簡易檢索 / 詳目顯示

研究生: 許榮賓
Sheu, Rong-Bin
論文名稱: 含發光基及噁二唑基高分子的合成與光電性質探討
指導教授: 陳雲
Chen, Yun
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 144
中文關鍵詞: 高分子發光二極體
外文關鍵詞: PLED
相關次數: 點閱:67下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • PLED是利用從陽極、陰極注入的電洞及電子於發光層中再結合而發光,因此電荷傳遞速率之平衡對發光效率有非常大之影響。目前應用於PLED的導電性高分子大都屬於P型半導體(電洞注入速率大於電子),由於電荷注入的不平衡,導致發光效率下降。為了提高其效率,可利用較低工作函數的金屬為陰極(如鈣)以降低電子注入發光層的能障,提升電子注入之能力,但由於低工作函數之金屬較不安定,所以仍有其困難。此外,可利用多層結構,也就是在發光層及陰極之間加入電子傳遞層,使電子更容易越過能障,增加電子注入之速率,進而提升發光效率。除了上述方法之外,亦可藉由化學合成之方法改變其結構,導入一缺電子基團來增加電子親和力,以提升電子注入之能力,所以發光層高分子的性質,可藉由分子的設計來做出適當的調整。
    本研究將缺電子性的噁二唑基(1,3,4-Oxadiazole)單體分別與發光基團Iminodibenzyl以及Distyrylbenzene利用Horner-Wadsworth-Emmons反應進行縮合聚合。所合成之高分子P1、P2的玻璃轉移溫度(Tg)分別為202℃及197℃,P3、P4皆無發現玻璃轉移溫度。P1~P4的熱裂解溫度(Td)在376~390℃之間,顯示其具有極高之熱穩定性,黏度則介於0.21~0.31 dl/g。薄膜態的最大UV/Vis吸收及螢光光譜(PL)波長分別在372~459 nm及509~550 nm,而由UV/Vis起始吸收得到的譜帶間隙(Egopt)及由循環伏安法得到的譜帶間隙(Egelec)相近,介於2.26~2.60 eV。P1~P4單層元件的起始電場分別為2.5×106 V/cm、2.3×106 V/cm、3.4×106 V/cm、3.2×106 V/cm,最大亮度則為29、349、11、25 cd/m2,此時流明效率為0.006、0.04、0.002、0.005 cd/A。藉由分子量控制來降低P2中Excimer產生的機率,則最大亮度可高達1864 cd/m2,為之前的5.4倍,此時流明效率為0.22 cd/A。以MEH-PPV為電子傳送層將P2製成雙層元件,最大亮度可達574 cd/m2,為單層之1.7倍,此時流明效率為0.08cd/A。

    PLED have been extensively studied recently due to their potential applications in large area displays. An optimized PLED should have efficient and balanced charge injections from both electrodes. However, most LED polymers are p-doped, so the mobility of holes is usually much greater than that of electrons. To achieve balanced charge injection, metal electrode with low work function and additional electron transporting layer have been widely employed. Besides, balanced charge injection can also be attained by suitable molecular design, i.e. introducing both electron transporting and emission units in polymer backbone simultaneously.
    In this work, electron-deficient aromatic 1,3,4-oxadiazole is incorporated into conjugated polymers containing iminodibenzyl or distyrylbenzene chromophores in main chain or as pendant group. The polymers exhibit good thermal stability (stable up to 376℃ in nitrogen) and high glass-transition temperature (P1, P2). Optical properties of the polymers were investigated by absorption and photoluminescence spectra. Electrochemical properties were studied by cyclic voltammetry and the band gaps are between 2.26~2.60 V. Single layer devices ITO/Polymer/Al were successfully fabricated and the maximum brightness and luminance efficiency of the ITO/P2/Al was 349 cd/m2 and 0.04 cd/A, respectively, at 6.2×106 V/cm. The brightness and luminance efficiency attained 1864 cd/m2 and 0.22 cd/A as viscosity decreased from 0.31 dl/g to 0.20 dl/g.

