| 研究生: |
黃騰鋒 Huang, Teng-Feng |
|---|---|
| 論文名稱: |
羥丙基甲基纖維素綠色薄膜自我修復與磨潤性質研究 Self-Healing and Tribology Performance of HPMC Film |
| 指導教授: |
施士塵
Shi, Shih-Chen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 自我修復 、羥丙基甲基纖維素 、綠色磨潤 、綠色薄膜 、可再生再使用 、環境友善 |
| 外文關鍵詞: | self -healing, HPMC, green tribology, green thin film, reusable and renewable, ecofriendly |
| 相關次數: | 點閱:117 下載:14 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來由於能源危機以及綠色意識抬頭,許多研究紛紛提出有關於對環境友善、可再生的材料或者可重複使用,其中綠色磨潤更是這些年來磨潤學關注的焦點之一。在Michael Nosonovsky與Bharat Bhushan編著的Green Tribology中提到:將摩擦磨耗最小化,減少潤滑劑使用,並使用天然或是對環境友善的綠色磨潤材料。本研究使用對環境友善且無毒的綠色磨潤材料羥丙基甲基纖維素做為本實驗中的綠色薄膜,探討不同環境與溶劑參數下對羥丙基甲基纖維素薄膜自我修復性質的影響,再以迴轉式磨耗試驗機(Pin-On-Disk)分析其在大氣環境下薄膜之磨潤行為,並觀察薄膜在自我修復前後的磨潤行為。
實驗中羥丙基甲基纖維素薄膜成膜後,藉由EDS與Raman確定其擁有良好均勻度,透過SEM觀察薄膜表面型態及橫截面的元素顯示出其優異的均勻度及分散性。經過迴轉式磨耗試驗機(Pin-On-Disk)產生磨痕並記錄其摩擦係數,3D雷射掃描顯微鏡掃描磨痕紀錄磨痕寬度與深度。實驗結果顯示使用去離子水進行自我修復,能使薄膜達到90%以上的自我修復;在濕度為RH90%溫度為90℃時,薄膜上的磨痕可以達到最佳修復效果,在自我修復時間來到8小時時,可以達到70%的自我修復。
總體而言,本研究成功以羥丙基甲基纖維素溶液形成均勻度良好且具有降低摩擦係數、抗磨耗之薄膜,且證實擁有自我修復性質,在一定的環境參數下能夠讓薄膜顯著地恢復至初始狀態,羥丙基甲基纖維素薄膜可以重複使用並大幅延長使用壽命,因其本身便是對環境友善的磨潤材料,相當符合綠色磨潤的宗旨。
Since energy crisis and rise of environmental awareness, lots of researchers focus on ecofriendly, renewable and reusable materials/processes. Green tribology is the one of central issue in tribology even more in recent years. Green Tribology which is written by Michael Nosonovsky and Bharat Bhushan mentions about (1) minimizing friction and wear, (2) reducing lubricants, (3) using natural or ecofriendly materials. This research uses ecofriendly and nontoxic material called hydroxypropyl methylcellulose (HPMC) as green thin film and investigates how different environmental and solvent parameters affect self-healing of HPMC. Furthermore, taking pin-on-disk tribometer results analyzed tribology performance of HPMC film in ambient environment and observed the change of tribology performance before and after self-healing.
After HPMC is formed on silicon substrate, we confirm that it has excellent element distribution with EDS and Raman spectrometer results and observe well element distribution and dispersion of surface and cross section through SEM. Wear scars will emerge on HPMC films after the tribotest, so we record the coefficient of friction and scan wear scars on samples by 3D laser scanning microscope to record wear depth and width. Experiment results show out that heal efficiency can reach up to 90% healed by deionized water; on the other side, its healing efficiency has the optimal self-healing effect when environmental parameters are RH90% and 90℃. It will be able to reach up to 70% if HPMC films are placed at RH90% and 90℃ during 8 hours.
Overall, this research successfully use HPMC solution to form green thin films which can reduce the coefficient of friction and have well element distribution, anti-wear ability and most importantly have self-healing property. Based on the above, HPMC films can be reused and significantly extended its life. In addition, it quite meet the purpose of green tribology because HPMC is exactly a green material.
[1] B. Bhushan, B.K. Gupta, Handbook of tribology: materials, coatings, and surface treatments.1991
[2] B. Bhushan, Introduction to tribology, John Wiley & Sons. 2013.
[3] B. Bhushan, Principles and applications of tribology, John Wiley & Sons. 2013.
