| 研究生: |
楊嘉勝 Yang, Jia-Sheng |
|---|---|
| 論文名稱: |
天然氣水合物降壓分解實驗之數值模擬研究 Numerical simulation of gas hydrate dissociation in lab-scale depressurization experiment |
| 指導教授: |
謝秉志
Hsieh, Bieng-Zih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 天然氣水合物 、降壓分解 、實驗 、數值模擬 |
| 外文關鍵詞: | Gas hydrate, Depressurization, Experiment, Numerical simulation |
| 相關次數: | 點閱:65 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
天然氣水合物資源量大且分佈於全世界各地,也是一種潔淨的非傳統油氣資源,降壓生產法(Depressurization)是開採天然氣水合物的其中一種方法,被視為是有效可行的方法。至今已經有許多小尺度的實驗利用降壓生產法觀察天然氣水合物的分解機制並進一步觀察其現象,然而,實驗通常需要耗費長時間使水合物生成並觀察分解行為。在經過比對驗證的條件下,數值模擬法是一種快速且方便的工具可以用來預測水合物的分解行為。因此,本研究的目的為利用數值模擬建立二維圓柱模型模擬水合物在實驗室尺度下的降壓分解實驗,並探討各項參數對於水合物分解行為的影響。
本研究採用國外水合物降壓分解實驗案例,仿照實驗反應釜建立數值模擬模型,透過敏感度分析調查各個不確定參數對水合物分解行為的影響,接著利用歷史調諧找出最佳的擬合參數。並且將本研究結果與前人研究利用TOUGH+HYDRATE模擬器結果比較與討論。最後,將此數值模擬模組應用於台灣科技大學研究團隊的水合物分解實驗。
所獲得的主要結論為:(1) 建立天然氣水合物之數值模擬模型,且利用國外實驗案例進行數值模擬計算與實驗數據擬合,證明其可行性。(2) 水合物的化學反應參數(活化能、反應速率常數)對反應速率的影響劇烈,而流動參數(相對滲透率、不可移棲氣飽和度)則影響氣體流動行為。(3) 與前人模擬結果比較顯示,本研究計算之溫度壓力結果較前人結果平滑,但兩者在溫度結果皆略高於實驗資料。(4) 在台科大實驗中,即使水合物不是在孔隙介質中分解,可以藉由某些假設使數值模擬計算結果與實驗結果吻合。
Natural gas hydrates are clean and vast unconventional resources that exist around the world. Depressurization is one of their production mechanisms and is considered an effective way to produce natural gas from hydrates. To date, some experiments have been conducted in other laboratories to investigate the mechanism of hydrate dissociation. However, it is worth having the comparative results from a simulation study. The purpose of this study is to develop a two-dimensional axisymmetric numerical model to simulate the behavior of hydrate dissociation in a lab-scale depressurization experiment. This work also investigates the effects of the flow characteristics, hydrate reaction parameters, and basic properties of hydrate.
In this study, the CMG-STARS numerical model is set up to simulate a lab-scale depressurization experiment chosen from the literature. The numerical grids are discretized based on the vessel size used in the laboratory. To understand which parameters are likely to seriously affect the dissociation behavior, we perform a sensitive analysis of the flow properties, hydrate reaction parameters, and thermal properties. The numerical simulation runs were done to match the experimental data by adjusting the sensitive parameters. Furthermore, the simulation results from CMG-STARS and from TOUGH+HTDRATE, which has been used in other studies, are compared. Finally, the verified module is applied to an experiment conducted by a research team from National Taiwan University of Science and Technology (NTUST).
The major findings from this study are: (1) The numerical model is developed for simulating a depressurization experiment from the literature, and it is verified by matching the experimental data. (2) Hydrate reaction parameters such as activation energy and intrinsic rate constant have a significant effect on the dissociation rate. Moreover, the flow parameters, e.g., relative permeability and irreducible gas saturation, are crucial for gas production. (3) The numerical results are compared with the results of another numerical simulation from the literature. Both works have a minor experimental data difference in the temperature profile but our study shows smoother results. (4) Although the hydrate formation and dissociation are done in a hollow vessel without porous media filled in, the numerical results still can model the behavior on the assumption that methane, water, and hydrate are distributed uniformly in the vessel.
Boswell, R., & Collett, T. S. Current perspectives on gas hydrate resources. Energy & environmental science, 4(4), 1206-1215. (2011).
Clarke, M., & Bishnoi, P. R. Determination of the intrinsic rate of ethane gas hydrate decomposition. Chemical Engineering Science, 55, 4869-4883. (2000).
Clarke, M., & Bishnoi, P. R. Determination of the activation energy and intrinsic rate constant of methane gas hydrate decomposition. The Canadian Journal of Chemical Engineering, 79(1), 143-147. (2001).
Clarke, M., & Bishnoi, P. R. Measuring and modelling the rate of decomposition of gas hydrates formed from mixtures of methane and ethane. Chemical Engineering Science, 56, 4715-4724. (2001).
Clarke, M. A., & Bishnoi, P. R. Determination of the intrinsic rate constant and activation energy of CO2 gas hydrate decomposition using in-situ particle size analysis. Chemical Engineering Science, 59(14), 2983-2993. (2004).
Corey, A. T. The Interrelation Between Gas and Oil Relative Permeabilities. Oil Producer’s Monthly, XIX(1), 39-41. (1954).
EIA. Annual Energy Outlook 2015 with projections to 2040. Department of Energy/U.S. Energy Information Administration (DOE/EIA). (2015).
Fukumoto, A., Sato, T., Kiyono, F., Hirabayashi, S. Estimation of the formation rate constant of methane hydrate in porous media. Society of Petroleum Engineers, 19(2), 184-190. (2014).
Gaddipati, M. Code Comparison of Methane Hydrate Reservoir Simulators using CMG STARS. (Master of Science in Chemical Engineering), West Virginia University. (2008).
Handa, Y. P. Compositions, enthalpies of dissociation and heat capacities in the range 85 to 270 K for clathrate hydrates of methane, ethane, and propane, and enthalpy of dissociation of isobutane hydrate, as determined by a heat-flow calorimeter. Chemical Thermodynamics, 18, 915-921. (1986).
Huang, D., & Fan, S. Thermal conductivity of methane hydrate formed from sodium dodecyl sulfate solution. Journal of Chemical & Engineering Data, 49(5), 1479-1482. (2004).
Kamath, V. A. Study of heat transfer characteristics during dissociation of gas hydrates in porous media. Pittsburgh University, PA (USA). (1984).
Kim, H. C., Bishnoi, P. R., Heidemann, R. A. & Rizvi, S. S. H. Kinetics of methane hydrate decomposition. Chemical Engineering Science 42(7), 1645-1653. (1986).
Kim, J., Moridis, G.J., Yang, D. and Rutqvist, J., Numerical Studies on Coupled Flow and Geomechanics in Hydrate Deposits, Paper SPE 141304, SPE Journal, 17(2), 485-501. (2012)
Kumar, A., Maini, B., Bishnoi, P. R., & Clarke, M. Investigation of the Variation of the Surface Area of Gas Hydrates during Dissociation by Depressurization in Porous Media. Energy & Fuels, 27(10), 5757-5769. (2013).
Li, B., Liang, Y. P., Li, X. S., & Wu, H. J. Numerical analysis of methane hydrate decomposition experiments by depressurization around freezing point in porous media. Fuel, 159, 925-934. (2015).
Liang, H., Song, Y., & Chen, Y. Numerical simulation for laboratory-scale methane hydrate dissociation by depressurization. Energy Conversion and Management, 51(10), 1883-1890. (2010).
McMullan, R. K., & Jeffrey, G. Polyhedral clathrate hydrates. IX. Structure of ethylene oxide hydrate. The Journal of Chemical Physics, 42(8), 2725-2732. (1965).
Ripmeester, J. A., John, S. T., Ratcliffe, C. I., & Powell, B. M. A new clathrate hydrate structure. Nature, 325(6100), 135-136. (1987).
Seol, Y., & Myshakin, E. Experimental and Numerical Observations of Hydrate Reformation during Depressurization in a Core-Scale Reactor. Energy & Fuels, 25(3), 1099-1110. (2011).
Sloan Jr, E. D., & Koh, C. Clathrate hydrates of natural gases: CRC press, USA, 339. (2007).
Uddin, M., Coombe, D. A., Law, D.A., and Gunter, W.D. Numerical Studies of Gas-Hydrates Formation and Decomposition in a Geological Reservoir. Paper presented at the SPE Gas Technology Symposium, Calgary, Alberta, Canada. (2006).
USGS Geological Survey Gas Hydrates Project. http://woodshole.er.usgs.gov/project-pages/hydrates/database.html. (2014)
Van Genuchten, M. T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil science society of America journal, 44(5), 892-898. (1980).
Waite, W., deMartin, B., Kirby, S., Pinkston, J., & Ruppel, C. Thermal conductivity measurements in porous mixtures of methane hydrate and quartz sand. Geophysical Research Letters, 29(24). (2002).
Waite, W. F., Gilbert, L. Y., Winters, W. J., & Mason, D. H. Estimating thermal diffusivity and specific heat from needle probe thermal conductivity data. Review of Scientific Instruments, 77(4), 044904. (2006).
Waite, W. F., Stern, L. A., Kirby, S., Winters, W. J., & Mason, D. Simultaneous determination of thermal conductivity, thermal diffusivity and specific heat in sI methane hydrate. Geophysical Journal International, 169(2), 767-774. (2007).
Warzinski, R. P., Gamwo, I. K., Rosenbaum, E. J., Myshakin, E. M., Jiang, H., Jordan, K. D., English, N. J., & Shaw, D. W. Thermal properties of methane hydrate by experiment and modeling and impacts upon technology. Paper presented at the 6th International Conference on Gas Hydrates (ICGH). (2008).
Zhao, J., Zhu, Z., Song, Y., Liu, W., Zhang, Y., & Wang, D. Analyzing the process of gas production for natural gas hydrate using depressurization. Applied Energy, 142, 125-134. (2015).