簡易檢索 / 詳目顯示

研究生: 洪鹿耘
Hung, Lu-Yun
論文名稱: 添加錫至積層陶瓷電容器鎳內電極中對積層陶瓷電容器絕緣電阻衰退 現象之影響
Effect of Tin Addition to Nickel Internal Electrodes on the Insulation Resistance Degradation of MLCCs
指導教授: 向性一
Hsiang, Hsing-I
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 113
中文關鍵詞: MLCCs內電極絕緣電阻衰退肖特基能障缺陷化學
外文關鍵詞: MLCCs internal electrodes, insulation resistance degradation, Schottky barrier, defect chemistry
相關次數: 點閱:51下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用醋酸錫粉添加至商用鎳膏中做為MLCCs內電極材料製作MLCCs樣品,並經由改變錫的添加量及給予樣品不同再氧化條件,以釐清添加錫對於MLCCs之絕緣電阻衰退問題的影響。研究中發現添加錫會使得MLCCs樣品在燒結過程中於內電極生成微量Ni3Sn,改善內電極連續性,進而提升MLCCs樣品的電容值以及相對介電常數(K值),但也會造成錫擴散進入鈦酸鋇使其晶粒成長,導致MLCCs樣品的電阻值及崩潰電壓下降。研究近一步表明,錫元素擴散進入鈦酸鋇應是在再氧化過程中以二價離子形式作為受體離子進入鈦酸鋇晶格,取代鈦位置並產生氧空缺,同時由於外界氧氣流入電極介面,與錫元素氧化產生之自由電子結合形成吸附氧,於電極介面形成肖特基能障,抑制漏電流產生,進而改善MLCCs樣品絕緣電阻衰退問題。另外,由於錫元素在氧化過程中會形成緻密氧化錫層,阻止內部錫元素繼續氧化,雖然提升氧化氣體之流量,但因錫元素氧化比例並未隨之上升,導致肖特基能障高度沒有顯著改變,因此不同再氧化程序對於MLCCs樣品之絕緣電阻衰退的影響並不明顯。

    In this study, tin acetate powder was added to commercial nickel paste to serve as the internal electrode material for MLCCs, thereby creating MLCCs samples. By varying the amount of tin added and applying different re-oxidation conditions to the samples, this study aimed to elucidate the impact of tin addition on the insulation resistance degradation of MLCCs. The study found that the addition of tin leads to the formation of trace amounts of Ni3Sn in the internal electrodes during the sintering process. This enhances the continuity of the internal electrodes, thereby increasing the capacitance and relative dielectric constant (K value) of the MLCCs samples. However, this also causes tin to diffuse into the barium titanate, promoting grain growth, which in turn reduces the resistance value and breakdown voltage of the MLCCs samples. The study further indicates that during the re-oxidation process, tin diffuses into the barium titanate lattice as divalent ions, substituting for titanium and creating oxygen vacancies. Simultaneously, external oxygen infiltrates the electrode interface, combines with free electrons generated by the oxidation of tin to form adsorbed oxygen, thereby creating a Schottky barrier at the electrode interface. This inhibits leakage current and mitigates the insulation resistance degradation of the MLCCs samples. Additionally, during the oxidation process, tin forms a dense tin oxide layer, which prevents further oxidation of the internal tin. Although increasing the flow of oxidizing gas, the proportion of tin oxidation does not increase correspondingly, resulting in no significant change in the height of the Schottky barrier. Therefore, varying re-oxidation procedures do not significantly impact the insulation resistance degradation of the MLCCs samples.

