| 研究生: |
曾豐祥 Tseng, Feng-Hsiang |
|---|---|
| 論文名稱: |
纖維素分解產氫之微生物社會結構與動態變化 The Community Structures and Dynamic Changes of the Cellulose-Degrading and Hydrogen-Producing Bacteria |
| 指導教授: |
曾怡禎
Tseng, I-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 末端限制片段長度多形性 、變性梯度凝膠電泳 、纖維素分解菌 、發酵產氫菌 |
| 外文關鍵詞: | DGGE, cellulolytic bacteria, fermentative hydrogen-producing bacteria, T-RFLP |
| 相關次數: | 點閱:148 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
基於取代傳統化石燃料的觀點,如何找到低成本與可靠的能源已經成為世界各國關注的重要議題。在這些替代性能源中,氫氣由於可從纖維素或是其他有機物質中製造,因此被視為是未來替代能源的主要來源。在本研究中,以傳統培養與分子生物技術的共同運用,偵測樣本中主要的發酵產氫菌與纖維素分解菌族群,並觀察樣本的微生物社會結構與動態變化。在發酵產氫菌的相關研究方面,從各種有機廢棄物中分離出四株產氫菌,並且研究了發酵反應槽中微生物族群的結構,發現反應槽中的菌種以”Clostridium chromoreductans”、Enterobacter asburiae以及Citrobacter freundii為主。在纖維素分解菌的研究方面,除了發現牛糞中的纖維素分解菌群與梭狀桿菌屬的第十四群(Clostridium cluster XIVa)有關之外,並觀察以不同纖維素基質馴養以及馴養時間對於微生物社會結構的影響。在工業廢水處理系統的研究中,除了分析系統的微生物社會組成之外,並以變性梯度凝膠電泳(DGGE)以及末端限制片段長度多形性(T-RFLP)分析,探討不同馴養基質對於微生物社會結構造成的影響。由分析結果顯示在這些樣本中主要的微生物族群大部分是屬於梭狀桿菌的第一群(Clostridium cluster I),而且在樣本的發酵產氫反應中扮演極為重要的角色。
Based on the replacement of fossil fuel, finding out the cheap and stable energy is the most important issue for the whole world now. Among all of the alternative energy,
hydrogen can be made of cellulose or other organic material, so has been considered as the major sources of alternative energy in future. Applied both the traditional culture and molecular biologic technique to detect the major hydrogen producing and cellulose degrading bacteria, and observe microbial community structures and dynamic changes in this study. In the fermentative hydrogen-producing bacteria study, four strains of the hydrogen-producing bacteria were isolated from different organic wastes, and microbial community structure in the fermentative reactor was studies and major populations
were ”Clostridium chromoreductans”, Enterobacter asburiae and Citrobacter freundii. In the cellulolytic bacteria study, besides to find the relationship between the cellulolytic bacteria population in the cow feces and the species of Clostridium cluster XIVa, the effects of the microbial community structure with different cellulosic materials enrichment and time of enrichment were observed. In the treatment system of industrial wastewater study, besides the analysis of microbial community structures, the effects of microbial community structures by using different enrichment medium were researched and discussed with DGGE and T-RFLP analysis. Analysis results show that most of the major microbial populations in these samples were belonged to Clostridium cluster I, and played such important roles in fermentative hydrogen-producing reaction of the samples.
白明德,曾豐祥,林徽鳴,黃承泰,鄭幸雄,曾怡禎。利用分子生物方法分析厭氧發酵反應槽之產氫菌。第三十屆廢水處理技術研討會。中華民國環境工程學會,2005。
施翠盈。本土性梭菌屬產氫菌株之分離及生理特性研究。碩士論文。國立成功大學生物學研究所,台南市,2002。
黃承泰。本土性梭菌屬纖維素分解菌株之分離及生理特性研究。國家科學委員會計畫期末報告。行政院國家科學委員會,2005。
簡青紅。利用傳統培養方法和分子生物方法探討厭氧生物產氫反應槽的微生物社會結構。碩士論文。國立成功大學生物學研究所,台南市,2003。
Adams, J. J., C. J. Jang, H. L. Spencer, M. Elliott and S. P. Smith. Expression, purification and structural characterization of the scaffoldin hydrophilic X-module
from the cellulosome of Clostridium thermocellum. Protein Expr Purif. 38 (2): 258-263. 2004.
Adams, C. J., M. C. Redmond and D. L. Valentine. Pure-culture growth of fermentative bacteria, facilitated by H2 removal: bioenergetics and H2 production. Appl Environ
Microbiol. 72 (2): 1079-1085. 2006.
Altschul, S. F., W. Gish, W. Miller, E. W. Myers and D. J. Lipman. Basic local alignment search tool. J Mol Biol. 215 (3): 403-410. 1990.
An, D. S., W. T. Im, H. C. Yang, M. S. Kang, K. K. Kim, L. Jin, M. K. Kim and S. T. Lee. Cellulomonas terrae sp. nov., a cellulolytic and xylanolytic bacterium isolated from soil. Int J Syst Evol Microbiol. 55 (Pt 4): 1705-1709. 2005.
Angenent, L. T., K. Karim, M. H. Al-Dahhan, B. A. Wrenn and R. Domiguez-Espinosa. Production of bioenergy and biochemicals from industrial and agricultural wastewater.
