| 研究生: |
謝億樺 Hsieh, Yi-Hua |
|---|---|
| 論文名稱: |
利用偏極化光之正交性加強單次量測之全距光頻域同調斷層掃描技術 Utilizing Orthogonality of Polarized Light to Enhance One-Shot Full Range FD-OCT Imaging |
| 指導教授: |
黃振發
Huang, Jen-Fa 鄭旭志 Cheng, Hsu-Chih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 極化 、光學同調斷層掃描技術 |
| 外文關鍵詞: | OCT, Polarization |
| 相關次數: | 點閱:66 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近來光學同調斷層掃描術(OCT)在發展上,由於頻域光學同調斷層掃描術(FD-OCT)在活體生物組織量測上具有快速造影和高靈敏度的特性,逐漸被大家所重視。
在本論文中,我們提出一套新的頻域光學同調斷層掃描術系統應用於相移演算法。藉由極化光的正交特性,我們可以同時記錄到兩組干涉頻譜。這套系統使我們可以消除頻域光學同調斷層掃描術本身具有的自相關雜訊和來自放置於系統上待測物的多層介面所反射而造成多餘的自相干及交相干的訊號,亦可借由此方法來使可量測的範圍加倍。除此之外,由於此系統不需要借由機械式的掃描(M-scan)來達成相移演算法,因此,量測的速度將會加倍而測量結果的準確度比起傳統的頻域光學同調斷層掃描術將較不易受到待測物體及系統本身的震動。
我們亦討論有關待測物的震動和相移的精準度所造成的影響。比較模擬的結果顯示出此系統表現的較傳統的頻域光學同調斷層掃描系統為佳。
Most recent development in optical coherence tomography (OCT) placed its emphasis on Fourier domain implementations for in vivo imaging of biological tissues because of its inherent imaging speed and sensitivity advantages.
In this thesis, we present a novel optical scheme for a phase shifting method of Fourier domain optical coherence tomography (FD-OCT) system. With orthogonal polarization property, two interference patterns can be recorded simultaneously. It is possible to remove the strong autocorrelation noise inherent in FD-OCT and unwanted auto- and cross-coherent terms introduced by the reflections from various optical interfaces present in the system and to double the measurement range with this
method. Furthermore, no mechanical scan for phase shifting (M-scan) is needed, so that the speed of image acquisition will be doubled and the accuracy of the OCT is more affected by the vibration of the sample and the system itself than conventional FD-OCTs.
We also discuss the impact of the vibration of the sample and the accuracy of phase shift. The result of our comparison reveals that the proposed system is better than conventional FD-OCT systems.
[1] R. C. Youngquist, S. Carr, and D. E. N. Davies, “Optical coherence domain reflectometry: A new optical evaluation technique,” Opt. Lett., vol. 12, pp. 158–160, 1987.
[2] W. Clivaz, F. Marquis-Weible, R. P. Salathe, R. P. Novak, and H. H. Gilgen, “High-resolution reflectometry in biological tissue,” Opt. Lett., vol. 17, pp. 4–6, 1992.
[3] J. M. Schmitt, A. Kn¨uttel, and R. F. Bonner, “Measurement of optical properties of biological tissues by low-coherence reflectometry,” Appl. Opt., vol. 32, pp. 6032–6042, 1993.
[4] M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of Dispersion-Canceled Quantum-Optical Coherence Tomography,” Phys. Rev. Lett., vol. 91, 083601, Aug. 2003.
[5] M. R. Hee, D. Huang, E. A. Swanson and J. G. Fujimoto, “Polarization sensitive low coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am., B 9, pp. 903-8, 1992.
[6] Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, “Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media,” Opt. Lett., vol. 22, Issue 1, pp. 64-66, Jan. 1997.
[7] P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D: Appl. Phys., vol. 38, pp. 2519-2535, Jul. 2005.
[8] E. Götzinger, M. Pircher, R. Leitgeb, and C. Hitzenberger, “High speed full range complex spectral domain optical coherence tomography,” Opt. Exp., vol. 13, issue 2, pp. 583-594, Jan. 2005.
[9] Y. Yasuno, S. Makita, T. Endo, G. Aoki, H. Sumimura, M. Itoh, and T. Yatagai, “One-shot-phase-shifting Fourier domain optical coherence tomography by reference wavefront tilting,” Opt. Exp., vol. 12, issue 25, pp. 6184-6191, Dec. 2004.
[10] B. J. Vakoc, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Elimination of depth degeneracy in optical frequency-domain imaging through polarization-based optical demodulation,” Opt. Lett., vol. 31, issue 3, pp. 362-364, Feb. 2006.
[11] R. K. Wang, “In vivo full range complex Fourier domain optical coherence tomography,” Appl. Phys. Lett., vol. 90, pp. 054103,Jan. 2007.
[12] M. V. Sarunic, B. E. Applegate, and J. A. Izatt, “Real-time quadrature projection complex conjugate resolved Fourier domain optical coherence tomography,” Opt. Lett., vol. 31, issue 16, pp. 2426-2428, Jul. 2006.
[13] Y. Watanabe, Y. Hayasaka, M. Sato, and N. Tanno, “Full-field optical coherence tomography by apochromatic phase shifting with a rotating polarizer,” App. Opt., vol. 44, issue 8, pp. 1387-1392, Mar. 2005.
[14] J. W. Goodman, Statistical Optics, New York, John Wiley and Sons, pp. 164-169, 1985.
[15] R. D. Guenther, Modern Optics, John Wiley and Sons, 1990.
[16] 朱建勳, “以光同調斷層攝影術量測超越理論分析之懸浮膜,” 中原大學物理學系專題研究論文, 2006.
[17] I-Jen Hsu, “Optical Coherence Tomography,” Phys, CYCU.
[18] P. Hariharan, “Achromatic and apochromatic halfwave and quarterwave retarders,” Opt. Eng., vol. 35, issue 11, pp. 3335-3337, Nov. 1996.
[19] P. H. Tomlins and R. K. Wang, “Matrix approach to quantitative refractive index analysis by Fourier domain optical coherence tomography,” JOSA A, vol. 23, issue 8, pp. 1897-1907, Aug. 2006.
[20] A. H. Bachmann, R. A, Leitgeb, and T. Lasser, “Complex unltrahigh resolution Fourier domain optical coherence tomography,” Proc. of SPIE, vol. 6079, pp. 60790X-1-60790X-9, Feb. 2006.