    摘要 I Extended Abstract II 誌謝 XXIV 目錄 XXV 表目錄 XXVIII 圖目錄 XXX 第一章 緒論 1 1.1 前言 1 1.2 研究目的 2 第二章 文獻回顧 3 2.1 積層陶瓷電容器介紹: 3 2.2 積層陶瓷電容器的可靠度: 4 2.2.1 高加速壽命試驗: 5 2.2.2 熱刺激去極化電流: 6 2.3 絕緣電阻降解機制: 7 2.3.1 晶界比例對絕緣電阻的影響: 9 2.3.2 摻雜元素對絕緣電阻的影響: 10 2.3.3 改變製程對絕緣電阻的影響: 14 2.4 積層陶瓷電容器內電極改良: 16 2.5 交流阻抗分析法[42]: 22 2.5.1 電模數分析: 25 2.5.2 常相位角元件: 27 2.6 肖特基能障: 28 第三章 實驗方法及步驟 31 3.1 實驗原料: 31 3.2 樣品製作流程: 31 3.3 分析方法: 35 3.3.1 顯微結構分析(SEM): 35 3.3.2 電性測量: 36 3.3.3 相鑑定分析(XRD): 36 3.3.4 高加速壽命試驗(HALT): 36 3.3.5 阻抗分析: 37 3.3.6 熱刺激去極化電流(TSDC): 37 3.3.7 穿透式電子顯微鏡(TEM): 37 3.3.8 高解析電子微探儀(EPMA): 37 3.3.9 化學分析電子光譜儀(XPS): 38 3.3.10 Mott Schottky: 38 第四章 結果與討論 40 4.1 顯微結構分析: 40 4.2 電性分析結果: 42 4.3 相鑑定分析: 43 4.4 高加速壽命試驗: 45 4.5 阻抗分析: 47 4.6 熱刺激去極化電流: 54 4.7 穿透式電子顯微鏡分析: 56 4.8 高解析電子微探儀分析: 57 4.9 化學分析電子光譜: 59 4.10 Mott Schottky: 65 第五章 結論 69 參考文獻 70 附錄 75

    [1] S. Suzuki, S. Yamaguchi, A. Doi, A. Shiota, N. Iwaji, S. Abe, M. Matsuda, T. Nakamura, and H. Sano, “Suppressive effect of Ni–Sn internal electrode at the anode on the leakage current degradation of BaTiO3-based multilayer ceramic capacitors,” Applied Physics Letters, vol. 118, no. 11, 2021.
    [2] R. Panda, O. S. Dinkar, M. K. Jha, and D. D. Pathak, “Hydrometallurgical processing of waste multilayer ceramic capacitors (MLCCs) to recover silver and palladium,” Hydrometallurgy, vol. 197, 2020.
    [3] K. Hong, T. H. Lee, J. M. Suh, S.-H. Yoon, and H. W. Jang, “Perspectives and challenges in multilayer ceramic capacitors for next generation electronics,” Journal of Materials Chemistry C, vol. 7, no. 32, pp. 9782-9802, 2019.
    [4] J. Yamamatsu, N. Kawano, T. Arashi, A. Sato, Y. Nakano, and T. Nomura, “Reliability of multilayer ceramic capacitors with nickel electrodes,” Journal of Power Sources, vol. 60, no. 2, pp. 199-203, 1996.
    [5] X. Xu, A. S. Gurav, P. M. Lessner, and C. A. Randall, “Robust BME class-I MLCCs for harsh-environment applications,” IEEE Transactions on Industrial Electronics, vol. 58, no. 7, pp. 2636-2643, 2010.
    [6] S. Hirose, T. Usui, S. Crossley, B. Nair, A. Ando, X. Moya, and N. D. Mathur, “Progress on electrocaloric multilayer ceramic capacitor development,” APL Materials, vol. 4, no. 6, 2016.
    [7] W. Liu, and C. A. Randall, “Thermally stimulated relaxation in Fe‐doped SrTiO3 systems: II. Degradation of SrTiO3 dielectrics,” Journal of the American Ceramic Society, vol. 91, no. 10, pp. 3251-3257, 2008.
    [8] C. Randall, R. Maier, W. Qu, K. Kobayashi, K. Morita, Y. Mizuno, N. Inoue, and T. Oguni, “Improved reliability predictions in high permittivity dielectric oxide capacitors under high dc electric fields with oxygen vacancy induced electromigration,” Journal of Applied Physics, vol. 113, no. 1, 2013.