[4] D. Berman, A. Erdemir, A.V. Sumant, Graphene: a new emerging lubricant, Materials Today, 17 31-42.2014
[5] M. Chhowalla, G.A.J. Amaratunga, Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear, Nature, 407.2000
[6] L. Rapoport, Y. Bilik, Y. Feldman, M. Homyonfer, S. Cohen, R. Tenne, Hollow nanoparticles of WS 2 as potential solid-state lubricants, Nature, 387 791-793.1997
[7] L. Rapoport, N. Fleischer, R. Tenne, Fullerene‐like WS2 Nanoparticles: Superior Lubricants for Harsh Conditions, Advanced Materials, 15 651-655.2003
[8] J. Pu, S. Wan, W. Zhao, Y. Mo, X. Zhang, L. Wang, Q. Xue, Preparation and Tribological Study of Functionalized Graphene–IL Nanocomposite Ultrathin Lubrication Films on Si Substrates, The Journal of Physical Chemistry C, 115 13275-13284.2011
[9] M. Nosonovsky, B. Bhushan, Green Tribology, Springer. 2012.
[10] M. Nosonovsky, B. Bhushan, Green tribology: principles, research areas and challenges, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 368 4677-4694.2010
[11] Y. Yang, M.W. Urban, Self-healing polymeric materials, Chem Soc Rev, 42 7446-7467.2013
[12] Y. Chen, A.M. Kushner, G.A. Williams, Z. Guan, Multiphase design of autonomic self-healing thermoplastic elastomers, Nature chemistry, 4 467-472.2012
[13] F.J. Clauss, Solid lubricants and self-lubricating solids, Elsevier. 2012.
[14] R.L. Goyan, R.E. Melley, P.A. Wissner, W.C. Ong, Biodegradable lubricants, Tribology & Lubrication Technology, 54 10.1998
[15] E. Alt, A. Stemberger, Biodegradable coating with inhibitory properties for application to biocompatible materials, in, Google Patents, 1998.
[16] L. Tan, X. Yu, P. Wan, K. Yang, Biodegradable materials for bone repairs: a review, Journal of Materials Science & Technology, 29 503-513.2013
[17] M.J. Earle, K.R. Seddon, Ionic liquids. Green solvents for the future, Pure and applied chemistry, 72 1391-1398.2000
[18] M.-D. Bermúdez, A.-E. Jiménez, J. Sanes, F.-J. Carrión, Ionic liquids as advanced lubricant fluids, Molecules, 14 2888-2908.2009
[19] M. Palacio, B. Bhushan, A review of ionic liquids for green molecular lubrication in nanotechnology, Tribology Letters, 40 247-268.2010
[20] J. Siepmann, N.A. Peppas, Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC), Advanced Drug Delivery Reviews, 64 163-174.2012
[21] J. Siepmann, Y. Karrout, M. Gehrke, F.K. Penz, F. Siepmann, Predicting drug release from HPMC/lactose tablets, Int J Pharm, 441 826-834.2013
[22] S.-C. Shi, T.-F. Huang, J.-Y. Wu, Preparation and Tribological Study of Biodegradable Lubrication Films on Si Substrate, Materials, 8 1738-1751.2015
[23] R.N. Zuniga, O. Skurtys, F. Osorio, J.M. Aguilera, F. Pedreschi, Physical properties of emulsion-based hydroxypropyl methylcellulose films: effect of their microstructure, Carbohydr Polym, 90 1147-1158.2012
[24] K. Holmberg, A concept for friction mechanisms of coated surfaces, Surface and Coating Technology, 56 1-10.1992
[25] A. Fahs, M. Brogly, S. Bistac, M. Schmitt, Hydroxypropyl methylcellulose (HPMC) formulated films: Relevance to adhesion and friction surface properties, Carbohydrate Polymers, 80 105-114.2010
[26] H. Lu, Y. Yao, W.M. Huang, D. Hui, Noncovalently functionalized carbon fiber by grafted self-assembled graphene oxide and the synergistic effect on polymeric shape memory nanocomposites, Composites Part B: Engineering, 67 290-295.2014
[27] J.-M.L. Claudine Fouquey, A.-M.L. , Molecular Recognition Directed Self-Assembly of Supramolecular Liquid Crystalline Polymers from Complementary Chiral Components, Advanced Materials, 2 254-257.1990
[28] D.J.M.v.B. Holger Kautz, Rint P. Sijbesma, E. W. Meijer, Cooperative End-to-End and Lateral Hydrogen-Bonding Motifs in Supramolecular Thermoplastic Elastomers, Macromolecules, 39 4265-4267.2006
[29] S.M.a.N.B. McKeown, Novel spiro-polymers with enhanced solubility, Chemistry Communication, 255-256.1999
[30] W. Niu, C. O'Sullivan, B.M. Rambo, M.D. Smith, J.J. Lavigne, Self-repairing polymers: poly(dioxaborolane)s containing trigonal planar boron, Chem Commun (Camb), 4342-4344.2005
[31] S. Burattini, H.M. Colquhoun, J.D. Fox, D. Friedmann, B.W. Greenland, P.J. Harris, W. Hayes, M.E. Mackay, S.J. Rowan, A self-repairing, supramolecular polymer system: healability as a consequence of donor-acceptor pi-pi stacking interactions, Chem Commun (Camb), 6717-6719.2009