Trends Biotechnol. 22 (9): 477-485. 2004.
Arai, T., S. Matsuoka, H. Y. Cho, H. Yukawa, M. Inui, S. L. Wong and R. H. Doi. Synthesis of Clostridium cellulovorans minicellulosomes by intercellular
complementation. Proc Natl Acad Sci U S A. 104 (5): 1456-1460. 2007.
Asada, Y. and J. Miyake. Photobiological hydrogen production. J Biosci Bioeng. 88 (1): 1-6. 1999.
Bai, M. D., S. S. Cheng and Y. C. Chao. Effects of substrate components on hydrogen fermentation of multiple substrates. Water Sci Technol. 50 (8): 209-216. 2004.
Bakalidou, A., P. Kampfer, M. Berchtold, T. Kuhnigk, M. Wenzel and H. Konig. Cellulosimicrobium variabile sp. nov., a cellulolytic bacterium from the hindgut of the termite Mastotermes darwiniensis. Int J Syst Evol Microbiol. 52 (Pt 4): 1185-1192. 2002.
Bayer, E. A., J. P. Belaich, Y. Shoham and R. Lamed. The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol. 58:
521-554. 2004.
Bayer, E. A., H. Chanzy, R. Lamed and Y. Shoham. Cellulose, cellulases and cellulosomes. Curr Opin Struct Biol. 8 (5): 548-557. 1998.
Bayer, E. A., R. Kenig and R. Lamed. Adherence of Clostridium thermocellum to cellulose. J Bacteriol. 156 (2): 818-827. 1983.
Bayer, E. A., E. Setter and R. Lamed. Organization and distribution of the cellulosome in Clostridium thermocellum. J Bacteriol. 163 (2): 552-559. 1985.
Bibollet, X., N. Bosc, M. Matulova, A. M. Delort, G. Gaudet and E. Forano. 13C and 1H NMR study of cellulose metabolism by Fibrobacter succinogenes S85. J Biotechnol.
77 (1): 37-47. 2000.
Bera-Maillet, C., Y. Ribot and E. Forano. Fiber-degrading systems of different strains of the genus Fibrobacter. Appl Environ Microbiol. 70 (4): 2172-2179. 2004.
Brenner, D. J., A. C. McWhorter, A. Kai, A. G. Steigerwalt and J. J. Farmer, 3rd. Enterobacter asburiae sp. nov., a new species found in clinical specimens, and
reassignment of Erwinia dissolvens and Erwinia nimipressuralis to the genus Enterobacter as Enterobacter dissolvens comb. nov. and Enterobacter nimipressuralis
comb. nov. J Clin Microbiol. 23 (6): 1114-1120. 1986.
Burrell, P. C. The detection of environmental autoinducing peptide quorum-sensing genes from an uncultured Clostridium sp. in landfill leachate reactor biomass. Lett Appl Microbiol. 43 (4): 455-460. 2006.
Burrell, P. C., C. O'Sullivan, H. Song, W. P. Clarke and L. L. Blackall. Identification, detection, and spatial resolution of Clostridium populations responsible for cellulose degradation in a methanogenic landfill leachate bioreactor. Appl Environ Microbiol. 70 (4): 2414-2419. 2004.
Carpita, N. C. and D. M. Gibeaut. Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J. 3 (1): 1-30. 1993.
Chassard, C., B. Gaillard-Martinie and A. Bernalier-Donadille. Interaction between H2-producing and non-H2-producing cellulolytic bacteria from the human colon. FEMS Microbiol Lett. 242 (2): 339-344. 2005.
Cho, K. M., S. Y. Hong, S. M. Lee, Y. H. Kim, G. G. Kahng, H. Kim and H. D. Yun. A cel44C-man26A gene of endophytic Paenibacillus polymyxa GS01 has multi-glycosyl hydrolases in two catalytic domains. Appl Microbiol Biotechnol. 73 (3): 618-630. 2006.
Collins, M. D., P. A. Lawson, A. Willems, J. J. Cordoba, J. Fernandez-Garayzabal, P. Garcia, J. Cai, H. Hippe and J. A. Farrow. The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol. 44 (4): 812-826. 1994.
Cox, G., N. Moreno and J. Feijo. Second-harmonic imaging of plant polysaccharides. J Biomed Opt. 10 (2): 024013. 2005.
Das, D. and T. N. Veziroglu. Hydrogen production by biological processes: a survey of literature. International Journal of Hydrogen Energy. 26 (1): 13-28. 2001.
Demain, A. L., M. Newcomb and J. H. Wu. Cellulase, clostridia, and ethanol. Microbiol Mol Biol Rev. 69 (1): 124-154. 2005.
Denman, S. E. and C. S. McSweeney. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol Ecol. 58 (3): 572-582. 2006.
Desvaux, M. Clostridium cellulolyticum: model organism of mesophilic cellulolytic clostridia. FEMS Microbiol Rev. 29 (4): 741-764. 2005.
Desvaux, M. Unravelling carbon metabolism in anaerobic cellulolytic bacteria. Biotechnol Prog. 22 (5): 1229-1238. 2006.
Desvaux, M. and H. Petitdemange. Flux analysis of the metabolism of Clostridium cellulolyticum grown in cellulose-fed continuous culture on a chemically defined medium under ammonium-limited conditions. Appl Environ Microbiol. 67 (9): 3846-3851. 2001.