    [9] T. Nakamura, T. Yao, J. Ikeda, N. Kubodera, and H. Takagi, "Improvement of the Reliability of Dielectrics for MLCC." p. 092007.
    [10] T. Prokopowicz, and A. Vaskas, “Research and development, intrinsic reliability, subminiature ceramic capacitors,” Final Report, ECOM-90705-F, pp. 175, 1969.
    [11] P. Yousefian, B. Akkopru-Akgun, C. A. Randall, and S. Trolier-McKinstry, “Electrical Degradation in Dielectric and Piezoelectric Oxides: Review of Defect Chemistry and Associated Characterization Techniques,” arXiv preprint arXiv:2403.06359, 2024.
    [12] S. H. Yoon, C. A. Randall, and K. H. Hur, “Effect of acceptor (Mg) concentration on the resistance degradation behavior in acceptor (Mg)‐doped BaTiO3 bulk ceramics: II. Thermally stimulated depolarization current analysis,” Journal of the American Ceramic Society, vol. 92, no. 8, pp. 1766-1772, 2009.
    [13] K. Kaneda, Y. Iwazaki, and Y. Konishi, “The mechanism of lifetime improvement through vanadium addition to multilayer ceramic capacitor with nickel electrode,” Journal of the Ceramic Society of Japan, vol. 126, no. 11, pp. 931-935, 2018.
    [14] T. Okamoto, N. Inoue, S. Kitagawa, H. Niimi, A. Ando, and H. Takagi, “The Kelvin probe force microscopy measurement of degraded multilayer ceramic capacitors with Ni inner electrode,” Key Engineering Materials, vol. 485, pp. 47-50, 2011.
    [15] T. Okamoto, A. Ando, and H. Takagi, “Change in Electric Field Distribution in Non-Reducing BaTiO3 based-Dielectric Layer Loaded at High Temperature,” Key Engineering Materials, vol. 566, pp. 16-19, 2013.
    [16] T. Okamoto, S. Kitagawa, N. Inoue, and A. Ando, “Electric field concentration in the vicinity of the interface between anode and degraded BaTiO3-based ceramics in multilayer ceramic capacitor,” Applied Physics Letters, vol. 98, no. 7, 2011.
    [17] H. Gong, X. Wang, S. Zhang, H. Wen, and L. Li, “Grain size effect on electrical and reliability characteristics of modified fine-grained BaTiO3 ceramics for MLCCs,” Journal of the European Ceramic Society, vol. 34, no. 7, pp. 1733-1739, 2014.
    [18] M. Yashima, T. Hoshina, D. Ishimura, S. Kobayashi, W. Nakamura, T. Tsurumi, and S. Wada, “Size effect on the crystal structure of barium titanate nanoparticles,” Journal of applied physics, vol. 98, no. 1, 2005.
    [19] S.-H. Yoon, S.-H. Kang, S.-H. Kwon, and K.-H. Hur, “Resistance degradation behavior of Ca-doped BaTiO3,” Journal of Materials Research, vol. 25, no. 11, pp. 2135-2142, 2010.
    [20] J. Park, T. Oh, and Y. Kim, “Dielectric properties and microstructural behaviour of B-site calcium-doped barium titanate ceramics,” Journal of materials science, vol. 27, pp. 5713-5719, 1992.
    [21] N. Wada, T. Hiramatsu, T. Tamura, and Y. Sakabe, “Investigation of grain boundaries influence on dielectric properties in fine-grained BaTiO3 ceramics without the core–shell structure,” Ceramics international, vol. 34, no. 4, pp. 933-937, 2008.
    [22] S. Desu, and E. Subbarao, “Effect of oxidation states of Mn on the phase stability of Mn-doped BaTiO3,” Ferroelectrics, vol. 37, no. 1, pp. 665-668, 1981.
    [23] F. Batllo, E. Duverger, J.-C. Jules, J.-C. Niepce, B. Jannot, and M. Maglione, “Dielectric and EPR studies of Mn-doped barium titanate,” Ferroelectrics, vol. 109, no. 1, pp. 113-118, 1990.
