簡易檢索 / 詳目顯示

研究生: 林郁珊
Lin, Yu-Shan
論文名稱: 台南智慧水錶於水資源分配的成本效益分析
Cost-Benefit Analysis of Smart Water Meters in Water Resource Allocation in Tainan
指導教授: 郭彥廉
Kuo, Yen-Lien
學位類別: 碩士
Master
系所名稱: 社會科學院 - 經濟學系
Department of Economics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 125
中文關鍵詞: 智慧水錶區域投入產出模型水資源乾旱缺水
外文關鍵詞: Smart Water Meter, Regional Input-Output Model, Water Resources, Drought, Water Shortage
相關次數: 點閱:111下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著氣候變遷,極端天氣出現得越來越頻繁,其中「乾旱」更是對人民生活帶來重大影響。當發生乾旱時,迫使政府必須對各行業用水進行控管,隨著各部門間的交互影響,整個經濟體將會因缺水帶來重大的經濟衝擊。
    智慧水錶 (Smart Water Meters, SWM) 乃係一個能協助有效運用水資源的裝置,除了減少抄錶成本、降低讀數錯誤等,還能降低漏水率、協助控管用水量、推動節水意識等。此外,本研究認為,智慧水錶亦能延伸應用於水資源分配,於乾旱缺水發生時協助控管用水量。
    本研究使用投入產出模型 (Input-output model, IO) 進行模擬,並利用簡單區位商數法編製台南地區產業關聯表,分析出缺水可能對台南地區造成的期望經濟衝擊。
    結果顯示:有安裝智慧水錶時,期望經濟損失為12.38佰億元,相比未安裝智慧水錶的期望經濟損失為28.18佰億元,具有15.80佰億元的經濟效益。考量智慧水錶的建置成本374.93佰萬元,則期望成本效益合計為15.76佰億元。
    根據本研究結果,建議產業可全面安裝智慧水錶,若未來發生嚴重乾旱導致缺水問題產生時,將能作為政府在限水政策的執行工具,大幅降低缺水對整體造成的經濟影響。

    With climate change, extreme weather has become more and more frequent, among which "drought" has a major impact on people's lives. When a drought occurs, the government must control the water use of various industries. With the interaction between various sectors, the entire economy will have a major economic impact due to water shortages.
    Smart Water Meters (SWM) is a device that can assist in the efficient use of water resources. In addition to reducing meter reading costs and reading errors, it can also reduce water leakage rates, assist in controlling water consumption, and promote water conservation awareness. In addition, this study believes that smart water meters can also be extended to water resource allocation to help control water consumption when droughts and water shortages occur.
    This study uses the Input-Output Model (IO) for simulation and uses the Simple Location Quotient Method (SLQ) to compile an industry correlation table in Tainan to analyze the expected economic impact of the reduction of water supply on Tainan.
    The results show that with the installation of smart water meters, the expected economic loss is NTD123.8 billion, compared with the expected economic loss of NTD 281.8 billion without the smart water meter, with an economic benefit of NTD 158 billion. Considering the construction cost of the smart water meter of NTD 0.375 billion, the total expected cost-effectiveness is NTD 157.6 billion.
    According to the results of this study, it is suggested that the industry can fully install smart water meters. If the water shortage problem occurs due to severe drought in the future, it will be used as a tool for the government to implement the water restriction policy and greatly reduce the overall economic impact of water shortages.