Desvaux, M. and H. Petitdemange. Sporulation of Clostridium cellulolyticum while grown in cellulose-batch and cellulose-fed continuous cultures on a mineral-salt
based medium. Microb Ecol. 43 (2): 271-279. 2002.
Devillard, E., D. B. Goodheart, S. K. Karnati, E. A. Bayer, R. Lamed, J. Miron, K. E. Nelson and M. Morrison. Ruminococcus albus 8 mutants defective in cellulose
degradation are deficient in two processive endocellulases, Cel48A and Cel9B, both of which possess a novel modular architecture. J Bacteriol. 186 (1): 136-145. 2004.
Ding, S. Y., E. A. Bayer, D. Steiner, Y. Shoham and R. Lamed. A novel cellulosomal scaffoldin from Acetivibrio cellulolyticus that contains a family 9 glycosyl hydrolase.
J Bacteriol. 181 (21): 6720-6729. 1999.
Distel, D. L., W. Morrill, N. MacLaren-Toussaint, D. Franks and J. Waterbury. Teredinibacter turnerae gen. nov., sp. nov., a dinitrogen-fixing, cellulolytic, endosymbiotic gamma-proteobacterium isolated from the gills of wood-boring molluscs (Bivalvia: Teredinidae). Int J Syst Evol Microbiol. 52 (Pt 6): 2261-2269. 2002.
Doi, R. H. and A. Kosugi. Cellulosomes: plant-cell-wall-degrading enzyme complexes. Nat Rev Microbiol. 2 (7): 541-551. 2004.
Doi, R. H., A. Kosugi, K. Murashima, Y. Tamaru and S. O. Han. Cellulosomes from mesophilic bacteria. J Bacteriol. 185 (20): 5907-5914. 2003.
Doi, R. H. and Y. Tamaru. The Clostridium cellulovorans cellulosome: an enzyme complex with plant cell wall degrading activity. Chem Rec. 1 (1): 24-32. 2001.
Fang, H. H., H. Liu and T. Zhang. Characterization of a hydrogen-producing granular sludge. Biotechnol Bioeng. 78 (1): 44-52. 2002.
Fang, H. H., T. Zhang and H. Liu. Microbial diversity of a mesophilic hydrogen-producing sludge. Appl Microbiol Biotechnol. 58 (1): 112-118. 2002.
Fardeau, M. L., B. Ollivier, J. L. Garcia and B. K. Patel. Transfer of thermobacteroides leptospartum and Clostridium thermolacticum as Clostridium stercorarium subsp. leptospartum subsp. thermolacticum subsp. nov., comb. nov. and C. stercorarium subsp. thermolacticum subsp. nov., comb. nov. Int J Syst Evol Microbiol. 51 (Pt 3): 1127-1131. 2001.
Feng, Y., C. J. Duan, H. Pang, X. C. Mo, C. F. Wu, Y. Yu, Y. L. Hu, J. Wei, J. L. Tang and J. X. Feng. Cloning and identification of novel cellulase genes from uncultured microorganisms in rabbit cecum and characterization of the expressed cellulases. Appl Microbiol Biotechnol. 2007.
Fierobe, H. P., F. Mingardon, A. Mechaly, A. Belaich, M. T. Rincon, S. Pages, R. Lamed, C. Tardif, J. P. Belaich and E. A. Bayer. Action of designer cellulosomes on homogeneous versus complex substrates: controlled incorporation of three distinct enzymes into a defined trifunctional scaffoldin. J Biol Chem. 280 (16): 16325-16334. 2005.
Garnova, E. S., T. N. Zhilina, T. P. Tourova, N. A. Kostrikina and G. A. Zavarzin. Anaerobic, alkaliphilic, saccharolytic bacterium Alkalibacter saccharofermentans gen. nov., sp. nov. from a soda lake in the Transbaikal region of Russia. Extremophiles. 8 (4): 309-316. 2004.
Garnova, E. S., T. N. Zhilina, T. P. Tourova and A. M. Lysenko. Anoxynatronum sibiricum gen.nov., sp.nov. alkaliphilic saccharolytic anaerobe from cellulolytic community of Nizhnee Beloe (Transbaikal region). Extremophiles. 7 (3): 213-220. 2003.
Guedon, E., M. Desvaux and H. Petitdemange. Improvement of cellulolytic properties of Clostridium cellulolyticum by metabolic engineering. Appl Environ Microbiol. 68 (1): 53-58. 2002.
Hallenbeck, P. C. Fundamentals of the fermentative production of hydrogen. Water Sci Technol. 52 (1-2): 21-29. 2005.
Han, S. O., H. Yukawa, M. Inui and R. H. Doi. Effect of carbon source on the cellulosomal subpopulations of Clostridium cellulovorans. Microbiology. 151 (Pt 5): 1491-1497. 2005.
Han, S. O., H. Yukawa, M. Inui and R. H. Doi. Regulation of expression of cellulosomal cellulase and hemicellulase genes in Clostridium cellulovorans. J Bacteriol. 185 (20):
6067-6075. 2003.
Hoffmann, H., S. Stindl, W. Ludwig, A. Stumpf, A. Mehlen, J. Heesemann, D. Monget, K. H. Schleifer and A. Roggenkamp. Reassignment of enterobacter dissolvens to
Enterobacter cloacae as E. cloacae subspecies dissolvens comb. nov. and emended description of Enterobacter asburiae and Enterobacter kobei. Syst Appl Microbiol. 28 (3): 196-205. 2005.