    [24] W. Peng, L. Li, S. Yu, P. Yang, and K. Xu, “Dielectric properties, microstructure and charge compensation of MnO2-doped BaTiO3-based ceramics in a reducing atmosphere,” Ceramics International, vol. 47, no. 20, pp. 29191-29196, 2021.
    [25] S. H. Yoon, C. A. Randall, and K. H. Hur, “Correlation between resistance degradation and thermally stimulated depolarization current in acceptor (Mg)‐doped BaTiO3 submicrometer fine‐grain ceramics,” Journal of the American Ceramic Society, vol. 93, no. 7, pp. 1950-1956, 2010.
    [26] S. H. Yoon, C. A. Randall, and K. H. Hur, “Influence of grain size on impedance spectra and resistance degradation behavior in acceptor (Mg)‐doped BaTiO3 ceramics,” Journal of the American Ceramic Society, vol. 92, no. 12, pp. 2944-2952, 2009.
    [27] S. H. Yoon, C. A. Randall, and K. H. Hur, “Effect of acceptor (Mg) concentration on the resistance degradation behavior in acceptor (Mg)‐Doped BaTiO3 bulk ceramics: I. impedance analysis,” Journal of the American Ceramic Society, vol. 92, no. 8, pp. 1758-1765, 2009.
    [28] Y. Sakabe, Y. Hamaji, H. Sano, and N. Wada, “Effects of rare-earth oxides on the reliability of X7R dielectrics,” Japanese journal of applied physics, vol. 41, no. 9R, pp. 5668, 2002.
    [29] S. Sato, Y. Nakano, A. Sato, and T. Nomura, “Mechanism of improvement of resistance degradation in Y-doped BaTiO3 based MLCCs with Ni electrodes under highly accelerated life testing,” Journal of the European Ceramic Society, vol. 19, no. 6-7, pp. 1061-1065, 1999.
    [30] S. Sato, Y. Nakano, A. S. A. Sato, and T. N. T. Nomura, “Effect of Y-doping on resistance degradation of multilayer ceramic capacitors with Ni electrodes under the highly accelerated life test,” Japanese journal of applied physics, vol. 36, no. 9S, pp. 6016, 1997.
    [31] A. Honda, S. i. Higai, T. Okamoto, N. Inoue, Y. Motoyoshi, N. Wada, and H. Takagi, “Alkaline-earth and rare-earth elements and oxygen vacancy in BaTiO3: analyses by first-principles calculations and EXAFS,” Key Engineering Materials, vol. 485, pp. 23-26, 2011.
    [32] A. Honda, S. i. Higai, Y. Motoyoshi, N. Wada, and H. Takagi, “Theoretical study on interactions between oxygen vacancy and doped rare-earth elements in barium titanate,” Japanese Journal of Applied Physics, vol. 50, no. 9S2, pp. 09NE01, 2011.
    [33] S. Sumita, M. Ikeda, Y. Nakano, K. Nishiyama, and T. Nomura, “Degradation of multilayer ceramic capacitors with nickel electrodes,” Journal of the American Ceramic Society, vol. 74, no. 11, pp. 2739-2746, 1991.
    [34] S. Sumita, and T. Nomura, “Effects of Calcination on Life Time of BaTiO3-based Multilayer Ceramic Chip Capacitors with Nickel Electrodes,” International journal of the Society of Materials Engineering for Resources, vol. 5, no. 1, pp. 91-104, 1997.
    [35] W. H. Lee, T.-Y. Tseng, and D. F. Hennings, “Effects of calcination temperature and A/B ratio on the dielectric properties of (Ba, Ca)(Ti, Zr, Mn) O3 for multilayer ceramic capacitors with nickel electrodes,” Journal of the American Ceramic Society, vol. 83, no. 6, pp. 1402-1406, 2000.
    [36] S. Takeoka, and Y. Mizuno, “Effect of internal electrode materials in multilayer ceramic capacitors on electrical properties,” Japanese Journal of Applied Physics, vol. 50, no. 9S2, pp. 09NC06, 2011.
