳膜濺鍍時間變因………………………………………………………………68 (b) 碳膜濺鍍壓力變因………………………………………………………………70 (c) 金屬層種類變因…………………………………………………………………73 3-4 非晶質碳膜的厚度與表面粗糙度………………………………………………75 第四章 可見光拉曼光譜結果與數據分析 …………………………………………77 4-1 非晶質碳膜可見光拉曼原始光譜………………………………………………77 4-2 可見光拉曼光譜數據處理………………………………………………………81 4-2-1 扣除基線值的高度比值法……………………………………………………81 4-2-2 多峰曲線擬合法探討…………………………………………………………85 4-2-2-1 多峰曲線擬合法說明………………………………………………………85 4-2-2-2 數據處理範圍定義…………………………………………………………92 4-2-2-3 拉曼光譜多峰曲線擬合結果 ………………………………………………93 (a) 碳膜濺鍍時間變因(n=4)…………………………………………………………93 (b) 碳膜壓力濺鍍變因(n=3) ………………………………………………………116 (c) 金屬層種類變因(n=3) …………………………………………………………137 第五章 金屬層變因碳膜補充資料…………………………………………………170 5-1 XPS光譜量測 …………………………………………………………………170 5-2 AES光譜量測 …………………………………………………………………171 5-3 硬度與楊氏係數量測 …………………………………………………………173 第六章 結論…………………………………………………………………………175 參考文獻……………………………………………………………………………177 自述…………………………………………………………………………………188

    1. S. Aisenberg and R. Chabot, Ion-beam deposition of thin films of diamondlike carbon, J. Appl. Phys. 42 (7), pp. 2953-2958 (1971).
    2. J. Robertson, Diamond-like amorphous carbon, Mater. Sci. and Eng. R 37, pp. 129-281 (2002).
    3. X. L. Peng and T. W. Clyne, Mechanical stability of DLC films on metallic substrates: Part I-Film structure and residual stress levels, Thin Solid Films 312, pp. 207-218 (1998).
    4. J. Schwan, S. Ulrich, H. Roth, and H. Ehrhardt, S. R. P. Silva, J. Robertson, R. Samlenski, and R. Brenn, Tetrahedral amorphous carbon films prepared by magnetron sputtering and dc ion plating, J. Appl. Phys. 79 (3), pp. 1416-1422 (1996).
    5. W. J. Yang, Y. H. Choa, T. Sekino, K. B. Shim, K. Niihara, and K. H. Auh, Structural characteristics of diamond-like nanocomposite films grown by PECVD, Mater. Lett. 57, pp. 3305-3310 (2003).
    6. N. A. Sanchez, C. Rincon, G. Zambrano, H. Galindo, and P. Prieto, Characterization of diamond-like carbon (DLC) thin films prepared by r.f. magnetron sputtering, Thin Solid Films 373, pp. 247-250 (2000).
    7. S. Kvasnica, J. Schalko, C. Eisenmenger-Sittner, J. Benardi, G. Vorlaufer, A. Pauschitz, and M. Roy, Nanotribological study of PECVD DLC and reactively sputtered Ti containing carbon films, Diamond Relat. Mater. 15, pp. 1743-1752 (2006).
    8. F. C. Tai, S. C. Lee, C. H. Wei, and S. L. Tyan, Correlation between ID/IG ratio from visible Raman spectra and sp2/sp3 ratio from XPS spectra of annealed hydrogenated DLC Film, Mater. Trans. 47, pp. 1847-1852 (2006).
    9. F. C. Tai, S. C. Lee, J. Chen, C. Wei, and S. H. Chang, Multipeak fitting analysis of Raman spectra on DLCH film, J. Raman Spectrosc. 40, pp. 1055-1059 (2009).
    10. S. Prawer, K. W. Nugent, Y. Lifshitz, G. D. Lempert, E. Grossman, J. Kulik, I. Avigal, and R. Kalish, Systematic variation of the Raman spectra of DLC films as a function of sp2:sp3 composition, Diamond Relat. Mater. 5, pp. 433-438 (1996).
    11. F. X. Liu and Z. L. Wang, Thickness dependence of the structure of diamond-like carbon films by Raman spectroscopy, Surf. Coat. Technol. 203, pp. 1829-1832 (2009).
    12. L. Xia, M. Sun, and J. Liao, The effect of negative bias pulse on the bonding configurations and properties of DLC films prepared by PBII with acetylene, Diamond Relat. Mater. 14, pp. 42-47 (2005).