    摘要 i 英文摘要 ii 誌謝 vi 目錄 vii 表目錄 ix 圖目錄 xi 第一章 緒論 1 1.1研究動機 1 1.2研究目的 3 1.3本文架構 3 1.4研究背景 6 第二章 文獻回顧 8 2.1智慧水錶的應用 8 2.2 乾旱缺水的經濟影響 10 2.3投入產出法於水資源分析的應用 12 2.4可能的水文情境 14 2.4.1可能水文情境研擬流程 14 第三章 研究方法 20 3.1投入產出模型 20 3.1.1理論基礎及假設 20 3.1.2產業關聯表 22 3.2區域投入產出模型 28 3.2.1 簡單區位商數法 30 第四章 資料來源及處理 32 4.1 台南區域產業關聯表 32 4.1.1產業部門分類 33 4.1.2區位商數值 36 4.2單位用水價值 40 4.2.1台南地區各部門產值 41 4.2.2台南地區各部門用水量 43 4.3水資源的供需分析 48 第五章 模型分析結果及成本效益評估 50 5.1直接經濟損失 50 5.1.1 未安裝智慧水錶之直接經濟損失 51 5.1.2 有安裝智慧水錶之直接經濟損失 56 5.2智慧水錶之水資源分配效益 58 5.2.1未安裝智慧水錶之經濟衝擊 59 5.2.2有安裝智慧水錶之經濟衝擊 63 5.3安裝智慧水錶之經濟效益 67 5.4 安裝智慧水錶之成本效益分析 70 第六章 結論與建議 73 6.1結論 73 6.2建議 75 6.3研究限制 75 參考文獻 77 附錄 82

    1. Beal, C. & Flynn, J. (2014). “The 2014 Review of Smart Metering and Intelligent Water Networks in Australia and New Zealand.” Report prepared for WSAA by the Smart Water Research Centre, Griffith University.
    2. Boyle, T., Giurco, D., Mukheibir, P., Liu, A., Moy, C., White, S. & Stewart, R. (2013). "Intelligent Metering for Urban Water: A Review." Water.2013. 5(3), 1052-1081.
    3. Briand, A., Reynaud, A., Viroleau, F., Markantonis, V., & Branciforti, G. (2021). “Assessing The Macroeconomic Effects of Water Scarcity in South Africa Using A Water-CGE Model.”
    4. Britton, T.C. Stewart & R.A. O'Halloran, K.R. (2013). "Smart Metering: Enabler for Rapid and Effective Post Meter Leakage Identification And Water Loss Management." Journal of Cleaner Production, 54, 166-176.
    5. Butcher G. V. & Ford Stuart. (2009). “Modeling the Regional Economic Impacts of the 2007/08 Drought: Results and Lessons.” New Zealand Agricultural and Resource Economics Society.
    6. Consultant’s Corner Journal AWWA. (2007). “Detroit Selects Itron’s Water Fixed Network Solution.” Journal‐American Water Works Association, 99, 53.
    7. Erian, W., Pulwarty, R., Vogt, J.V., AbuZeid, K., Bert, F., Bruntrup, M., ... & Zougmore, R.B. (2021). "GAR Special Report on Drought 2021." United Nations Office for Disaster Risk Reduction (UNDRR).
    8. Gonzalez & Jaume Freire. (2011). “Assessing the Macroeconomic Impact of Water Supply Restrictions Through an Input–Output Analysis.” Water Resources Management, 25(9), 2335-2347.
    9. Hayes, M. J., Svoboda, M. D., Knutson, C. L. & Wilhite, D. A. (2004). “Estimating the Economic Impacts of Drought.” Bulletin of the American Meteorological Society, 4389-4391.
    10. Howitt, R. E., MacEwan, D. & Medellin- Azuara, J. (2009). “Economic Impacts of Reductions in Delta Exports on Central Valley Agriculture.” Agricultural and Resource Economics Update, 12(3), 1-4.
    11. Husak, G.J., Michaelsen, J. & Funk, C. (2007). “Use of The Gamma Distribution to Represent Monthly Rainfall In Africa for Drought Monitoring Applications.”
    12. Jiang, F., Tatano, H., Kuzuha, Y. & Matsuura, T. (2005). “Economic Loss Estimation of Water Supply Shortage Based on Questionnaire Survey in Industrial Sectors.” Report of the National Research Institute for Earth Science and Disaster Prevention, 68, 9-26.
    13. Lima, Carlos Alberto Fróes & José Ricardo Portillo Navas. (2012). "Smart Metering and Systems to Support A Conscious Use of Water and Electricity." Energy, 45(1), 528-540.