Holmes, P. and M. R. Freischel. H2-producing bacteria in digesting sewage sludge isolated on simmple, defined media. Appl Environ Microbiol. 36 (2): 394-395. 1978.
Islam, R., N. Cicek, R. Sparling and D. Levin. Effect of substrate loading on hydrogen production during anaerobic fermentation by Clostridium thermocellum 27405. Appl Microbiol Biotechnol. 72 (3): 576-583. 2006.
Ito, T., Y. Nakashimada, K. Senba, T. Matsui and N. Nishio. Hydrogen and ethanol production from glycerol-containing wastes discharged after biodiesel manufacturing
process. J Biosci Bioeng. 100 (3): 260-265. 2005.
Jeong, H., H. Yi, Y. Sekiguchi, M. Muramatsu, Y. Kamagata and J. Chun. Clostridium jejuense sp. nov., isolated from soil. Int J Syst Evol Microbiol. 54 (Pt 5): 1465-1468. 2004.
Jindou, S., I. Borovok, M. T. Rincon, H. J. Flint, D. A. Antonopoulos, M. E. Berg, B. A. White, E. A. Bayer and R. Lamed. Conservation and divergence in cellulosome architecture between two strains of Ruminococcus flavefaciens. J Bacteriol. 188 (22): 7971-7976. 2006.
Jindou, S., Q. Xu, R. Kenig, M. Shulman, Y. Shoham, E. A. Bayer and R. Lamed. Novel architecture of family-9 glycoside hydrolases identified in cellulosomal enzymes of
Acetivibrio cellulolyticus and Clostridium thermocellum. FEMS Microbiol Lett. 254 (2): 308-316. 2006.
Julliand, V., A. de Vaux, L. Millet and G. Fonty. Identification of Ruminococcus flavefaciens as the predominant cellulolytic bacterial species of the equine cecum. Appl Environ Microbiol. 65 (8): 3738-3741. 1999.
Jung, G. Y., J. R. Kim, J.-Y. Park and S. Park. Hydrogen production by a new chemoheterotrophic bacterium Citrobacter sp. Y19. International Journal of Hydrogen Energy. 27 (6): 601-610. 2002.
Kakiuchi, M., A. Isui, K. Suzuki, T. Fujino, E. Fujino, T. Kimura, S. Karita, K. Sakka and K. Ohmiya. Cloning and DNA sequencing of the genes encoding Clostridium josui scaffolding protein CipA and cellulase CelD and identification of their gene products as major components of the cellulosome. J Bacteriol. 180 (16): 4303-4308. 1998.
Kataeva, I. A., J. M. Brewer, V. N. Uversky and L. G. Ljungdahl. Domain coupling in a multimodular cellobiohydrolase CbhA from Clostridium thermocellum. FEBS Lett. 579 (20): 4367-4373. 2005.
Kato, S., S. Haruta, Z. J. Cui, M. Ishii and Y. Igarashi. Effective cellulose degradation by a mixed-culture system composed of a cellulolytic Clostridium and aerobic non-cellulolytic bacteria. FEMS Microbiol Ecol. 51 (1): 133-142. 2004.
Kato, S., S. Haruta, Z. J. Cui, M. Ishii and Y. Igarashi. Stable coexistence of five bacterial strains as a cellulose-degrading community. Appl Environ Microbiol. 71 (11): 7099-7106. 2005.
Kato, S., S. Haruta, Z. J. Cui, M. Ishii, A. Yokota and Y. Igarashi. Clostridium straminisolvens sp. nov., a moderately thermophilic, aerotolerant and cellulolytic bacterium isolated from a cellulose-degrading bacterial community. Int J Syst Evol Microbiol. 54 (Pt 6): 2043-2047. 2004.
Kawagoshi, Y., N. Hino, A. Fujimoto, M. Nakao, Y. Fujita, S. Sugimura and K. Furukawa. Effect of inoculum conditioning on hydrogen fermentation and pH effect on bacterial community relevant to hydrogen production. J Biosci Bioeng. 100 (5): 524-530. 2005.
Keis, S., R. Shaheen and D. T. Jones. Emended descriptions of Clostridium acetobutylicum and Clostridium beijerinckii, and descriptions of Clostridium saccharoperbutylacetonicum sp. nov. and Clostridium saccharobutylicum sp. nov. Int J Syst Evol Microbiol. 51 (Pt 6): 2095-2103. 2001.
Ko, C. H., W. L. Chen, C. H. Tsai, W. N. Jane, C. C. Liu and J. Tu. Paenibacillus campinasensis BL11: A wood material-utilizing bacterial strain isolated from black
liquor. Bioresour Technol. 2006.
Kontturi, E., T. Tammelin and M. Osterberg. Cellulose--model films and the fundamental approach. Chem Soc Rev. 35 (12): 1287-1304. 2006.
Kosugi, A., K. Murashima and R. H. Doi. Characterization of xylanolytic enzymes in Clostridium cellulovorans: expression of xylanase activity dependent on growth
substrates. J Bacteriol. 183 (24): 7037-7043. 2001.
Koukiekolo, R., H. Y. Cho, A. Kosugi, M. Inui, H. Yukawa and R. H. Doi. Degradation of corn fiber by Clostridium cellulovorans cellulases and hemicellulases and contribution of scaffolding protein CbpA. Appl Environ Microbiol. 71 (7): 3504-3511. 2005.
Krasna, A. I. Regulation of hydrogenase activity in enterobacteria. J Bacteriol. 144 (3): 1094-1097. 1980.
Lamed, R., E. Setter and E. A. Bayer. Characterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellum. J Bacteriol. 156 (2): 828-836. 1983.
Lay, J. J., C. J. Tsai, C. C. Huang, J. J. Chang, C. H. Chou, K. S. Fan, J. I. Chang and P. C. Hsu. Influences of pH and hydraulic retention time on anaerobes converting beer processing wastes into hydrogen. Water Sci Technol. 52 (1-2): 123-129. 2005.
Li, X. Streptomyces cellulolyticus sp. nov., a new cellulolytic member of the genus Streptomyces. Int J Syst Bacteriol. 47 (2): 443-445. 1997.
Liu, D., D. Liu, R. J. Zeng and I. Angelidaki. Hydrogen and methane production from household solid waste in the two-stage fermentation process. Water Res. 40 (11): 2230-2236. 2006.
Liu, G. and J. Shen. Effects of culture and medium conditions on hydrogen production from starch using anaerobic bacteria. J Biosci Bioeng. 98 (4): 251-256. 2004.
Liu, H. and H. H. Fang. Hydrogen production from wastewater by acidogenic granular sludge. Water Sci Technol. 47 (1): 153-158. 2003.
Lopez-Contreras, A. M., A. A. Martens, N. Szijarto, H. Mooibroek, P. A. Claassen, J. van der Oost and W. M. de Vos. Production by Clostridium acetobutylicum ATCC 824 of
CelG, a cellulosomal glycoside hydrolase belonging to family 9. Appl Environ Microbiol. 69 (2): 869-877. 2003.
Ludwig, W., O. Strunk, R. Westram, L. Richter, H. Meier, Yadhukumar, A. Buchner, T. Lai, S. Steppi, G. Jobb, W. Forster, I. Brettske, S. Gerber, A. W. Ginhart, O. Gross, S. Grumann, S. Hermann, R. Jost, A. Konig, T. Liss, R. Lussmann, M. May, B. Nonhoff, B. Reichel, R. Strehlow, A. Stamatakis, N. Stuckmann, A. Vilbig, M. Lenke, T. Ludwig, A. Bode and K. H. Schleifer. ARB: a software environment for sequence data. Nucleic Acids Res. 32 (4): 1363-1371. 2004.
Lynd, L. R., W. H. van Zyl, J. E. McBride and M. Laser. Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol. 16 (5): 577-583. 2005.
Lynd, L. R., P. J. Weimer, W. H. van Zyl and I. S. Pretorius. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev. 66 (3): 506-577.
2002.
Lynd, L. R. and Y. Zhang. Quantitative determination of cellulase concentration as distinct from cell concentration in studies of microbial cellulose utilization: analytical framework and methodological approach. Biotechnol Bioeng. 77 (4): 467-475. 2002.
Maamar, H., L. Abdou, C. Boileau, O. Valette and C. Tardif. Transcriptional analysis of the cip-cel gene cluster from Clostridium cellulolyticum. J Bacteriol. 188 (7): 2614-2624. 2006.
Maamar, H., P. de Philip, J. P. Belaich and C. Tardif. ISCce1 and ISCce2, two novel insertion sequences in Clostridium cellulolyticum. J Bacteriol. 185 (3): 714-725.
2003.
Maamar, H., O. Valette, H. P. Fierobe, A. Belaich, J. P. Belaich and C. Tardif. Cellulolysis is severely affected in Clostridium cellulolyticum strain cipCMut1. Mol Microbiol. 51 (2): 589-598. 2004.
Maidak, B. L., J. R. Cole, T. G. Lilburn, C. T. Parker, Jr., P. R. Saxman, R. J. Farris, G. M. Garrity, G. J. Olsen, T. M. Schmidt and J. M. Tiedje. The RDP-II (Ribosomal Database Project). Nucleic Acids Res. 29 (1): 173-174. 2001.
Mechichi, T., M. Labat, J. L. Garcia, P. Thomas and B. K. Patel. Characterization of a new xylanolytic bacterium, Clostridium xylanovorans sp. nov. Syst Appl Microbiol.
22 (3): 366-371. 1999.
Mergaert, J., D. Lednicka, J. Goris, M. C. Cnockaert, P. De Vos and J. Swings. Taxonomic study of Cellvibrio strains and description of Cellvibrio ostraviensis sp.
nov., Cellvibrio fibrivorans sp. nov. and Cellvibrio gandavensis sp. nov. Int J Syst Evol Microbiol. 53 (Pt 2): 465-471. 2003.
Mielenz, J. R. Ethanol production from biomass: technology and commercialization status. Curr Opin Microbiol. 4 (3): 324-329. 2001.
Miron, J., D. Ben-Ghedalia and M. Morrison. Invited review: adhesion mechanisms of rumen cellulolytic bacteria. J Dairy Sci. 84 (6): 1294-1309. 2001.
Monserrate, E., S. B. Leschine and E. Canale-Parola. Clostridium hungatei sp. nov., a mesophilic, N2-fixing cellulolytic bacterium isolated from soil. Int J Syst Evol
Microbiol. 51 (Pt 1): 123-132. 2001.