    目 錄 中文摘要……………………………………………………….....................Ⅰ 英文摘要……………………………………………………….....................Ⅱ 誌 謝…………………………………………………………….............Ⅲ 目 錄…………………………………………………………….............Ⅳ 流程目錄…………………………………………………………….............Ⅷ 表 目 錄……………………………………………………….....................Ⅸ 圖 目 錄…………………………………………….……………................Ⅹ 第一章 緒論 1-1 前言…………………………………………….…………………….....1 1-2 理論基礎……………………………………………………………3 1-2-1 共軛導電高分子之電子結構…………………………………….3 1-2-2 螢光理論………………………………………………………….5 1-3 高分子發光二極體元件的結構及原理……………………………7 1-3-1 元件的結構……………………………………………………….7 1-3-2 發光原理………………………………………………………….11 1-3-3 發光效率………………………………………………………….11 1-3-4 電性理論………………………………………………………….12 1-3-5 光色檢測………………………………………………………….14 1-4 有機發光二極體元件之封裝……………………………………....16 1-5 有機發光二極體未來展望………………………………………....17 第二章 文獻回顧 2-1 PPV及其衍生物之發展…………………………………….……........10 2-1-1 直接聚合法.....................................................................................18 2-1-2 間接聚合法.....................................................................................20 2-2 高分子發光二極體之發展……………....………………....................22 2-2-1 光色之發展.....................................................................................23 2-2-2 發光效率之改進.............................................................................27 2-2-2-1 多層元件.....................................................................................27 2-2-2-2 單層元件.....................................................................................29 2-3 歸納與討論………………………....................................................31 2-4 研究動機……………………………………………………………32 第三章 實驗內容 3-1 實驗裝置與設備…………………………………………………........34 3-2 鑑定儀器…………………………………………………………........34 3-3 物性及光電特性測量儀器…………………………………................35 3-4 藥品及材料……………………………………………………............40 3-5 合成步驟與結果……………………………………………................42 3-5-1 雙磷酸酯單體6的合成…………………......................................42 3-5-2 雙醛單體13的合成…………………............................................44 3-5-3 雙磷酸酯單體21的合成……………………................................46 3-5-4雙醛單體25的合成………………….............................................48 3-5-5 高分子P1~P4之合成………………………….............................49 3-6 聚合反應原理……………………….................................................52 3-7 相對量子產率……………………….................................................53 3-8 循環伏安法…………….....................................................................53 3-9 元件製作……………...........................................................................55 3-9-1 ITO導電玻璃的切割與清洗.............................................................55 3-9-2 高分子發光膜的製作........................................................................55 3-9-3 陰極蒸鍍............................................................................................56 3-9-4 元件封裝............................................................................................57 3-9-5 元件量測............................................................................................58 第四章 結果與討論 4-1 單體結構之鑑定…………………………………………………....60 4-2 高分子合成與結構鑑定…………………………………………....63 4-3 溶解度測試………………………………………………………....64 4-4 高分子熱性質分析…………………………………………………64 4-4-1 熱重分析…………………………………………………………65 4-4-2 微差式掃描熱卡計……………………………………………….66 4-5 高分子光學性質探討………………………………............................66 4-5-1 UV/Vis吸收光譜……………………………………………….....67 4-5-2螢光光譜……………………..........................................................68 4-5-2-1 發光波長與與色度.....................................................................68 4-5-2-2 濃度效應.....................................................................................69 4-5-2-3 轉速效應.....................................................................................70 4-5-2-4 溶劑化顯色效應.........................................................................70 4-5-3 相對量子產率………………………………….........................72 4-6 高分子電化學性質探討……………………………………………73 4-7 高分子有機發光二極體元件特性………………….....................75 