    14. Liu, A. & Mukheibir, P. (2017). “Digital Metering and Change in Water Consumption.” Report Prepared for the Digital Metering Joint Program by the Institute for Sustainable Futures.
    15. March, H., Morote, Á. F., Rico, A. M. & Saurí, D. (2017). “Household Smart Water Metering in Spain: Insights from The Experience of Remote Meter Reading In Alicante.” Sustainability, 9(4), 582.
    16. Miller, R. E., & Blair, P. D. (2009). “Input-Output Analysis: Foundations and Extensions.” Cambridge University Press.
    17. Mohan, G., Chapagain, S. K., Fukushi, K., Papong, S., Sudarma, I. M., Rimba, A. B. & Osawa, T. (2021). “An Extended Input–Output Framework for Evaluating Industrial Sectors and Provincial-Level Water Consumption in Indonesia.” Water Resources and Industry, 25, 100141.
    18. Morote, Á. F. & Hernández-Hernández, M. (2018). “Unauthorised Domestic Water Consumption in The City of Alicante (Spain): A Consideration of Its Causes and Urban Distribution (2005–2017).” Water, 10(7), 851.
    19. Monks, I., Stewart, R. A., Sahin, O., & Keller, R. (2019). “Revealing Unreported Benefits of Digital Water Metering: Literature Review and Expert Opinions.” Water, 11(4), 838.
    20. Morrison, W. I. & P. Smith, 1974. “Nonsurvey Input-output Techniques at the Small Area Level:an Evaluation.” Journal of Regional Science. 14(1), 1-14.
    21. Nguyen, K. A., Stewart, R. A., Zhang, H., Sahin, O., & Siriwardene, N. (2018). “Re-Engineering Traditional Urban Water Management Practices With Smart Metering and Informatics.” Environmental modelling & software, 101, 256-267.
    22. Riebsame, W. E., Changnon, S. A., & Karl, T. R. (2019). “Drought and Natural Resources Management in the United States: Impacts and Implications of the 1987-89 Drought.” Routledge.
    23. Ross, A. & Liao, S. Y. (2005). “Modeling Regional Economic Resilience to Disasters: A Computable General Equilibrium Analysis of Water Service Disruptions.” Journal of Regional Science, 45(1), 75-112.
    24. Ross, T. & Lott, N. (2003). “A Climatology of 1980-2003 Extreme Weather and Climate Events.” US Department of Commerce NOAA/NESDIS National Climatic Data Center.
    25. Rose A. (2004) “Economic Principles, Issues, and Research Priorities in Hazard Loss Estimation.” In: Okuyama, Y., Chang, S.E. (eds) Modeling Spatial and Economic Impacts of Disasters. Springer, 13-36.
    26. Rose, A., Benavides, J., Chang, S.E., Szczesniak, P., Lim, D. (1997) “The Regional Economic Impact of An Earthquake: Direct and Indirect Effects of Electricity Lifeline Disruptions.” Journal of Regional Science, 37(3), 437-458.
    27. Schaffer, W. A. & K. Chu. (1969) “No Survey Techniques for Construction Regional Interindustry Models.” Papers of the Regional Science Association, 23, 83-101.
    28. Song, F., Leung, L. R., Lu, J., Dong, L., Zhou, W., Harrop, B., & Qian, Y. (2021). “Emergence of Seasonal Delay of Tropical Rainfall During 1979–2019.” Nature Climate Change, 11(7), 605-612.
    29. Svensson, C., Hannaford, J. & Prosdocimi, I. (2017). “Statistical Distributions for Monthly Aggregations of Precipitation and Streamflow in Drought Indicator Applications.” Water Resources Research, 53, 999-1018.
    30. Thiemann, R. O. B., Haas, J. A. Y., & Schlenger, D. O. N. (2011). “Reaping the Benefits of AMI: A Kansas City Case Study.” Journal‐American Water Works Association, 103(4), 38-41
    31. Vašak, M., Banjac, G., Baotié, M., & Matuško, J. (2014). “Dynamic Day-Ahead Water Pricing Based on Smart Metering and Demand Prediction.” Procedia Engineering, 89, 1031-1036.
    32. Velázquez, E. (2006). “An Input–Output Model of Water Consumption: Analysing Intersectoral Water Relationships in Andalusia.” Ecological Economics, 56(2), 226-240
    33. 經濟部水利署,2017。前瞻基礎建設計畫-水環境建設-「推廣水資源智慧管理系統及節水技術計畫」〈執行計劃書〉。檢自https://reurl.cc/q5lldR (Jul.05, 2022)
    34. 呂蓓君,2017。台灣降雨量比全球多2.6倍,卻是缺水國家。TVBS新聞網。檢自https://news.tvbs.com.tw/life/880223 (Jul.05, 2022)
    35. 李詩敏,2021。多雨之島陷缺水危機!水庫如何保住「台灣最後一滴淚」。聯合新聞網。檢自https://topic.udn.com/event/water_deficit2020 (Jul.05, 2022)
    36. 蘇文彬,2021。台灣氣候模擬系統自主研究十年有成,未來台灣春雨將減少、颱風侵台頻率降低但強度增加。iT之家。檢自https://www.ithome.com.tw/news/147762 (Jul.05, 2022)
    37. 經濟部水利署,2022。專訪水利署林元鵬總工程司談「大數據物聯網助攻:地下水智慧監測推動成效」,節水紀實,第34期。
    38. 經濟部水利署,2021。110年自來水生活用水量統計。
    39. 經濟部水利署,南區水資源局,2020。台南山上淨水廠供水系統與南科滯洪池水資源利用可行性評估。
    40. 經濟部水利署,2020。第一篇109年各標的用水統計年報。
    41. 經濟部水利署,2020。「因應氣候變遷水源供應與經濟影響研究(2/2)」定稿報告。
    42. 經濟部水利署,2013。台灣地區各水資源分區因應氣候變遷水資源管理調適能力綜合研究。
    43. 林幸君、高慈敏,2006。農業天然災害產物損失對經濟影響之區域投入產出分析。農業經濟叢刊,12(1),105-138。
    44. 張克昌、郭彥廉,2015。高雄地區水資源供給之經濟影響分析。國立成功大學,台南市。
    45. 李國忠、林麗貞,2000。南投縣林業部門綠色功能投入產出之分析。中華林學季刊,33(4),513-527。
    46. 王塗發,1986。投入產出分析及其應用—台灣地區實證研究。台灣銀行季刊,37(1),186-218。
    47. 王塗發、何俐禎,1994。區域投入係數非普查推估法之比較研究,台灣經濟學會年會論文集。
    48. 李高朝,2005。實用產業關聯分析精義,行政院經濟建設委員會。
    49. 行政院主計總處,2020。產業關聯統計編製報告,民國105年。台北,行政院主計總處。
    50. 吳京儒、吳濟華,2002。路竹科學園區設置對於南部區域經濟影響之研究。國立中山大學,高雄市。
    51. 潘柏翰,2021。台中漏水率六都最高盧秀燕籲加強修復,台水:每年投入最多經費逐步改善。關鍵評論網。檢自https://www.thenewslens.com/article/148550 (Mar.17, 2021)
    52. 謝錦芳,2021。下雨就忘了水荒!許晃雄揭台灣水資源5大危機,堵漏靠這招。新新聞。檢自https://www.storm.mg/article/3588345?page=2 (Apr.07, 2021)
    53. 王藝峰,2021。120年漏水率低於10% 水利署已偕同水公司推動。中華民國經濟部。檢自https://www.moea.gov.tw/Mns/populace/news/News.aspx?kind=1&menu_id=40&news_id=93452 (March.10, 2021)

    下載圖示 校內:2024-08-31公開
    校外:2024-08-31公開
    QR CODE