    13. A. C. Ferrari and J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Phys. Rev. B 61 (20), pp. 14095-14107 (2000).
    14. K. Sreejith, J. Nuwad, and C. G. S. Pillai, Low voltage electrodeposition of diamond like carbon (DLC), Appl. Sur. Sci. 252, pp. 296-302 (2005).
    15. Z. Ping, Fabrication and characterization of composite diamond like carbon films for some applications, School of Electrical & Electronic Engineering Nanyang Technological University Ph.D. (2005).
    16. P. M. Ossi, C. E. Bottani, and A. Miotello, Pulsed-laser deposition of carbon: from DLC to cluster-assembled films, Thin Solid Films 482, pp. 2-8 (2005).
    17. S. Zhang, B. Wang, and J. Y. Tang, Processing and characterization of diamondlike carbon films, Surf. Eng. 13 (4), pp. 303-309 (1997).
    18. G. A. Abbas, S. S. Roy, P. Papakonstantinou, and J. A. McLaughlin, Structural investigation and gas barrier performance of diamond-like carbon based films on polymer substrates, Carbon 43, pp. 303-309 (2005).
    19. C. Fauteux and J. Pegna, Radial characterization of 3D-LCVD carbon fibers by Raman spectroscopy, Appl. Phys. A 78, pp. 883-888 (2004).
    20. S. Chowdhury, M. T. Laugier, and I. Z. Rahman, Characterization of DLC coatings deposited by rf magnetron sputtering, J. Mater. Process. Technol. 153–154, pp. 804-810 (2004).
    21. Z. J. Zhang, K. Narumi, H. Naramoto, Z. P. Wu, S. Yamamoto, and A. Miyashita, The effect of sputtering ions on the structure and properties of diamond-like carbon films, J. Phys.: Condens. Matter 11, L273-L277 (1999).
    22. F. Rossi, B. Andre, A. V. Veen, P. E. Mijnarends, H. Schut, M. P. Delplancke, W. Gissler, J. Haupt, G. Lucazeau, and L. Abello, Effect of ion beam assistance on the microstructure of nonhydrogenated amorphous carbon, J. Appl. Phys. 75 (6), pp. 3121-3129 (1994).
    23. E. Mounier, F. Bertin, M. Adamik, Y. Pauleau, and P. B. Barna, Effect of the substrate temperature on the physical characteristics of amorphous carbon films deposited by d.c. magnetron sputtering, Diamond Relat. Mater. 5, pp. 1509-1515 (1996).
    24. M. Zarrabian, N. Fourches-Coulon, G. Turban, M. Lancin, and C. Marhic, Effect of negative bias voltage on a-C:H films deposited in electron cyclotron resonance plasma, Diamond Relat. Mater. 6, pp. 542-546 (1997).
    25. D. Ballutaud, F. Jomard, T. Kociniewski, E. Rzepka, H. Girard, and S. Saada, Sp3/sp2 character of the carbon and hydrogen configuration in micro- and nanocrystalline diamond, Diamond Relat. Mater. 17, pp. 451-456 (2008).
    26. V. Palshin, E. I. Meletis , S. Ves, and S. Logothetidis, Characterization of ion-beam-deposited diamond-like carbon films, Thin Solid Films 270, pp. 165-172 (1995).
    27. J. H. Lee, D. S. Kim, Y. H. Lee, and B. Farouk, Mechanical properties of a-C:H and a-C:H/SiOx nanocomposite thin films prepared by ion-assisted plasma-enhanced chemical vapor deposition, Thin Solid Films 280, pp. 204-210 (1996).
    28. A. C. Ferrari, Determination of bonding in diamond-like carbon by Raman spectroscopy, Diamond Relat. Mater. 11, pp. 1053-1061 (2002).
    29. S. Reich and C. Thomsen, Raman spectroscopy of graphite, Phil. Trans. R. Soc. Lond. A 362, pp. 2271-2288 (2004).
    30. From Wikipedia, the free encyclopedia http://zh.wikipedia.org/wiki/%E7%9F%B3%E5%A2%A8
    31. Y. Lifshitz, Diamond-like carbon—present status, Diamond Relat. Mater. 8, pp. 1659-1676 (1999).
    32. L. Calliari, AES and core level photoemission in the study of a-C and a-C:H, Diamond Relat. Mater. 14, pp. 1232-1240 (2005).
    33. J. Zemek, J. Zalman, and A. Luches, XAES and XPS study of amorphous carbon nitride layers, Appl. Surf. Sci. 133, pp. 27-32 (1998).
    34. J. Robertson, Electronic and atomic structure of diamond-like carbon, Semicond. Sci. Technol. 18, S12-S19 (2003).
    35. N. Savvides, Optical constants and associated functions of metastable diamondlike amorphous carbon films in the energy range 0.5-7.3 eV, J. Appl. Phys. 59 (12), pp. 4133-4145 (1986).
    36. C. Corbella, G. Oncins, M. A. Gomez, M.C. Polo, E. Pascual, J. Garcıa-Cespedes, J. L. Andujar, and E. Bertran, Structure of diamond-like carbon films containing transition metals deposited by reactive magnetron sputtering, Diamond Relat. Mater. 14, pp. 1103-1107 (2005).
    37. R. M. France and R. D. Short, Plasma treatment of polymers: The effects of energy transfer from an argon plasma on the surface chemistry of polystyrene, and polypropylene. A high-energy resolution X-ray photoelectron spectroscopy study, Langmuir 14, pp. 4827-4835 (1998).
    38. S. Turgeon and R. W. Paynter, On the determination of carbon sp2/sp3 ratios in polystyrene-polyethylene copolymers by photoelectron Spectroscopy, Thin Solid Films 394, pp. 44-48 (2001).
    39. D. L. Pappas, K. L. Saenger, J. Bruley, W. Krakow, J. J. Cuomo, T. Gu, and R. W. Collins, Pulsed laser deposition of diamond-like carbon films, J. Appl. Phys. 71 (11), pp. 5675-5684 (1992).
    40. A. V. Sumant, D. S. Grierson, J. E. Gerbi, J. A. Carlisle, O. Auciello, and R. W. Carpick, Surface chemistry and bonding configuration of ultrananocrystalline diamond surfaces and their effects on nanotribological properties, Phys. Rev. B 76, 235429 (2007).
    41. O. L. Eryilmaz and A. Erdemir, TOF-SIMS and XPS characterization of diamond-like carbon films after tests in inert and oxidizing environments, Wear 265, pp. 244-254 (2008).
    42. O. Stephan, M. Kociak, L. Henrard, K. Suenaga, A. Gloter, M. Tence, E. Sandre, and C. Colliex, Electron energy-loss spectroscopy on individual nanotubes, J. Electron Spectrosc. Relat. Phenom. 114–116, pp. 209-217 (2001).
    43. Y. Maniwa, M. Sato, K. Kume, M. E. Kozlov, and M. Tokumoto, Comparative NMR study of new carbon forms, Carbon 34 (10), pp. 1287-1291 (1996).
    44. M. Neuhaeuser, H. Hilgers, P. Joeris, R. White, and J. Windeln, Raman spectroscopy measurements of DC-magnetron sputtered carbon nitride (a-C:N) thin films for magnetic hard disk coatings , Diamond Relat. Mater. 9, pp. 1500-1505 (2000).
    45. F. Piazza, Hard-hydrogenated tetrahedral amorphous carbon films by distributed electron cyclotron resonance plasma, Int. J. Refract. Met. H. 24, pp. 39-48 (2006).
    46. J. Hao, T. Xu, and W. Liu, Preparation and characterization of hydrogenated carbon nitride films synthesized by dual DC-RF plasma system, Mater. Sci. and Eng. A 408, pp. 297-302 (2005).
    47. P. K. Chu and L. Li, Characterization of amorphous and nanocrystalline carbon films, Mater. Chem. Phys. 96, pp. 253-277 (2006).
    48. J. X. Liao, W. M. Liu, T. Xu, and Q. J. Xue, Characteristics of carbon films prepared by plasma-based ion implantation, Carbon 42, pp. 387-393 (2004).
    49. P. G. Schreier, All peaks aren't Gaussian, Pers. Eng. Instrum. News, pp. 51-54 (1991).
    50. SigmaPlot® 9.0, User’s Manual, pp.763-765.
    51. A. C. Ferrari and J. Robertson, Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon, Phys. Rev. B 64, 075414 (2001).
    52. M. Rybachuk and J. M. Bell, Growth of diamond-like carbon films using low energy ion beam sputter – bombardment deposition with Ar ions, J. Phys.: Conf. Ser. 100, 082009 (2008).
    53. K. W. R. Gilkes, S. Prawer, K. W. Nugent, J. Robertson, H. S. Sands, Y. Lifshitz, and X. Shi, Direct quantitative detection of the sp3 bonding in diamond-like carbon films using ultraviolet and visible Raman spectroscopy, J. Appl. Phys. 87 (10), pp. 7283-7289 (2000).