4-7-1 單層元件……………………………………………..................75 4-7-2 多層元件……………………………………………..................78 4-7-3 元件封裝……………………………………………………..........73 第五章 結論…………………………………………………….................81 參考文獻………………………………………………………………... ...123 自述…………………………………………………………………….......127 流程目錄 (List of Schemes) Scheme 1 Synthesis of Monomers…………………………….................83 Scheme 2 Synthesis of Monomers…………………………….................83 Scheme 3 Synthesis of Monomers………………….................................84 Scheme 4 Synthesis of Monomers…………………………….................84 Scheme 5 Synthesis of Polymers………………………….......................85 表目錄 (List of Table) Table 1 The Synthetic Results of Monomers……….................................86 Table 2 Polymerization Results of Polymers P1~P4..………...................87 Table 3 Molecular Weight of Polymers P1~P4..........….........................88 Table 4 Solubility of Polymers P1~P4...................….…........................88 Table 5 Thermal Properties of Polymers P1~P4......…….........................89 Table 6 Optical Properties of Polymers P1~P4 in Film and Solution States at Room Temperature.…....................................................89 Table 7 CIE 1931 Color Coordinates and Color of Polymers P1~P4 in Powder States.………………….....................................................90 Table 8 Photoluminescence of Polymers P1~P4 in Different Polar Solvents at Room Temperature......................................................90 Table 9 Quantum Yield of Polymers P1~P4.…….....................................91 Table 10 Oxidation and Reduction Potential of Polymers P1~P4.............91 Table 11 Electrochemical Properties and Band Gap of Polymers P1~P4...92 Table 12 Energy Levels and Energy Barriers of Polymers P1~P4..............92 Table 13 Electroluminescence Device Properties of Polymers P1~P4.......93 圖目錄 (List of Figures) 第一章 序論 Fig. 1-1 (a) Kodak的Alq3雙層元件 (b)CDT的PPV單層元.……....…..1 Fig. 1-2 絕緣體、半導體及導體價帶與傳導帶的能階分佈……………4 Fig. 1-3 半導體的能帶結構……………...............................……………5 Fig. 1-4 能階圖…………………………...................................................6 Fig. 1-5 單層元件構造及發光原理...................................................…....8 Fig. 1-6 雙層元件構造及發光原理...................................................…....9 Fig. 1-7 高分子發光材料及電子傳送材料.....................................…....10 Fig. 1-8 電激發光原理圖................................................................…...11 Fig. 1-9 (a)CIE 1931色度座標圖 (b)OLED發射光譜圖例...........…....14 Fig. 1-10 (a)CIE 1931-RGB三刺激值 (b)CIE 1931-XYZ三刺激值.......15 第二章 文獻回顧 Fig. 2-1 MEH-PPV之化學結構…………………...................................23 Fig. 2-2 CN-dRO-PPV之化學結構…………….....................................24 Fig. 2-3 BCHA-PPV之化學結構............................................................24 Fig. 2-4 dRO-PPV之化學結構………………………............................25 Fig. 2-5 PMPV、PNV與CN-P(PV-co-TV)之化學結構…....................26 Fig. 2-6 PCn、DSiPV、DPAPV與PS-Stilbene之化學結構…............27 Fig. 2-7 t-Bu-PBD之化學結構……………............................................28 Fig. 2-8 PPOPH及PPOOPH之化學結構…...........................................28 Fig. 2-9 P3HT之化學結構………………………………...................…29 Fig. 2-10 POPE-PPV之化學結構……...…………………...................…29 Fig. 2-11 TRIDSB、OXDDSB與OXDC12之化學結構....................…30 Fig. 2-12 PPOX-CAR之化學結構.........................................................…31 Fig. 2-13 Distyrylbenzene及Iminodibenzyl之結構.............................