Morimoto, K., T. Kimura, K. Sakka and K. Ohmiya. Overexpression of a hydrogenase gene in Clostridium paraputrificum to enhance hydrogen gas production. FEMS Microbiol Lett. 246 (2): 229-234. 2005.
Morrison, M. and J. Miron. Adhesion to cellulose by Ruminococcus albus: a combination of cellulosomes and Pil-proteins? FEMS Microbiol Lett. 185 (2): 109-115. 2000.
Murashima, K., A. Kosugi and R. H. Doi. Site-directed mutagenesis and expression of the soluble form of the family IIIa cellulose binding domain from the cellulosomal
scaffolding protein of Clostridium cellulovorans. J Bacteriol. 187 (20): 7146-7149. 2005.
Nandi, R. and S. Sengupta. Microbial production of hydrogen: an overview. Crit Rev Microbiol. 24 (1): 61-84. 1998.
Nath, K. and D. Das. Improvement of fermentative hydrogen production: various approaches. Appl Microbiol Biotechnol. 65 (5): 520-529. 2004.
Niessen, J., U. Schroder, F. Harnisch and F. Scholz. Gaining electricity from in situ oxidation of hydrogen produced by fermentative cellulose degradation. Lett Appl
Microbiol. 41 (3): 286-290. 2005.
Noach, I., F. Frolow, H. Jakoby, S. Rosenheck, L. W. Shimon, R. Lamed and E. A. Bayer. Crystal structure of a type-II cohesin module from the Bacteroides cellulosolvens
cellulosome reveals novel and distinctive secondary structural elements. J Mol Biol. 348 (1): 1-12. 2005.
Noike, T., I. B. Ko, S. Yokoyama, Y. Kohno and Y. Y. Li. Continuous hydrogen production from organic waste. Water Sci Technol. 52 (1-2): 145-151. 2005.
Ogino, H., T. Miura, K. Ishimi, M. Seki and H. Yoshida. Hydrogen production from glucose by anaerobes. Biotechnol Prog. 21 (6): 1786-1788. 2005.
Ohara, H., S. Karita, T. Kimura, K. Sakka and K. Ohmiya. Characterization of the cellulolytic complex (cellulosome) from Ruminococcus albus. Biosci Biotechnol Biochem. 64 (2): 254-260. 2000.
Ozkan, M., S. G. Desai, Y. Zhang, D. M. Stevenson, J. Beane, E. A. White, M. L. Guerinot and L. R. Lynd. Characterization of 13 newly isolated strains of anaerobic,
cellulolytic, thermophilic bacteria. J Ind Microbiol Biotechnol. 27 (5): 275-280. 2001.
Park, J. S., Y. Matano and R. H. Doi. Cohesin-dockerin interactions of cellulosomal subunits of Clostridium cellulovorans. J Bacteriol. 183 (18): 5431-5435. 2001.
Pason, P., K. L. Kyu and K. Ratanakhanokchai. Paenibacillus curdlanolyticus strain B-6 xylanolytic-cellulolytic enzyme system that degrades insoluble polysaccharides. Appl Environ Microbiol. 72 (4): 2483-2490. 2006.
Perret, S., A. Belaich, H. P. Fierobe, J. P. Belaich and C. Tardif. Towards designer cellulosomes in Clostridia: mannanase enrichment of the cellulosomes produced by Clostridium cellulolyticum. J Bacteriol. 186 (19): 6544-6552. 2004.
Perret, S., L. Casalot, H. P. Fierobe, C. Tardif, F. Sabathe, J. P. Belaich and A. Belaich. Production of heterologous and chimeric scaffoldins by Clostridium acetobutylicum ATCC 824. J Bacteriol. 186 (1): 253-257. 2004.
Perret, S., H. Maamar, J. P. Belaich and C. Tardif. Use of antisense RNA to modify the composition of cellulosomes produced by Clostridium cellulolyticum. Mol Microbiol. 51 (2): 599-607. 2004.
Ponpium, P., K. Ratanakhanokchai and K. L. Kyu. Isolation and properties of a cellulosome-type multienzyme complex of the thermophilic Bacteroides sp. strain P-1. Enzyme Microb Technol. 26 (5-6): 459-465. 2000.
Prince, R. C. and H. S. Kheshgi. The photobiological production of hydrogen: potential efficiency and effectiveness as a renewable fuel. Crit Rev Microbiol. 31 (1): 19-31. 2005.
Ravagnani, A., K. C. Jennert, E. Steiner, R. Grunberg, J. R. Jefferies, S. R. Wilkinson, D. I. Young, E. C. Tidswell, D. P. Brown, P. Youngman, J. G. Morris and M. Young. Spo0A directly controls the switch from acid to solvent production in solvent-forming clostridia. Mol Microbiol. 37 (5): 1172-1185. 2000.
Rincon, M. T., T. Cepeljnik, J. C. Martin, R. Lamed, Y. Barak, E. A. Bayer and H. J. Flint. Unconventional mode of attachment of the Ruminococcus flavefaciens cellulosome to
the cell surface. J Bacteriol. 187 (22): 7569-7578. 2005.
Rincon, M. T., J. C. Martin, V. Aurilia, S. I. McCrae, G. J. Rucklidge, M. D. Reid, E. A. Bayer, R. Lamed and H. J. Flint. ScaC, an adaptor protein carrying a novel cohesin
that expands the dockerin-binding repertoire of the Ruminococcus flavefaciens 17 cellulosome. J Bacteriol. 186 (9): 2576-2585. 2004.
Rivas, R., P. Garcia-Fraile, P. F. Mateos, E. Martinez-Molina and E. Velazquez. Paenibacillus cellulosilyticus sp. nov., a cellulolytic and xylanolytic bacterium
isolated from the bract phyllosphere of Phoenix dactylifera. Int J Syst Evol Microbiol. 56 (Pt 12): 2777-2781. 2006.
Rivas, R., P. F. Mateos, E. Martinez-Molina and E. Velazquez. Paenibacillus xylanilyticus sp. nov., an airborne xylanolytic bacterium. Int J Syst Evol Microbiol. 55 (Pt 1): 405-408. 2005.
Rivas, R., M. E. Trujillo, P. F. Mateos, E. Martinez-Molina and E. Velazquez. Cellulomonas xylanilytica sp. nov., a cellulolytic and xylanolytic bacterium isolated
from a decayed elm tree. Int J Syst Evol Microbiol. 54 (Pt 2): 533-536. 2004.
Roux, V. and D. Raoult. Paenibacillus massiliensis sp. nov., Paenibacillus sanguinis sp. nov. and Paenibacillus timonensis sp. nov., isolated from blood cultures. Int J Syst Evol Microbiol. 54 (Pt 4): 1049-1054. 2004.
Sanchez, M. M., D. Fritze, A. Blanco, C. Sproer, B. J. Tindall, P. Schumann, R. M. Kroppenstedt, P. Diaz and F. I. Pastor. Paenibacillus barcinonensis sp. nov., a
xylanase-producing bacterium isolated from a rice field in the Ebro River delta. Int J Syst Evol Microbiol. 55 (Pt 2): 935-939. 2005.
Sanchez, M. M., D. C. Irwin, F. I. Pastor, D. B. Wilson and P. Diaz. Synergistic activity of Paenibacillus sp. BP-23 cellobiohydrolase Cel48C in association with the contiguous endoglucanase Cel9B and with endo- or exo-acting glucanases from Thermobifida fusca. Biotechnol Bioeng. 87 (2): 161-169. 2004.
Sanchez, M. M., F. I. Pastor and P. Diaz. Exo-mode of action of cellobiohydrolase Cel48C from Paenibacillus sp. BP-23. A unique type of cellulase among Bacillales. Eur J Biochem. 270 (13): 2913-2919. 2003.
Schmitt-Wagner, D., M. W. Friedrich, B. Wagner and A. Brune. Phylogenetic diversity, abundance, and axial distribution of bacteria in the intestinal tract of two soil-feeding termites (Cubitermes spp.). Appl Environ Microbiol. 69 (10): 6007-6017. 2003.
Semedo, L. T., R. C. Gomes, A. A. Linhares, G. F. Duarte, R. P. Nascimento, A. S. Rosado, M. Margis-Pinheiro, R. Margis, K. R. Silva, C. S. Alviano, G. P. Manfio, R.
M. Soares, L. F. Linhares and R. R. Coelho. Streptomyces drozdowiczii sp. nov., a novel cellulolytic streptomycete from soil in Brazil. Int J Syst Evol Microbiol. 54 (Pt 4): 1323-1328. 2004.
Shin, J.-H., J. Hyun Yoon, A. Eun Kyoung, M.-S. Kim, S. Jun Sim and T. H. Park. Fermentative hydrogen production by the newly isolated Enterobacter asburiae SNU-1. International Journal of Hydrogen Energy. 32 (2): 192-199. 2007.
Shinkai, T. and Y. Kobayashi. Localization of ruminal cellulolytic bacteria on plant fibrous materials as determined by fluorescence in situ hybridization and real-time PCR. Appl Environ Microbiol. 73 (5): 1646-1652. 2007.
Shiratori, H., H. Ikeno, S. Ayame, N. Kataoka, A. Miya, K. Hosono, T. Beppu and K. Ueda. Isolation and characterization of a new Clostridium sp. that performs effective cellulosic waste digestion in a thermophilic methanogenic bioreactor. Appl Environ Microbiol. 72 (5): 3702-3709. 2006.
Sindhu, I., S. Chhibber, N. Capalash and P. Sharma. Production of cellulase-free xylanase from Bacillus megaterium by solid state fermentation for biobleaching of pulp. Curr Microbiol. 53 (2): 167-172. 2006.
Stephanopoulos, G. Challenges in engineering microbes for biofuels production. Science. 315 (5813): 801-804. 2007.
Studier, J. A. and K. J. Keppler. A note on the neighbor-joining algorithm of Saitou and Nei. Mol Biol Evol. 5 (6): 729-731. 1988.
Takahata, Y., M. Nishijima, T. Hoaki and T. Maruyama. Thermotoga petrophila sp. nov. and Thermotoga naphthophila sp. nov., two hyperthermophilic bacteria from the Kubiki oil reservoir in Niigata, Japan. Int J Syst Evol Microbiol. 51 (Pt 5): 1901-1909. 2001.
Tamaru, Y., S. Karita, A. Ibrahim, H. Chan and R. H. Doi. A large gene cluster for the Clostridium cellulovorans cellulosome. J Bacteriol. 182 (20): 5906-5910. 2000.