    54. Y. Mizokawa, T. Miyasato, S. Nakamura, K. M. Geib, and C. W. Wilmsen, The C KLL first-derivative x-ray photoelectron spectroscopy spectra as a fingerprint of the carbon state and the characterization of diamondlike carbon films, J. Vac. Sci. Technol. A 5 (5), pp. 2809-2813 (1987).
    55. J. F. Morar, F. J. Himpsel, G. Hollinger, J. L. Jordan, G. Hughes, and F. R. McFeely, C 1s excitation studies of diamond (111). I. Surface core levels, Phys. Rev. B 33 (2), pp. 1340-1345 (1986).
    56. P. Merel, M. Tabbal, M. Chaker, S. Moisa, and J. Margot, Direct evaluation of the sp3 content in diamond-like-carbon films by XPS, Appl. Sur. Sci. 136, pp. 105-110 (1998).
    57. M. Clin, O. Durand-Drouhin, A. Zeinert and J. C. Picot, A correlation between the microstructure and optical properties of hydrogenated amorphous carbon films prepared by RF magnetron sputtering, Diamond Relat. Mater. 8, pp. 527-531 (1999).
    58. B. Dischler and E. Bayer, Properties of amorphous hydrogenated carbon films from ArF laser-induced C2H2 photolysis, J. Appl. Phys. 68 (3), pp. 1237-1241 (1990).
    59. A. Savitzky and M. J. E. Golay, Smoothing and differentiation of data by simplified least squares procedures, Anal. Chem. 36 (8), pp. 1627-1639 (1964).
    60. S. Scaglione, R. Giorgi, J. C. Lascovich, and G. Ottaviani, Study of the sp2-to-sp3 ratio of dual-ion-beam sputtered hydrogenated amorphous carbon films, Surf. Coat. Tech. 47 (1-3), pp. 287-291 (1991).
    61. S. C. Seo and D. C. Ingram, Fine structures of valence-band, x-ray-excited Auger electron, and plasmon energy loss spectra of diamondlike carbon films obtained using x-ray photoelectron spectroscopy, J. Vac. Sci. Technol. A 15 (5), pp. 2579-2584 (1997).
    62. J. C. Lascovich and A. Santoni, Study of the occupied electronic density of states of carbon samples by using second derivative carbon KVV Auger spectra, Appl. Sur. Sci. 103, pp. 245-253 (1996).
    63. S. Waidmann, M. Knupfer, J. Fink, B. Kleinsorge and J. Robertson, Electronic structure studies of undoped and nitrogen-doped tetrahedral amorphous carbon using high-resolution electron energy-loss spectroscopy, J. Appl. Phys. 89 (7), pp. 3783-3792 (2001).
    64. R. Lossy, D. L. Pappas, R. A. Roy, J. P. Doyle, J. J. Cuomo, and J. Bruley, Properties of amorphous diamond films prepared by a filtered cathodic arc, J. Appt. Phys. 77 (9), pp. 4750-4756 (1995).
    65. N. Sakamoto, Y. Kogo, and T. Yasuno, Influence of compressive load on microstructure of microscaled DLC structures produced by FIB-CVD, J. Phys.: Conference Series 106, 012012 (2008).
    66. A. Heiman, I. Gouzman, S. H. Christiansen, H. P. Strunk, and A. Hoffman, Nano-diamond films deposited by direct current glow discharge assisted chemical vapor deposition, Diamond Relat. Mater. 9, pp. 866-871 (2000).
    67. M. Jaouen, G. Tourillon, J. Delafond, N. Junqua, and G. Hug, A NEXAFS characterization of ion-beam-assisted carbon-sputtered thin films, Diamond Relat. Mater. 4, pp. 200-206 (1995).
    68. N. Benchikh, F. Garrelie, C. Donnet, B. Bouchet-Fabre, K. Wolski, F. Rogemond, A. S. Loir, and J. L. Subtil, Nickel-incorporated amorphous carbon film deposited by femtosecond pulsed laser ablation, Thin Solid Films 482, pp. 287-292 (2005).
    69. A. L. Shen, Y. C. Weng, and T. C. Chou, Effect of the analytic regions on the quality trend of diamond-like/graphitic carbon ratios in Raman spectra, Z. Naturforsch. 65b, pp. 67-71 (2010).
    70. A. L. Shen, and T. C. Chou, Comparative analysis of trends resulting from the use of a multi-Gaussian curve fitting method applied to the visible Raman spectra of sputtered amorphous carbon, Mater. Trans, 52 (2), pp. 258-260 (2011).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE