| 研究生: |
陳冠廷 Chen, Guan-Ting |
|---|---|
| 論文名稱: |
LED色彩補償系統於水下目標物照明之研製 Design and Fabrication of an LED Color Compensation System for Underwater Objects Illumination |
| 指導教授: |
沈聖智
Shen, Sheng-Chih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 118 |
| 中文關鍵詞: | LED色彩照明 、光色補償技術 、Lab色彩空間 、水下載具 |
| 外文關鍵詞: | LED color lighting, light color compensation technology, Lab color space, underwater vehicles |
| 相關次數: | 點閱:36 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文使用COB全光譜光源、多光色LED照明模組,並透過補償光色演算法創建一具備還原水下目標物色彩之LED光色補償照明燈具,以改善水下圖像色調偏藍、灰等色差問題。其中智慧補償光色演算法是透過不同波長於水下傳遞的衰減率,計算所需補償之光能量並利用MCU微控制器控制電流以調整LED照明光源,並利用不同增強係數調整特定光色輸出,而本論文所使用水下色彩量化評估方法,亦是將水下圖像利用python軟體,將CIELab色彩模型推算L*、a*、b*值,再以Euclidean Distance (ΔE)為顏色量化之依據,並透過分析色彩座標a*、b*值找出造成色偏之原因,最後比較六種光色增強方法並建構水下數據庫,並選擇最佳調光方法進行濁度觀測實驗與長距離觀測實驗,將結果分析於紅、綠、藍、黃四個色塊。於長距離觀察其色彩還原能力,由實驗數據顯示,在水下5m時,藍色色塊以白光+增強彩補之顏色還原率提高11.4%;綠色色塊之顏色還原率提高40.8%;紅色色塊之顏色還原率提高24.4%;黃色色塊之顏色還原率提高17.6%。水下10m時,於藍色色塊顏色還原率提高35%;綠色色塊顏色還原率提高40%;紅色色塊顏色還原率提高6.7%;黃色色塊顏色還原率提高24.9%,由此結果可驗證本研究設計之演算法及本論文燈具能有效改善水下物體之演色性,最後將LED光色補償系統掛載於水下載具,可提高水下目標物的識別、監控、探勘與觀測之能力。
This thesis utilizes a COB full-spectrum light source and a multi-color LED lighting module to create an LED color compensation system. To improve the color distortion issues such as blue and gray tones present in underwater images. The intelligent color compensation algorithm calculates the required compensatory light energy based on the attenuation rate of different wavelengths underwater, the underwater color quantification evaluation method used in this thesis involves processing underwater images with Python software to derive the L*, a*, and b* values in the CIELab color model. The Euclidean Distance (ΔE) is used as the basis for color quantification, and by analyzing the a* and b* color coordinates, the causes of color deviation are identified, the thesis compares six methods of color enhancement and constructs an underwater database to select the best dimming method for conducting turbidity observation experiments and long-distance observation experiments on four color blocks: red, green, blue, and yellow. At 10 meters underwater, the color restoration rate increased by 35% for the blue color block; 40% for the green color block; 6.7% for the red color block; and 24.9% for the yellow color block. These results verify that the designed algorithm and the lighting fixture in this thesis effectively improve the color rendering of underwater objects. Finally, the LED color compensation system is mounted on an underwater vehicle, enhancing its capability for identifying, monitoring, exploring, and observing underwater targets.
[1] S. Fayaz, S. A. Parah, G. J. Qureshi and Kumar, “Underwater image restoration”, A state‐of‐the‐art review. IET Image Processing, 15(2), 269-285, 2021.
[2] M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting”, Journal of display technology,3(2), 160-175, 2007.
[3] F. A. Furfari, “A different kind of chemistry a history of tungsten halogen lamps”, IEEE Industry Applications Magazine, 7(6), 10-17, 2001.
[4] R. Karlicek, C. C. Sun, G. Zissis and R. Ma, “Handbook of advanced lighting technology”, Springer International Publishing, 2017.
[5] S. Kitsinelis, “Light sources: technologies and applications”, CRC Press, 2016.
[6] S. Dutta Gupta, A. Agarwal, “Artificial lighting system for plant growth and development: Chronological advancement, working principles, and comparative assessment”, Light emitting diodes for agriculture: smart lighting, 1-25, 2017.
[7] C. Weisbuch, “On the search for efficient solid state light emitters: Past, present, future”, ECS Journal of Solid State Science and Technology, 9(1), 016022, 2019.
[8] K. M. Yu, Z. Liliental-Weber, W. Walukiewicz, W. Shan, J. W. Ager, S. X. Li and W. J. Schaff, “On the crystalline structure, stoichiometry and band gap of InN thin films”, Applied Physics Letters, 86(7), 710-719, 2005.
[9] D. Feezell and S. Nakamura, “Invention development, and status of the blue light-emitting diode, the enabler of solid-state lighting”, Comptes Rendus Physique, 19(3), 113-133, 2018.
[10] Isamu, Hiroshi and Shuji, “Philips Innovations in LEDs”, DOE Solid State Lighting Workshop, 2015.
[11] H. Zheng, L. Li, X. Lei, X. Yu, S. Liu and X. Luo, “Optical performance enhancement for chip-on-board packaging LEDs by adding TiO 2/silicone encapsulation layer”, IEEE electron device letters,35(10), 1046-1048, 2014.
[12] P. Mariani, I. Quincoces, K. H. Haugholt, Y. Chardard, A. W. Visser, C. Yates and J. T. Thielemann, “Range-gated imaging system for underwater monitoring in ocean environment”, Sustainability,11(1), 162, 2018.
[13] G. Johnsen, Z. Volent, H. Dierssen, R. Pettersen, M. Van Ardelan, F. Søreide and M. Moline, “Underwater hyperspectral imagery to create biogeochemical maps of seafloor properties. In Subsea optics and imaging”, 508-540. Woodhead Publishing, 2013.
[14] H. Liu, J. Sticklus, K. Köser, H. J. T. Hoving, H. Song, Y. Chen and T. Schoening, “TuLUMIS-a tunable LED-based underwater multispectral imaging system”, Optics express,26(6), 7811-7828, 2018.
[15] K. Iqbal, M. Odetayo, A. James, R. A. Salam and A. Z. H. Talib, “Enhancing the low quality images using unsupervised colour correction method”, IEEE International Conference on Systems, Man and Cybernetics, Istanbul, Turkey, 1703-1709, 2010.
[16] L. Dong, W. Zhang, W. Xu, “Underwater image enhancement via integrated RGB and LAB color models”, Signal Processing: Image Communication,104, 116684, 2022.
[17] R. Liu, X. Fan, M. Zhu, M. Hou and Z Luo, “Real-world underwater enhancement: Challenges, benchmarks, and solutions under natural light”, IEEE Transactions on Circuits and Systems for Video Technology,30(12), 4861-4875, 2020.
[18] C. Li, C. Guo, W. Ren, R. Cong, J. Hou, S. Kwong and D. Tao, “An underwater image enhancement benchmark dataset and beyond”, IEEE Transactions on Image Processing,29, 4376-4389, 2019.
[19] M. Hou, R. Liu, X. Fan and Z. Luo, “Joint residual learning for underwater image enhancement”, IEEE International Conference on Image Processing, Athens, Greece, 4043-4047, 2018.
[20] M. Roznere and A. Q. Li, “Real-time model-based image color correction for underwater robots”, IEEE/RSJ International Conference on Intelligent Robots and Systems, Macau, China, 7191-7196, 2019.
[21] K. Fuwa and B. L. Valle, “The Physical Basis of Analytical Atomic Absorption Spectrometry The Pertinence of the Beer-Lambert Law”, Analytical Chemistry,35(8), 942-946, 1963.
[22] 張奇珍,「光能量傳遞衰減模型於水下測距系統之研製」,國立成功大學系統及船舶機電工程學系,碩士論文,2021。
[23] A. Yamashita, M. Fujii and T. Kaneko, “Color registration of underwater images for underwater sensing with consideration of light attenuation”, IEEE international Conference on robotics and automation, Rome, Italy, 4570-4575, 2007.
[24] H. S. Fairman, M. H. Brill and Hemmendinger, “the CIE 1931 color‐matching functions were derived from Wright‐Guild data”, Color Research & Application Centre Français de la Couleur,22(1), 11-23, 1997.
[25] 戴孟宗,「現代色彩學:色彩理論、感知與應用」,全華圖書,2011。
[26] X. Zhang and B. A. Wandell, “A spatial extension of CIELAB for digital color image reproduction”, In SID international symposium digest of technical papers ,27(1), 731-734, 1996.
[27] 李正中、楊宗勳、廖詩芳,「光學薄膜於色彩顯示之應用」,科儀新知,177, 48-60,2010。
[28] D. Pascale, “RGB coordinates of the Macbeth Color Checker”, The Babel Color Company, 6(6), 2006.
[29] 後藤彌彦,「水道法の歩みと水質汚濁防止」,人間環境論集,14(2),1,2014
校內:2028-08-01公開