    [37] A. V. Polotai, T.-H. Jeong, G.-Y. Yang, E. C. Dickey, C. A. Randall, P. Pinceloup, and A. S. Gurav, “Effect of Cr additions on the microstructural stability of Ni electrodes in ultra-thin BaTiO 3 multilayer capacitors,” Journal of electroceramics, vol. 18, pp. 261-268, 2007.
    [38] A. V. Polotai, T.-H. Jeong, G.-Y. Yang, E. C. Dickey, C. A. Randall, P. Pinceloup, and A. S. Gurav, “Effect of Cr additions on the electrical properties of Ni–BaTiO3 ultra-thin multilayer capacitors,” Journal of Electroceramics, vol. 23, no. 1, pp. 6-12, 2009.
    [39] S. Suzuki, S. Yamaguchi, A. Doi, S. Abe, M. Matsuda, T. Nakamura, A. Ando, and H. Sano, “Effect of alloying Ni inner electrodes on the leakage current degradation of BaTiO3-based multilayer ceramic capacitors,” Applied Physics Letters, vol. 116, no. 13, 2020.
    [40] J. Lee, H.-H. Kim, H. Na, J. Kim, and S.-H. Hong, “Effect of Sn addition on the low temperature shrinkage of Ni nanoparticles,” Ceramics International, vol. 50, no. 4, pp. 6793-6800, 2024.
    [41] J. Wang, S. Jiang, D. Jiang, T. Wang, and H. Yao, “Effects of Sn on the microstructure and dielectric properties in BaTiO3-based ceramics,” Ceramics International, vol. 39, no. 4, pp. 3657-3662, 2013.
    [42] J. R. Macdonald, “Impedance spectroscopy,” Annals of biomedical engineering, vol. 20, pp. 289-305, 1992.
    [43] J. Bauerle, “Study of solid electrolyte polarization by a complex admittance method,” Journal of Physics and Chemistry of Solids, vol. 30, no. 12, pp. 2657-2670, 1969.
    [44] J. R. Macdonald, and W. B. Johnson, “Fundamentals of impedance spectroscopy,” Impedance spectroscopy: theory, experiment, and applications, pp. 1-20, 2018.
    [45] J. T. Irvine, D. C. Sinclair, and A. R. West, “Electroceramics: characterization by impedance spectroscopy,” Advanced materials, vol. 2, no. 3, pp. 132-138, 1990.
    [46] D. C. Sinclair, and A. R. West, “Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance,” Journal of Applied Physics, vol. 66, no. 8, pp. 3850-3856, 1989.
    [47] J. Joshi, D. Kanchan, M. Joshi, H. Jethva, and K. Parikh, “Dielectric relaxation, complex impedance and modulus spectroscopic studies of mix phase rod like cobalt sulfide nanoparticles,” Materials Research Bulletin, vol. 93, pp. 63-73, 2017.
    [48] G. Pike, “Semiconductor grain-boundary admittance: theory,” Physical Review B, vol. 30, no. 2, pp. 795, 1984.
    [49] D. R. Clarke, “Varistor ceramics,” Journal of the American Ceramic Society, vol. 82, no. 3, pp. 485-502, 1999.
    [50] K. Mukae, K. Tsuda, and I. Nagasawa, “Capacitance‐vs‐voltage characteristics of ZnO varistors,” Journal of Applied Physics, vol. 50, no. 6, pp. 4475-4476, 1979.
    [51] K. Tsuji, “Characterization of localized electronic structures enabling colossal permittivity ceramic capacitors,” 2017.
    [52] U. Intatha, S. Eitssayeam, J. Wang, and T. Tunkasiri, “Impedance study of giant dielectric permittivity in BaFe0. 5Nb0. 5O3 perovskite ceramic,” Current Applied Physics, vol. 10, no. 1, pp. 21-25, 2010.

    無法下載圖示 校內:2029-08-14公開
    校外:2029-08-14公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE