簡易檢索 / 詳目顯示

研究生: 黃湘琦
Huang, Hsiang-Chee
論文名稱: 熱原性鏈球菌外毒素B與其突變株C47S的結構與功能關係之探討
Structure and Function Relationships of Wild-Type and C47S Mutant of Streptococcal Pyrogenic Exotoxin B
指導教授: 莊偉哲
Chuang, Woei-Jer
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學研究所
Department of Biochemistry
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 88
中文關鍵詞: 熱原性鏈球菌外毒素B
外文關鍵詞: SPE B
相關次數: 點閱:59下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   熱原性鏈球菌外毒素B (Streptococcal pyrogenic exotoxin B 簡稱SPE B),它是由化膿性鏈球菌(Streptococcus pyogenes)所產生的一種細胞外毒素,根據催化區分析將它歸屬於半光胺酸蛋白?的一種。SPE B會經過自動催化(autocatalysis)或蛋白?分解(proteolysis)作用,將40-kDa的?原(zymogen form SPE B簡稱zSPE B或ProSPE B)去掉118個胺基酸的propeptide變成28-kDa活化態的蛋白?(簡稱mSPE B)。SPE B在In vitro下可以分解細胞間質的主成份fibronectin及vitronectin、作用於interleukin-1β (IL-1β) precursor並產生活化型的IL-1β而加重發炎反應、誘導吞噬細胞進行apoptosis及降低其吞噬能力等,故SPE B被認為是化膿性鏈球菌的重要毒性因子而成為極具吸引力的治療標的。為瞭解SPE B結構與功能間的相互關係,我們將SPE B和其突變蛋白分別送入大腸桿菌系統誘發蛋白表現,經過Ni+2-chelate affinity 管柱純化。SPE B在純化過程中會自動轉換成28-kDa的活化態形式,所以在純化的過程我們加入一些半光胺酸蛋白?不可逆的抑制劑去抑制SPE B的降解,這些抑制劑包含E-64,E-64c,IAA與IAAm這四者。在我們的研究中,我們利用同位素標定蛋白(2H,13C,15N triple- and 13C,15N double-labeled samples)完成了96%骨架的判定; 此外利用D2O交換的實驗,推測野生株的SPE B與突變株C47S本身的二級、三級構造類似。進一步比較SPE B/抑制劑複合蛋白與C47S突變蛋白的化學位移的差異,我們發現有六區有可能與抑制劑結合有關,分別是Y15-G18, T45-A51, S135-S141, G188-F197, W212-W214, and A231-A246。比較X-ray所解出的42-kDa的C47S,我們發現X-ray沒有看見的C-terminal loop(S230-N242),本身在抑制劑結合後會發生移動的現象,這似乎暗示著C-terminal loop本身可以當做一個閘門去調節基質進入活性區域內。利用NMR的分析,我們使用的抑制劑,如E-64與IAA,本身帶有羧基,帶負電,它會去打斷D219 NH 和T234 NH , 與W214 H 和 G239 NH的作用,造成loop(S230~N242)的移動。根據SPE B/抑制劑複合蛋白之間的化學位移差異,我們假設E-64有可能結合到SPE B的位置。其中E64中的P2 ,它會與SPE B上V189,F197,W212與W214所形成的疏水性區域有凡得瓦爾力作用; 此外E64的P3會與SPE B的D130 與S137有氫鍵作用。目前仍在進行NMR docking來計算我們的結構。本研究的結果將可做為設計屬於SPE B專一性藥物 (rational drug design)的基礎。

      Streptococcal pyrogenic exotoxin B (SPE B) is an extracellular cysteine protease produced by the pathogenic bacterium Streptococcus pyogene. SPE B is initially expressed as a 40-kDa zymogen, and subsequently converted to 28-kDa (253 residues) active protease by autocatalysis or proteolysis. Mature SPE B was shown to participate in the dissemination, colonization, and invasion of bacteria and the inhibition of wound healing. Many reports suggest that SPE B serves as an important virulence factor in streptococcal infections, making it an attractive therapeutic target. In order to investigate the structure and function relationships of SPE B, we expressed SPE B and its inactive C47S mutant in E. coli and purified them to homogeneity. Since mature SPE B can be degraded by auto-proteolysis, we studied NMR structures of 28-kDa active SPE B in the presence of irreversible cysteine protease inhibitors, including L-trans-epoxysuccinyl-leucylamide-(4-guanido)-butane (E-64), L-trans-epoxysuccinly-leucylamido-(3-methyl)-butane(E-64c), iodoacetate (IAA), and iodoacetamide (IAAm). In this study we have determined the backbone 1H, 13C, and 15N resonances for the 28-kDa SPE B/E-64 complex and deduced its secondary structures from multidimensional NMR spectroscopy. Based on deuterium exchange experiment and NMR analyses, we found that 28-kDa mature SPE B/inhibitor complexes and its inactive C47S mutant have the same tertiary fold. Comparisons of the chemical shift differences between the SPE B/inhibitor complex and its C47S mutant showed that six regions, including Y15-G18, T45-A51, S135-S141, G188-F197, W212-W214, and A231-A246, are involved in the binding of inhibitors to SPE B. In addition, we found that the carboxylic acid group of the inhibitors E-64 and IAA disrupted the interactions of H of D219 and NH of T234, and H of W214 and NH of G239, resulting in the movement of the S230-N242 loop. NMR analyses reveals that the undefined S230-N242 C-terminal loop in the X-ray structure is involved in loop movement upon the inhibitor binding and may also function as a gate controlling access of the substrate to the active site. Our analyses of the chemical shift differences between the SPE B/Inhibitor complexes and C47S mutant suggest that the P2 site fits into a hydrophobic pocket formed by the V189, F197, W212, and W214 residues, and the P3 site is hydrogen bonded to the D130 and S137 residues. NMR Docking of the inhibitor E-64 into the X-ray structure of SPE B is ongoing. 3D structures of the SPE B/inhibitors complexes will be used for future rational drug design, and the resulting drugs will be applied for the clinical treatment of virulent GAS infection.

    中文摘要 I 英文摘要 III 誌謝 V 目錄 VI 圖目錄 VIII 表目錄 XI 縮寫檢索表 XII 儀器 XIII 第一章 緒論 1-1 化膿性鏈球菌之介紹 1 1-2 熱原性鏈球菌外毒素B (SPE B) 之介紹 4 1-3 研究動機及內容簡介 8 第二章 材料與方法 2-1 SPE B及其突變蛋白的製備 10 2-1-1 42-kDa Wild-Type ProSPE B及ProG239D的表現與純化 10 2-1-2 15N, 13C, 2H-標定SPE B及其突變蛋白的製備 15 2-1-3 42-kDa Selectively 15N-labeled Amino Acids蛋白的製備 15 2-1-4 28-kDa mSPE B/Inhibitor及G239D/Inhibitor突變蛋白的製備 18 2-2 SPE B重組蛋白之特性分析 2-2-1 質譜儀測定重組蛋白分子量 19 2-2-2 Pro SPE B 自動催化反應之分析 20 2-3 利用NMR測定SPE B及其突變蛋白的二維與三維共振光譜 2-3-1 NMR的樣品製備 21 2-3-2 NMR光譜的測定 22 2-3-3 循序判定(Sequential assignment) 22 第三章 實驗結果 3-1 SPE B及其突變蛋白的製備 3-1-1 42-kDa Wild-Type Pro SPE B及Pro G239D的表現與純化 25 3-1-2 28-kDa mSPE B/Inhibitor及G239D/Inhibitor突變蛋白的製備 26 3-1-3 28-kDa selectively labeled amino acids蛋白的製備 26 3-2 SPE B重組蛋白之特性分析 3-2-1 質譜儀測定重組蛋白分子量 26 3-3 NMR圖譜的分析與胺基酸的判定 3-3-1 28-kDa SPE B/Inhibitor複合蛋白的HSQC圖譜 27 3-3-2 28-kDa SPE B/E64複合蛋白NMR圖譜 27 3-3-3 循序判定(sequential assignment) 28 A. Selectively 15N-labeled amino acids蛋白15N-HSQC光譜的結果 B. 利用三維共振光譜實驗做循序判定 3-4 比較42-kDa X-ray C47S突變蛋白與28-kDa NMR二級結構 32 3-5 利用化學位移差異比較28-kDa SPE B/Inhibitor複合蛋白、C47S 突變蛋白結構差異的區域與探討SPE B基質結合的區域 33 3-6 利用X-plore去計算SPE B/Inhibitor的結構 35 第四章 討論 36 第五章 結論 38 參考文獻 40 圖 45 表 88

    參 考 文 獻

    Shih-Chi Luoa, Chiu-Yueh Chena, Yee-Shin Linb, Wen-Yih Jenga and Woei-Jer Chuang Letter to the Editor: Backbone 1H, 15N and 13C resonance assignments of the 28 kDa mature form of streptopain. Journal of Biomolecular NMR, 25: 165-166, 2003.

    DusIan Turk and Gregor GuncIar. Lysosomal cysteine proteases (cathepsins):
    promising drug targets. Acta Cryst. (2003). D59, 203±213

    Keita Matsumoto, Kazutoshi Mizoue, Kunihiro Kitamura, Wai-Ching Tse, Carol P. Huber, Toshimasa Ishida. Structural Basis of Inhibition of Cysteine Proteases by E-64 and Its Derivatives. Biopolymers (Peptide Science), Vol. 51, 99-107 (1999)

    Kagawa , T. F., and Edward N. Crystal structure of the zymogen form of the group A Streptococcus virulence factor SpeB: An integrin-binding cysteine protease PNAS 97: 2235-2240 , 2000

    Motoyoshi Nomizu, Grzegorz Pietrzynski, Tamaki Kato, Paule Lachance, Robert Menard, and Edmund Ziomek. Substrate Specificity of the Streptococcal Cysteine Protease. Vol. 276, No. 48, Issue of November 30, pp. 44551-44556, 2001

    John D. Doran1, and Edmund Ziomek1. Autocatalytic processing of the streptococcal cysteine protease zymogen. Processing mechanism and characterization of the autoproteolytic cleavage sites. Eur. J. Biochem. 263: 145-151, 1999.
    Bhakdi, S., Roth, M., Sziegoleit, A., and Tranum-Jensen, J. Isolation of two hemolytic forms of streptolysin O. Infect. Immun. 46: 394-400, 1984.
    Burns, E. H., Marciel, Jr., A. M., and Musser, J. M. Activation of a 66-kilodalton human endothelial cell matrix metalloprotease by Streptococcus pyogenes extracellular cysteine protease. Infect. Immun. 64: 4744-4750, 1996.
    Cone, L. A., Woodard, D. R., Schlivert, P. M., and Tomory, G. S. Clinical and bacteriologic observations of a toxic shock-like syndrome due to Streptococcus pyogenes. N. Engl. J. Med. 317: 146-149, 1987.
    Dale, J. B., Washburn, R. G., Marques, M. B., and Wessels, M. R. Hyaluronate capsule and surface M protein in resistance to opsonization of group A streptococci. Infect. Immun. 64: 1495-1501, 1996.
    D'Costa, S. S. and Boyle, M. D. Interaction of a group A streptococcus within human plasma results in assembly of a surface plasminogen activator that contributes to occupancy of surface plasmin-binding structures. Microb. Pathog. 24: 341-349, 1998.
    DeAngelis, P. L., Yang, N., and Weigel, P. H. The Streptococcus Pyogenes hyaluronidase synthetase: sequence comparison and conservation among various group A strains. Biochem. Biophy. Res. Commun. 199:1-10, 1994.
    Elliott, S. D. and Dole V. P. An inactive precursor of streptococcal proteinase. J. Exp. Med. 85:305-320, 1947.
    Elliott, S. D. A proteolytic enzyme produced by group A streptococci with special reference to its effect on the type-specific M protein antigen. J. Exp. Med. 92:201-219, 1950.
    Hauser, A. R., Stevens, D. L., Kaplan, E. L., and Schlievert, P. H. Molecular analyse of pyrogenic exotoxin from Streptococcus pyogenes isolates associated with toxic shock like syndrome. J. Clin. Microbiol. 29:1562-1567, 1991.
    Herwald, H., Collin, M., Muller-Esterl, W., and Bjorck, L. Streptococcal cysteine protease releases kinins: a novel virulence mechanism. J. Exp. Med. 184: 665-673, 1996.
    Higuchi, R., Kummel, B., and Saiki, R. K. A general method of in vitro preparation and specific mutagenesis of DNA fragements: study of protein and DNA interactions. Nucleic Acids Res. 16:7351-7367, 1988.
    Holm, S. E., Norrby, A., Bergholm, A-M., and Norgren, M. Aspects of pathogenesis of serious group A streptococcal infections in Sweden, 1988-1989. J. Infect. Dis. 166: 31-37, 1992.
    Kapur, V., Topouzis, S., Majeasky, M.W., Li, L. L., Hamrick, M. R., Hamill, R. J., Patti, J. M., and Musser, J. M. A conserved Streptococcus pyogenes extracellular cysteine protease cleaves human fibronectin and degrades vitronectin. Microb. Pathog. 15: 327-346, 1993a.
    Kapur, V., Majeasky, M. W., Li, L. L., Black, R. A., and Musser, J. M. Cleavage of interleukin 1 (IL-1 ) precursor to produce active IL-1 by a conserved extracellular cysteine protease from Streptococcus pyogenes. Proc. Natl. Acad. Sci. USA 90: 7676-7680, 1993b.
    Kapur, V., Maffei, J. T., Greer, R. S., Li, L. L., Adams, G. J., and Musser, J. M. Vaccination with streptococcal extracellular cysteine protease (interleukin-1 convertase) protests mice against challenge with heterologous group A strepthcocci. Microb. Pathog. 16:443-450, 1994.
    Kuo, C-F., Wu, J-J., Lin, K-Y., Tsai, P-J., Lee, S-C., Jin, Y-T., Lei, H-Y., and Lin, Y-S. Role of streptococcal pyrogenic exotoxin B in the mouse model of group A streptococcal infection. Infect. Immun. 66: 3931-3935, 1998.
    Kuo, C-F., Wu, J-J., Tsai, P-J., Kao, F-J., Lei, H-Y., Lin, M. T., and Lin, Y-S. Streptococcal pyrogenic exotoxin B induces apoptosis and reduces phagocytic activity in U937 cells. Infect. Immun. 67: 126-130, 1999.
    Liu, T-Y. and Elliott, S. D. Streptococcal protease: the zymogen to enzyme transformation. J. Biol. Chem. 240: 1138-1142, 1965.
    Musser, J.M., Hauser, A. R., Kim, M. H., Schlievert, P. M., Nelson, K., and Selander, R. K. Streptococcus pyogenes causing toxic-shock-like syndrome and other invasive diseases: clonal diversity and pyrogenic exotoxin expression Proc. Natl. Acad. Sci. USA 88: 2668-2672, 1991.
    Musser, J. M., Stockbauer, K., Kapur, V., and Rudgers, G. W. Substitution of cysteine 192 in a highly conserved Streptococcus pyrogenes extracellular cysteine protease (Interleukin 1 convertase) alters proteolytic activity and ablates zymogen processing. Infect. Immun. 64: 1913-1917, 1996.
    Musser , J. M. Streptococcal Superantigen, Mitogenic Factor, and Pyrogenic Exotoxin B Expressed by Streptococcus pyogenes Prep. Biochemistry & Biotechnology, 27(2&3), 143-172, 1997.
    Ohara-Nemoto, Y., Sasaki, M., Kaneko, M., Nemoto, T., and Ota, M. Cysteine protease activity of streptococcal pyrogenic exotoxin B. Can. J. Microbiol. 40: 930-936, 1994.
    Pinkney, M., Kapur, V., Smith, J., Weller, U., Palmer, M., Glanville, M., Messner, M., Musser, J. M., Bhakdi, S., and Kehoe, M. A. Different forms of streptolysin O produced by Streptococcus pyogenes and by Escherichia coli expressing recombinant toxin: cleavage by streptococcal cysteine protease. Infect. Immun. 63: 2776-2779, 1995.
    Robinson, J. H. and Kehoe, M. A. Group A streptococcal M proteins: virulence factors and protective antigens. Immunol. Today 13: 362-367, 1992.
    Sambrook, J., Fritsch, E. F., and Maniatis, T. Molecular Cloning: A Laboratory Manual, Cold Cpring Harbor Laboratory. Cold Spring Habor NY, 1989.
    Shanley, T. P., Schrier, D., Kapur, V., Kehoe, M., Musser, J. M., and Ward, P. A. Streptococcal cysteine protease augments lung injury induced by products of group A streptococci. Infect. Immun. 64: 870-877, 1996.
    Speziale, P., Hook, M., Switalski, L. M., and Wadstrom, T. Fibronectin binding to a Streptococcus pyogenes strain. J. Bacteriol. 157: 420-427, 1984.
    Tai, J. Y., Kortt, A. A., Liu, T-Y., and Elliott, S. D. Primary structure of streptococcal protease. III. Isolation of cyanogen bromide peptides: complete covalent structure of the polypeptide chain. J. Biol. Chem. 251: 1955-1959, 1976.
    Vernet, T., Khouri, H. E., Laflamme, P., Tessier, D. C., Musil, R., Gour-Salin, B. J., Storer, A. C., Thomas, D. Y. Processing of the papain precursor. Purification of the zymogen and characterization of its mechanism of processing. J. Biol. Chem. 1991 Nov 15; 266 (32):21451-7. Webb, E. C. (Editor), 1992.
    Wolf, B. B., Gibson, C. A., Kapur, V., Hussaini, I. M., Musser, J. M., and Gonias, S. L. Proteolytically active streptococcal pyrogenic exotoxin B cleaves monocytic cell urokinase receptor and releases an active fragment of the receptor from the cell surface. J. Biol. Chem. 269: 30682-30687, 1994.
    Yonaha, K., Elliott, S. D., and Liu, T-Y. Primary structure of zymogen of streptococcal protease. J. Protein Chem. 1: 317-334, 1982.
    Yu, E-Y. and Ferreti, J. J. Frequency of the erythrogenic toxin B and C gene (speB and speC) among clinical isolates of group A streptococci. Infect. Immun. 59:211-215, 1991.
    陳秋月 Expression and Characterization of Streptococcal Pyrogenic Exotoxin B 國立成功大學生物化學研究所碩士論文. 1999.
    劉沛棻 3D solution structure of the DNA-binding domain of Interleukin enhancer binding factor by NMR 國立成功大學生物化學研究所碩士論文. 2001.
    羅世奇 Preparation and Structure Determination of Active Streptococcal Pyrogenic Exotoxin B 國立成功大學生物化學研究所碩士論文.2002.

    下載圖示 校內:立即公開
    校外:2004-07-27公開
    QR CODE