Tardif, C., H. Maamar, M. Balfin and J. P. Belaich. Electrotransformation studies in Clostridium cellulolyticum. J Ind Microbiol Biotechnol. 27 (5): 271-274. 2001.
Taylor, L. E., 2nd, B. Henrissat, P. M. Coutinho, N. A. Ekborg, S. W. Hutcheson and R. M. Weiner. Complete cellulase system in the marine bacterium Saccharophagus
degradans strain 2-40T. J Bacteriol. 188 (11): 3849-3861. 2006.
Ueno, Y., S. Haruta, M. Ishii and Y. Igarashi. Microbial community in anaerobic hydrogen-producing microflora enriched from sludge compost. Appl Microbiol Biotechnol. 57 (4): 555-562. 2001.
Ueno, Y., D. Sasaki, H. Fukui, S. Haruta, M. Ishii and Y. Igarashi. Changes in bacterial community during fermentative hydrogen and acid production from organic waste by thermophilic anaerobic microflora. J Appl Microbiol. 101 (2): 331-343. 2006.
Uz, I. and A. V. Ogram. Cellulolytic and fermentative guilds in eutrophic soils of the Florida Everglades. FEMS Microbiol Ecol. 57 (3): 396-408. 2006.
Van Dyke, M. I. and A. J. McCarthy. Molecular biological detection and characterization of Clostridium populations in municipal landfill sites. Appl Environ Microbiol. 68 (4):
2049-2053. 2002.
Varel, V. H., R. S. Tanner and C. R. Woese. Clostridium herbivorans sp. nov., a cellulolytic anaerobe from the pig intestine. Int J Syst Bacteriol. 45 (3): 490-494.
1995.
Villena, G. K. and M. Gutierrez-Correa. Production of cellulase by Aspergillus niger biofilms developed on polyester cloth. Lett Appl Microbiol. 43 (3): 262-268. 2006.
Warnick, T. A., B. A. Methe and S. B. Leschine. Clostridium phytofermentans sp. nov., a cellulolytic mesophile from forest soil. Int J Syst Evol Microbiol. 52 (Pt 4): 1155-1160. 2002.
Wenzel, M., I. Schonig, M. Berchtold, P. Kampfer and H. Konig. Aerobic and facultatively anaerobic cellulolytic bacteria from the gut of the termite Zootermopsis
angusticollis. J Appl Microbiol. 92 (1): 32-40. 2002.
Woese, C. R. Bacterial evolution. Microbiol Rev. 51 (2): 221-271. 1987.
Wood, T. M. Properties of cellulolytic enzyme systems. Biochem Soc Trans. 13 (2): 407-410. 1985.
Wu, S. Y., C. H. Hung, C. N. Lin, H. W. Chen, A. S. Lee and J. S. Chang. Fermentative hydrogen production and bacterial community structure in high-rate anaerobic
bioreactors containing silicone-immobilized and self- flocculated sludge. Biotechnol
Bioeng. 93 (5): 934-946. 2006.
Xu, Q., E. A. Bayer, M. Goldman, R. Kenig, Y. Shoham and R. Lamed. Architecture of the Bacteroides cellulosolvens cellulosome: description of a cell surface-anchoring
scaffoldin and a family 48 cellulase. J Bacteriol. 186 (4): 968-977. 2004.
Xu, Q., W. Gao, S. Y. Ding, R. Kenig, Y. Shoham, E. A. Bayer and R. Lamed. The cellulosome system of Acetivibrio cellulolyticus includes a novel type of adaptor protein and a cell surface anchoring protein. J Bacteriol. 185 (15): 4548-4557. 2003.
Yang, C. K. and S. S. Yang. Microbial ecology of soils surrounding nuclear and thermal power plants in Taiwan. Environ Int. 26 (5-6): 315-322. 2001.
Yoda, K., A. Toyoda, Y. Mukoyama, Y. Nakamura and H. Minato. Cloning, sequencing, and expression of a Eubacterium cellulosolvens 5 gene encoding an endoglucanase
(Cel5A) with novel carbohydrate-binding modules, and properties of Cel5A. Appl Environ Microbiol. 71 (10): 5787-5793. 2005.
Yokoyama, H., M. Waki, N. Moriya, T. Yasuda, Y. Tanaka and K. Haga. Effect of fermentation temperature on hydrogen production from cow waste slurry by using anaerobic microflora within the slurry. Appl Microbiol Biotechnol. 74 (2): 474-483. 2007.
Zaldivar, J., J. Nielsen and L. Olsson. Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol. 56 (1-2): 17-34. 2001.
Zhang, Y. H. and L. R. Lynd. Cellulose utilization by Clostridium thermocellum: bioenergetics and hydrolysis product assimilation. Proc Natl Acad Sci U S A. 102 (20): 7321-7325. 2005.
Zhang, Y. H. and L. R. Lynd. Regulation of cellulase synthesis in batch and continuous cultures of Clostridium thermocellum. J Bacteriol. 187 (1): 99-106. 2005.
Zverlov, V. V., J. Kellermann and W. H. Schwarz. Functional subgenomics of Clostridium thermocellum cellulosomal genes: identification of the major catalytic components in the extracellular complex and detection of three new enzymes. Proteomics. 5 (14): 3646-3653. 2005.