…33 第三章 實驗內容 Fig. 3-1 Wittig反應機構……………………………………………......52 Fig. 3-2 Horner-Wadsworth-Emmons反應機構……………..................53 Fig. 3-3 元件蒸鍍示意圖………….........................................................56 Fig. 3-4 元件示意圖………….................................................................57 Fig. 3-5 封裝元件示意圖….....................................................................57 第四章 結果與討論 Fig. 4-1 1H-NMR spectrum of 2,5-Bis(4-methylphenyl)-1,3,4- oxadiazole (3)..............................................................................94 Fig. 4-2 1H-NMR spectrum of 2,5-Bis[4-(bromomethyl)phenyl]-1,3,4- oxadiazole (5)..............................................................................94 Fig. 4-3 1H-NMR spectrum of 2,5-Bis(4-xylylene-diethylphosphonate) phenyl-1,3,4-oxadiazole (6)........................................................95 Fig. 4-4 1H-NMR spectrum of 1,4-Bis(dodecyloxy) benzene (9)..............95 Fig. 4-5 1H-NMR spectrum of 1,4-Bis(bromomethyl)-2,5-bis (dodecyloxy) benzene (10)..........................................................96 Fig. 4-6 1H-NMR spectrum of 2,5-Bis(dodecyloxy)-1,4-xylylene- bis(diethylphosphonate) (11).....................................................96 Fig. 4-7 1H-NMR spectrum of 1,4-Bis(4-formylstyryl)-2,5- bis(dodecyloxy) benzene (13)....................................................97 Fig. 4-8 1H-NMR spectrum of 3,4-Dimethylbenzoyl hydrazide (16).......97 Fig. 4-9 1H-NMR spectrum of N-(3,4-Dimethylbenzoyl)-N'-benzoyl hydrazine (18)..............................................................................98 Fig. 4-10 1H-NMR spectrum of 2-(3,4-Dimethylphenyl)-5-phenyl- 1,3,4-oxadiazole (19)...................................................................98 Fig. 4-11 1H-NMR spectrum of 2-[3,4-(Dibromomethyl)phenyl]- 5-phenyl-1,3,4-oxadiazole (20)...................................................99 Fig. 4-12 1H-NMR spectrum of 2-[3,4-Bis(xylylene-diethyl- phosphonate)phenyl]-5-phenyl-1,3,4-oxadiazole (21)................99 Fig. 4-13 1H-NMR spectrum of N-hexyliminodibenzyl (24).....................100 Fig. 4-14 1H-NMR spectrum of N-hexyl-3,8-diformylimiondibenzyl (25)..............................................................................................100 Fig. 4-15 1H-NMR spectrum of P1……………………………………. ...101 Fig. 4-16 1H-NMR spectrum of P2……………………………………. ...101 Fig. 4-17 1H-NMR spectrum of P3…………………………………….....102 Fig. 4-18 1H-NMR spectrum of P4…………………………………….....102 Fig. 4-19 FT-IR Spectra of P1………………………………………….....103 Fig. 4-20 FT-IR Spectra of P2………………………………………….....103 Fig. 4-21 FT-IR Spectra of P3………………………………………….....104 Fig. 4-22 FT-IR Spectra of P4………………………………………….....104 Fig. 4-23 Thermogravimetric curves of P1~P4 with heating rate of 20℃/min in nitrogen...................................................................105 Fig. 4-24 Differential scanning calorimetric curves of P1~P4 obtained from the second scan with heating rate of 20℃/min...................105 Fig. 4-25 UV/Vis absorption and photoluminescence spectra of P1~P4 in solution state at room temperature..........................................106 Fig. 4-26 UV/Vis absorption and photoluminescence spectra of P1~P4 in film state at room temperature................................................106 Fig. 4-27 CIE 1931 chromaticity diagram of P1~P4 in powder state........107 Fig. 4-28 Photoluminescence spectra of P1 in different concentration at room temperature....................................................................107 Fig. 4-29 Photoluminescence spectra of P2 in different concentration at room temperature....................................................................108 Fig. 4-30 Photoluminescence spectra of P3 in different concentration at room temperature....................................................................108 Fig. 4-31 Photoluminescence spectra of P4 in different concentration at room temperature....................................................................109 Fig. 4-32 Photoluminescence spectra of P1 in different spin speeds at room temperature.....................................................................109 Fig. 4-33 Photoluminescence spectra of P1 in different polar solvents......110 Fig. 4-34 Photoluminescence spectra of P2 in different polar solvents......110 Fig. 4-35 Photoluminescence spectra of P3 in different polar solvents......111 Fig. 4-36 Photoluminescence spectra of P4 in different polar solvents......111 Fig. 4-37 Influence of solvation on absorption:(a)μe>μg(b)μe<μg.........71 Fig. 4-38 Loose Bolt Effect軌域示意圖......................................................73 Fig. 4-39 Cyclic voltammogram of ferrocene/ferrocenium in 0.1 M n-Bu4NClO4 by ITO with scan rate of 100 mV/s........................112 Fig. 4-40 Cyclic voltammogram of ITO in 0.1 M n-Bu4NClO4 with scan rate of 100 mV/s……………………………......................112 Fig. 4-41 Cyclic voltammogram of P1 in 0.1 M n-Bu4NClO4 on ITO with scan rate of 100 mV/s………………..........................113 Fig. 4-42 Cyclic voltammogram of P2 in 0.1 M n-Bu4NClO4 on ITO with scan rate of 100 mV/s…………………......................113 Fig. 4-43 Cyclic voltammogram of P3 in 0.1 M n-Bu4NClO4 on ITO with scan rate of 100 mV/s…………………………..........114 Fig. 4-44 Cyclic voltammogram of P4 in 0.1 M n-Bu4NClO4 on ITO with scan rate of 100 mV/s………………………..............114 Fig. 4-45 Energy level diagram of P1~P4 from the cyclic voltammogram.............................................................................115 Fig. 4-46 Current density-electric field-brightness characteristics of the single-layer device ITO/P1/Al.....................................................115 Fig. 4-47 Current density-electric field-brightness characteristics of the single-layer device ITO/P2/Al.....................................................116 Fig. 4-48 Current density-electric field-brightness characteristics of the single-layer device ITO/P3/Al.....................................................116 Fig. 4-49 Current density-electric field-brightness characteristics of the single-layer device ITO/P4/Al.....................................................117 Fig. 4-50 Electroluminescence spectra of P1~P4 for ITO/Polymer/Al.......117 Fig. 4-51 Photoluminescence spectra of P2 in different state and blend.....118 Fig. 4-52 Current density-electric field-brightness characteristics of the single-layer device ITO/P2-P1 (70/30)/Al..................................118 Fig. 4-53 Current density-electric field-brightness characteristics of the single-layer device ITO/P2/Al.....................................................119 Fig. 4-54 Electroluminescence spectra of P2 in different electric field......119 Fig. 4-55 GPC diagram of P2......................................................................120 Fig. 4-56 AFM image of P2 (η= 0.20 dl/g)...............................................120 Fig. 4-57 AFM image of P2 (η= 0.31 dl/g)...............................................121 Fig. 4-58 Current density-electric field-brightness characteristics of the double-layer device ITO/P2/MEH-PPV/Al...............................121 Fig. 4-59 Electroluminescence spectra of ITO/P2/Al and ITO/P2/MEH-PPV/Al................................................................122 Fig. 4-60 Current density-electric field-brightness characteristics of the single-layer device ITO/P2/Al with encapsulation.....................122

    參考文獻

    1. C. W. Tang , S. A.Vanslyke, Appl. Phys. Lett., 51, 913 (1987).
    2. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Bruns, and A. B. Holmes, Nature, 347, 539 (1990).
    3. 莊瑞嬌;工業材料雜誌,第172期,P.105,,民國90年4月.
    4. A. R. Brown, D. D. C. Bradley, J. H. Burroughes, R. H. Friend, N. C. Greenham, P. L. Burn, A. B. Holmes, A. Kraft, Appl. Phys. Lett., 61, 2793 (1992).
    5. M. Wohlgenannt, K. Tandon, S. Mazumdar, S. Ramasesha, Z. V. Vardeny, Nature, 409, 494 (2001).
    6. I. D. Parker, A. J. Heeger, J. Apply. Phys., 75, 1656 (1994).
    7. 戚務聖;光訊,第89期,P.11,民國90年4月.
    8. R. N. Mcdonald, T. W. Campbell, J. Am. Chem. Soc., 82, 4669 (1960).
    9. K. D. Gourley, C. P. Lillya, J. R. Reynolds, J. C. W. Chien, Macromolecules, 17, 1025 (1984).
    10. Z. Yang, I. Sokolik, F. E. Karasz, Macromolecules, 26, 1188 (1993).
    11. H. G. Gilch. W, L. Wheelwright, J. Polym. Sci. : A-1, 4, 1337 (1996).
    12. F. Wudl, P. M. Allemand, G. Srdanov, Z. Ni, D. McBranch, J. Am. Chem. Soc., 455, 683 (1991).
    13. Z. Bao, Y. Chen, R. Cai, L. Yu, Macromolecules, 26, 5281 (1993).
    14. R. A. Wessling, J. Polym. Sci., Polym. Symp., 72, 55 (1985).
    15. F. Louwet, D. Vanderzande, J. Gelan, Synth. Met., 52, 125 (1992).
    16. W. J. Swatos, B. Gordon III, Polym. Prepr., 31(1), 505 (1990).
    17. M. Pope , H. Kallmann, P. Magnante, J. Chem. Phys., 38, 2042 (1963).
    18. D. Braun, A. J. Heeger, Appl. Phys. Lett., 58, 1982 (1995).
    19. N. C. Greenham, S. C. Moratti, D. D. C. Bradley, R. H. Friend, A. B. Holms, Nature, 365, 628 (1993).
    20. C. Zhang, S. Hoger, K. Pakbaz, F. Wudl, A. J. Heeger, J. Electron. Mater., 22, 413 (1993).
    21. S. Doi, M. Kuwabara, Synth. Met., 55, 4174 (1993).
    22. J. Salbeck, Phys. Chem. Chem. Phys., 100, 1667 (1996).
    23. T. Zyung, J. J. Kim, W. Y. Hwang, D. H. Hwang, H. K. Shim, Synth. Met., 71, 2167 (1995).
    24. M. OnOda, Y. Ohmori, T. Kawai, K. Yoshino, Synth. Met., 71, 2181 (1995).
    25. S. C. Moratti, R. Cervini, A. B. Holmes, D. R. Baigent, R. H. Friend, N. C. Greenham, J. Gruner, P. J. Hamer, Synth. Met., 71, 2117 (1995).
    26. D. R. Baigent, P. J. Hamer, R. H. Friend, S. C. Moratti, A. B. Holmes, Synth. Met., 71, 2175 (1995).
    27. Z. Yang, F. E. Karasz, H. J. Geise, Macromolecules, 26, 6570 (1993).
    28. T. Zyung, D. H. Hwang, I. N. Kang, H. K. Shim, W. Y. Hwang, J. J. Kim, Chem. Mater., 7, 1499 (1995).
    29. Y. Kim, S. Kwon, D. Yoo, M. F. Rubner, M. S. Wrighton, Chem. Mater., 9, 2699 (1997).
    30. M. Aguiar, F. E. Karasz, L. Akcelrud, Macromolecules, 28, 4598 (1995).
    31. S. Aratani, C. Zhang, K. Pakbaz, S. Hoger, F. Wudl, A. J. Heeger, J. Electron. Mater., 22, 745 (1993).
    32. Q. Pei, Y. Yang, Adv. Mater., 6, 559 (1995).
    33. C. Zhang, S. Hoger, K. Pakbaz, F. Wudl, A. J. Heeger, J. Electron. Mater., 23, 453 (1994).
    34. M. Yoshida, A. Fujii, Y. Ohmori, K. Yoshino, Jpn. J. Appl. Phys., 34, 1546 (1995).
    35. A. W. Grice, A. Tajbakhsh, P. L. Burn, D. D. C. Bradley, Adv. Mater., 9, 1174 (1997).
    36. Z. Peng, Z. Bao, M. E. Galvin, Adv. Mater., 10, 680 (1998).
    37. S. Y. Song, M. S. Jang, H. K. Shim, D. H. Hwang, T. Zyung, Macromolecules, 32, 1482 (1999).
    38. G. Wittig and G. Geissler, Liebigs ann. Chem., 580, 44 (1953); G. Wittig and U. Schollkopf, Chem. Ber., 87, 1318 (1954).
    39. M. Delmas, A. Gaser, Synth. Commun., 12, 1115 (1982).
    40. L. Horner et at, Chem. Ber., 91, 61 (1958); 92, 2499 (1959).
    41. W. S. Wadsworth, W. D. Emmons, J. Am. Chem. Soc., 83, 1733 (1961).
    42. G Gritzner, J. Kuta, Pure & Appl. Chem., 56, 461 (1984).
    43. J. Pommerehne, H. Vestweber, W. Guss, R. F. Mahrt, J. Daub, Adv. Mater., 7, 551 (1995).
    44. M. Thelakkat, H. W. Schmidt, Adv. Mater., 10, 219 (1998).
    45. H. Meng, W.-L. Yu, W. Huang, Macromolecules, 32, 8841 (1999).
    46. 王宗櫚、謝達華、何國賢, “聚合物的合成與鑑定法”, (1995).
    47. M. Zheng, A, M. Sarker, E. E. Gurel, P. M. Lahti, F. E. Karasz,
    Macromolecules, 33, 7426 (2000).
    48. S. T. Pasco, P. M. Lahti, F. E. Karasz, Macromolecules, 32, 6933 (1999).
    49. Y. Yang, Q. Pei, J. Appl. Phys., 77, 4807 (1995).
    50. T. Ahn, M. S. Jang, H. K. Shim, D. H. Hwang, T. Zyung, Macromolecules, 32, 3279 (1999).
    51. B. S. Kang, D. H. Kim, S. M. Lim, J. Kim, M. L. Seo, K. M. Bark, S. C. Shin, K. nahm, Macromolecules, 30, 7196 (1997).
    52. S. Y. Song, T. Ahn, H. K. Shim, I. S. Song, W. H. Kim, Polymer, 42, 4803 (2001).
    53. M. Zheng, L. Ding, E. E. Gurel, P. M. Lahti, F. E. Karasz, Macromolecules, 34, 4124 (2001).
    54. R. Jakubiak, C. J. Collison, W. C. Wan, L. J. Rothberg, B. R. Hsieh, J. Phys. Chem. A, 103, 2394 (1999).
    55. S. A. Jenekhe, J. A. Osaheni, Science, 265, 765 (1997).
    56. S. S. Sun, A. J. Lees, J. Photochem. Photobiol., A, 140, 157 (2001).
    57. Y. Shi, J. Liu, Y. Yang, J. Appl. Phys., 87, 9 (2000).
    58. 賴曉萍,”含電子傳遞側基發光高分子的合成與性質研究”, 國立成功大學化學工程研究所碩士論文,民國89年.
    59. S. A. Jenekhe, L. Lu, M. M. Alam, Macromolecules, 34, 7315 (2001).
    60. D. Oelkrug, A. S. Tompert, J. Gierschner, H. J. Egelhaaf, M. Hanack, M. Hohloch, E. Steinhuber, J. Phys. Chem. B, 102, 1902 (1998).
    61. B. Strehmel, A. M. Sarker, J. H. Malpert, V. Strehmel, H. Seifert, D. C. Neckers, J. Am. Chem. Soc., 121, 1226 (1999).
    62. A. M. Sarker, B. Strehmel, D. C. Neckers, Macromolecules, 32, 7409 (1999).
    63. T. A. Fayed, J. Photochem. Photobiol., A, 121, 17 (1999).
    64. J. Stampfl, S. Tasch, G. Leising, U. Scherf, Synthetic Metals, 71, 2125 (1995).
    65. A. J. Attias, P. Hapiot, V. Wintgens, P. Valat, Chem. Mater., 12, 461 (2000).
    66. N. J. Turro, Modern Molecular Photochemistry, Mill Valley, Calif.:University Science Books, 1991, P 170.
    67. 陳信宏,”主鏈含孤立發光基團及對四聯苯高分子的合成與光電性質”, 國立成功大學化學工程研究所碩士論文,民國91年.
    68. Y. Li, Y. Cao, J. Gao, D. Wang, G. Yu, A. J. Heeger, Synthetic Metal. 99, 243 (1999).

    下載圖示 校內:2005-06-28公開
    校外:2007-06-28公開
    QR CODE