[32] G. Wu, J. An, X.Z. Tang, Y. Xiang, J. Yang, A Versatile Approach towards Multifunctional Robust Microcapsules with Tunable, Restorable, and Solvent‐Proof Superhydrophobicity for Self‐Healing and Self‐Cleaning Coatings, Advanced Functional Materials, 24 6751-6761.2014
[33] T.C. Rangel, A.F. Michels, F. Horowitz, D.E. Weibel, Superomniphobic and easily repairable coatings on copper substrates based on simple immersion or spray processes, Langmuir, 31 3465-3472.2015
[34] Y. Liu, X. Pei, Z. Liu, B. Yu, P. Yan, F. Zhou, Accelerating the healing of superhydrophobicity through photothermogenesis, Journal of Materials Chemistry A, 3 17074-17079.2015
[35] T.T. Isimjan, T. Wang, S. Rohani, A novel method to prepare superhydrophobic, UV resistance and anti-corrosion steel surface, Chemical engineering journal, 210 182-187.2012
[36] R. Gao, Q. Liu, J. Wang, X. Zhang, W. Yang, J. Liu, L. Liu, Fabrication of fibrous szaibelyite with hierarchical structure superhydrophobic coating on AZ31 magnesium alloy for corrosion protection, Chemical Engineering Journal, 241 352-359.2014
[37] N. Yang, Q. Li, F. Chen, P. Cai, C. Tan, Z. Xi, A solving-reprecipitation theory for self-healing functionality of stannate coating with a high environmental stability, Electrochimica Acta, 174 1192-1201.2015
[38] N. Bai, Q. Li, H. Dong, C. Tan, P. Cai, L. Xu, A versatile approach for preparing self-recovering superhydrophobic coatings, Chemical Engineering Journal, 293 75-81.2016
[39] D. Habault, H. Zhang, Y. Zhao, Light-triggered self-healing and shape-memory polymers, Chem Soc Rev, 42 7244-7256.2013
[40] Y. Dou, A. Zhou, T. Pan, J. Han, M. Wei, D.G. Evans, X. Duan, Humidity-triggered self-healing films with excellent oxygen barrier performance, Chem Commun (Camb), 50 7136-7138.2014
[41] N.R.S. S. R. White, P. H. Geubelle, J. S. Moore, M. R. Kessler,, E.N.B. S. R. Sriram, S. Viswanathan, Autonomic healing of polymer composites, nature, 409 794-817.2001
[42] Y. Long, C. Liu, B. Zhao, K. Song, G. Yang, C.-H. Tung, Bio-inspired controlled release through compression–relaxation cycles of microcapsules, NPG Asia Materials, 7 e148.2015
[43] O. Diels, K. Alder, Synthesen in der hydroaromatischen Reihe, Justus Liebigs Annalen der Chemie, 460 98-122.1928
[44] Y. Heo, H.A. Sodano, Self-Healing Polyurethanes with Shape Recovery, Advanced Functional Materials, 24 5261-5268.2014
[45] P.J. Rae, D.M. Dattelbaum, The properties of poly(tetrafluoroethylene) (PTFE) in compression, Polymer, 45 7615-7625.2004
[46] M. Conte, A. Igartua, Study of PTFE composites tribological behavior, Wear, 296 568-574.2012
[47] C. Liang, R. Marchessault, Infrared spectra of crystalline polysaccharides. I. Hydrogen bonds in native celluloses, Journal of polymer science, 37 385-395.1959
[48] R.H.M. C. Y. Liang, Infrared Spectra of Crystalline Polysaccharides. II. Native Celluloses in the Region from 640 to 1700 cm-1, JOURNAL OF POLYMER SCIENCE, 39 269-278.1959
[49] J. Yin, K. Luo, X. Chen, V.V. Khutoryanskiy, Miscibility studies of the blends of chitosan with some cellulose ethers, Carbohydrate Polymers, 63 238-244.2006
[50] N. Santha, K. Sudha, K. Vijayakumari, V. Nayar, S. Moorthy, Raman and infrared spectra of starch samples of sweet potato and cassava, Journal of Chemical Sciences, 102 705-712.1990
[51] C. Ding, M. Zhang, G. Li, Preparation and characterization of collagen/hydroxypropyl methylcellulose (HPMC) blend film, Carbohydr Polym, 119 194-201.2015
[52] S. Bahadur, The development of transfer layers and their role in polymer tribology, Wear, 245 92-99.2000
[53] N. Myshkin, M. Petrokovets, A. Kovalev, Tribology of polymers: adhesion, friction, wear, and mass-transfer, Tribology International, 38 910-921.2006
[54] M. Nuzzo, J. Sloth, B. Bergenstahl, A. Millqvist-Fureby, Phase Segregation in Individually Dried Particles Composed of Biopolymers, Langmuir, 31 10946-10954.2015
[55] K. Holmberg, A. Mathews, Coatings tribology: a concept, critical aspects and future directions, Thin Solid Films, 253 173-178.1994
[56] K. Holmberg, A. Matthews, H. Ronkainen, Coatings tribology—contact mechanisms and surface design, Tribology International, 31 107-120.1998