簡易檢索 / 詳目顯示

研究生: 陳紹紋
Chen, Shao-Wen
論文名稱: 探討不同螺旋性石墨烯的彈性性質與破壞行為之研究
The study of elastic properties and fracture behavior of graphene with different chiralities
指導教授: 張怡玲
Chang, I-Ling
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 87
中文關鍵詞: 石墨烯薄膜分子力學等效模型手性破壞行為應變能釋放率
外文關鍵詞: graphene, chirality, molecular mechanics, mechanical properties, fracture behavior
相關次數: 點閱:91下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要使用分子力學最小能量方法以及代表性單位晶格能量等效模型來探討不同螺旋性之石墨烯薄膜的彈性性質與破壞行為,考慮一代表性單位晶格受任意方向之平面加載的變形,在分子力學方法中僅考慮碳原子間之鍵長與鍵角所產生的能量變化,以最小能量假設求得穩態原子之分佈,在小變形下藉由應變能密度可求得彈性性質,而在大加載下配合以臨界鍵長作為判斷破壞的依據,用以預測石墨烯薄膜的破壞應變,並有效的發現不同螺旋性之石墨烯薄膜的彈性性質呈現平面內等向性,但破壞則具有方向性。
    另外以代表性單位晶格的能量等效之概念,建立一有限尺寸之能量等效樑元素模型,探討能量等效模型之彈性性質與破壞行為,並與分子力學方法的結果比較,探討模擬的合理性,其結果顯示不同螺旋性之石墨烯薄膜能量等效模型呈現等向性的彈性性質,但不等向性的破壞行為。
    此外沿用能量等效模型探討完整石墨烯薄膜與有缺陷之石墨烯薄膜的破壞行為,並分析有裂紋之扶手椅型與鋸齒型石墨烯薄膜受簡單拉伸加載時的破壞行為,即為分析扶手椅型與鋸齒型受第I型破裂(Opening fracture)之應力強度因子(Stress intensity factor)與應變能釋放率(Strain energy release rate),根據連體力學之理論,本研究成功訂定了扶手椅型與鋸齒型受第I型破裂的臨界應力強度因子以及臨界應變能釋放率,且因為石墨烯薄膜呈現的破壞非等向性,扶手椅型石墨烯薄膜展現了比其他不同螺旋性之石墨烯薄膜較具抗破壞的行為。

    This research developed molecular mechanics minimum energy method and energy equivalent model by the unit cell of graphene to investigate the elastic properties and fracture behavior for all chiralities. In molecular mechanics method was consider a representative unit cell of graphene and only bond stretching and bending were considered in the infinite graphene sheet under in-plane loading. The deformation of the graphene could be calculated under the minimum energy assumption. Also, the fracture criteria based on critical bond length was used to predict the fracture strain of graphene. We found that the elastic behavior of graphene is isotropic for all chiralities, in contrast to its anisotropic fracture behavior.
    We use the concept of energy equivalent to a representative of the unit lattice Establish of a finite size of the equivalent energy beam element model to investigate the elastic properties and fracture behavior, and compare with the results of molecular mechanics method. It showed that the isotropic/anisotropic features of elasticity/fracture are good in the two-dimensional tensile systems.

    Then we adopted the energy equivalent model to discuss failure behavior on the graphene which is complete or has defects. And analysis the armchair graphene or zigzag graphene has cracks and stretch by simple tensile loading which is the mode-I type fracture. According to the continuous mechanics, we successfully set up the critical strain energy release rate with armchair and zigzag graphene by mode-I fracture. Also owing to its anisotropy failure behavior, armchair graphene exhibited greater anti-destroyed behavior than any other chirality of graphene.

    摘要 II ABSTRACT III 致謝 IX 目錄 X 表目錄 XIII 圖目錄 XIV 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 石墨烯薄膜機械性質之文獻回顧 2 1.2.2 石墨烯薄膜破壞行為之文獻回顧 3 1.3 本文架構 4 第二章 分子力學分析 6 2.1 分子力學 6 2.1.1 石墨烯薄膜結構 6 2.1.2 石墨烯薄膜之螺旋性 7 2.1.3 能量分析 9 2.2 分子力學模型推導 10 2.2.1 基本理論 10 2.2.2 穩態原子分佈假設 11 2.2.3 二維拉伸與剪力模型 11 2.3 機械性質計算 18 2.3.1 彈性矩陣 18 2.3.2 楊氏模數、蒲松比與剪力模數 21 2.4 破壞行為 23 2.4.1 破壞準則 23 2.4.2 破壞應變 23 第三章 以有限元素法探討石墨烯薄膜之彈性性質與破壞行為 36 3.1 等效模型建立 36 3.1.1 樑模型 36 3.1.2 石墨烯薄膜之尺寸與邊界設定 39 3.2 收斂性測試 44 3.3 彈性性質 46 3.4 破壞行為 50 3.4.1 破壞準則 50 3.4.2 石墨烯薄膜之破壞應變 50 第四章 以有限元素法探討忽略邊界效應之石墨烯薄膜的破壞行為 54 4.1 破壞行為 54 4.1.1 近似無窮大石墨烯薄膜 54 4.1.2 近似無窮大石墨烯薄膜之破壞應變 56 4.2 破壞變形 58 4.2.1 模擬方法 58 4.2.2 完美石墨烯薄膜之破裂行為 59 4.2.3 具預斷鍵之石墨烯薄膜的破裂行為 70 4.3 石墨烯薄膜之應力強度因子與應變能釋放率 73 4.3.1 應變能釋放率之推導 73 4.3.2 收斂性測試 76 4.3.3 臨界應變能釋放率及臨界應力強度因子 79 第五章 結論與未來展望 82 5.1 結論 82 5.1.1 分子力學 82 5.1.2 等效模型 82 5.2 未來展望 82 參考文獻 84

    [1] F. Liu, P. Ming, and J. Li, " Ab initio calculation of ideal strength and phonon instability of graphene under tension," Physical Review B, vol. 76, p. 064120, 2007.
    [2] M. Neek-Amal and F. Peeters, "Nanoindentation of a circular sheet of bilayer graphene," Physical Review B, vol. 81, p. 235421, 2010.
    [3] J.-L. Tsai and J.-F. Tu, "Characterizing mechanical properties of graphite using molecular dynamics simulation," Materials & Design, vol. 31, pp. 194-199, 2010.
    [4] Y. Z. Cheng and G. Y. Shi, "The prediction of mechanical properties of graphene by molecular mechanics and structural mechanics method," Advanced Materials Research, vol. 583, pp. 403-407, 2012.
    [5] I.-L. Chang and J.-A. Chen, "The molecular mechanics study on mechanical properties of graphene and graphite," Applied Physics A, vol. 119, pp. 265-274, 2015.
    [6] C. Li and T.-W. Chou, "A structural mechanics approach for the analysis of carbon nanotubes," International Journal of Solids and Structures, vol. 40, pp. 2487-2499, 2003.
    [7] G. Giannopoulos, P. Kakavas, and N. Anifantis, "Evaluation of the effective mechanical properties of single walled carbon nanotubes using a spring based finite element approach," Computational Materials Science, vol. 41, pp. 561-569, 2008.
    [8] J. Xiao, J. Staniszewski, and J. Gillespie, "Fracture and progressive failure of defective graphene sheets and carbon nanotubes," Composite Structures, vol. 88, pp. 602-609, 2009.
    [9] M. M. Shokrieh and R. Rafiee, "Prediction of Young’s modulus of graphene sheets and carbon nanotubes using nanoscale continuum mechanics approach," Materials & Design, vol. 31, pp. 790-795, 2010.
    [10] S. K. Georgantzinos, G. I. Giannopoulos, D. E. Katsareas, P. A. Kakavas, and N. K. Anifantis, "Size-dependent non-linear mechanical properties of graphene nanoribbons," Computational Materials Science, vol. 50, pp. 2057-2062, 2011.
    [11] 陳則安, "以分子力學方法及原子等校模型探討石墨烯的機械性質," 碩士論文。國立成功大學機械工程學系, 2013.
    [12] H. Bu, Y. Chen, M. Zou, H. Yi, K. Bi, and Z. Ni, "Atomistic simulations of mechanical properties of graphene nanoribbons," Physics Letters A, vol. 373, pp. 3359-3362, 2009.
    [13] Z. Ni, H. Bu, M. Zou, H. Yi, K. Bi, and Y. Chen, "Anisotropic mechanical properties of graphene sheets from molecular dynamics," Physica B: Condensed Matter, vol. 405, pp. 1301-1306, 2010.
    [14] R. Khare, S. L. Mielke, J. T. Paci, S. Zhang, R. Ballarini, G. C. Schatz, et al., "Coupled quantum mechanical/molecular mechanical modeling of the fracture of defective carbon nanotubes and graphene sheets," Physical Review B, vol. 75, p. 075412, 2007.
    [15] H. Zhao, K. Min, and N. Aluru, "Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension," Nano letters, vol. 9, pp. 3012-3015, 2009.
    [16] M. C. Wang, C. Yan, L. Ma, N. Hu, and M. W. Chen, "Effect of defects on fracture strength of graphene sheets," Computational Materials Science, vol. 54, pp. 236-239, 2012.
    [17] M. Xu, A. Tabarraei, J. Paci, J. Oswald, and T. Belytschko, "A coupled quantum/continuum mechanics study of graphene fracture," International Journal of Fracture, vol. 173, pp. 163-173, 2012.
    [18] B. Zhang, L. Mei, and H. Xiao, "Nanofracture in graphene under complex mechanical stresses," Applied Physics Letters, vol. 101, p. 121915, 2012.
    [19] 張南屏, "以分子動力學研究石墨烯和可調式奈米碳管的機械性質," 碩士論文。國立成功大學機械工程學系, 2013.
    [20] Y. I. Jhon, Y. M. Jhon, G. Y. Yeom, and M. S. Jhon, "Orientation dependence of the fracture behavior of graphene," Carbon, vol. 66, pp. 619-628, 2014.
    [21] T. Theodosiou and D. Saravanos, "Numerical simulation of graphene fracture using molecular mechanics based nonlinear finite elements," Computational Materials Science, vol. 82, pp. 56-65, 2014.
    [22] G. I. Giannopoulos, P. A. Kakavas, and N. K. Anifantis, "Evaluation of the effective mechanical properties of single walled carbon nanotubes using a spring based finite element approach," Computational Materials Science, vol. 41, pp. 561-569, 2008.
    [23] G. R. Irwin, "Analysis of stresses and strains near the end of a crack traversing a plate," SPIE MILESTONE SERIES MS, vol. 137, pp. 167-170, 1997.
    [24] A. T. Zehnder. Fracture Mechanics, Springer London Dordrecht Heidelberg New York , UK, 2012
    [25] Z. Zhang, X. Wang, and J. D. Lee, "An atomistic methodology of energy release rate for graphene at nanoscale," Journal of Applied Physics, vol. 115, p. 114314, 2014.

    下載圖示 校內:2020-08-24公開
    校外:2020-08-24公開
    QR CODE