簡易檢索 / 詳目顯示

研究生: 蘇婉淳
Su, Wan-Chun
論文名稱: 研究治療丙型肝炎時病人紅血球 Lewis 抗原之表現
Expression of RBC Lewis antigens in the treatment of HCV
指導教授: 張權發
Chang, Chuan-Fa
學位類別: 碩士
Master
系所名稱: 醫學院 - 醫學檢驗生物技術學系
Department of Medical Laboratory Science and Biotechnology
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 198
中文關鍵詞: 丙型肝炎直接抗病毒藥物醣蛋白Lewis抗原
外文關鍵詞: HCV, DAA, Glycoprotein, Lewis antigen
相關次數: 點閱:57下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 肝病是臺灣的國病,如何降低丙型肝炎感染的流行率與死亡率是當前的挑戰。目前現有檢測項目包括:Anti-HCV、HCV RNA或Core antigen test。在丙型肝炎治療初期,干擾素的治癒率約為50%,目前有直接抗病毒藥物(DAAs),其治癒率可達99%,不但改善了傳統治療方法的缺陷,還明顯提高了療效。然而,抗病毒藥物可能會提高肝硬化患者演變為肝細胞癌(HCC)的機率,另外並導致HCC復發。因此,長期觀察丙型肝炎患者對於新治療效果的反應性是必要的,我們需要新的生物標誌物用於丙型肝炎的治療與追蹤。從我們收集病例中,我們確實發現一些患者在過去服用DAA藥物後有復發的問題。醣蛋白已成為許多疾病的有價值的生物標誌物,血型抗原也是一種醣蛋白,像:ABO、H和Lewis系統抗原是醣脂上的醣蛋白和寡醣。由於大部分血液醣蛋白由肝臟所產生的,而一些血型抗原如Lewis抗原與病毒感染高度相關,因此我們希望了解Lewis抗原(如Lea和Leb)到底是否可以作為丙型肝炎治療時的生物標誌物。我們透過Lewis抗原試驗、流式細胞儀和ELISA檢測紅血球與血漿中Lea和Leb的表達。並分析了44例經抗病毒藥物治療丙型肝炎患者,初步發現不同患者治療階段紅血球上或血漿中Lea和Leb的表現確實有差異。本研究的發現不僅有助於理解Lewis抗原與丙型肝炎治療過程之間的關係,也有助於揭示其病理生理意義和分子機制,並未來實現個體化用藥打好基礎。

    Liver disease is widespread in Taiwan; therefore, it is imperative to reduce its prevalence and mortality. Currently available testing methods include Anti-HCV, HCV RNA, or core antigen tests. In the early stage of hepatitis C treatment, the cure rate of interferon is about 50%, while those for direct antiviral drugs (DAAs) can reach 99%. This not only ameliorates the deficits of traditional treatment methods, but also significantly improves their curative effect. However, DAAs may increase the incidence: of hepatocellular carcinoma (HCC) in patients with cirrhosis, causing their relapse. Therefore, long-term observations of hepatitis C patients regarding their response to novel treatments is critical to fully understanding drug effectiveness, requiring innovative biomarkers for continuous follow-up and feedback. In the patient samples we collected, some have indeed registered relapses after DAA treatment. Glycoproteins have become valuable biomarkers for many diseases. Blood group antigens are also a type of glycoprotein; for example, ABO, H and Lewis System antigens are glycoproteins and oligosaccharides on glycolipids. Since most blood glycoproteins are produced by the liver, and some blood group antigens such as Lewis antigens are highly related to viral infections, we want to know whether Lewis antigens (such as Lea and Leb) can be used as biomarkers for hepatitis C treatment. We detected the expression of Lea and Leb in red blood cells and plasma by Lewis antigen tests, flow cytometry and ELISA. After analyzing 44 cases of hepatitis C patients who were treated with antiviral drugs, we initially found that the expression of Lea and Leb on red blood cells or in plasma was indeed different during various treatment stages. The findings of this study not only assist us in understanding the relationship between Lewis antigens and the treatment of hepatitis C, but also help to reveal its pathophysiological significance and molecular mechanism, laying a solid foundation for the realization of individualized medicine.

    摘要 i ABSTRACT ii ACKNOWLEDGEMENTS iii TABLE OF CONTENTS iv ABBREVIATION vii INTRODUCTION 1 Overview Of HCV 1 HCV Epidemiology 2 HCV Genotypes 2 HCV Testing 3 HCV Treatment 4 Effect Of Direct-Acting Antiviral Drugs (DAAs) On HCV Treatment 4 Limitations On HCV Treatment and Testing 5 HCV And Personalized Medicine 6 Glycoproteins Biomarkers 6 A Summary Of ABO, H, And Lewis Blood Group Systems 8 Lewis Blood Group System 9 Correlation Between ABO, H, And Lewis Blood Group Systems and Disease Treatment 9 OBJECTIVE 11 Study objective and Specific Aim 11 Experimental Flow Chart 12 MATERIALS AND METHODS 13 Sample collection 13 Clinically data 13 ABO Typing test 14 Lewis antigen A&B assay(Antigen agglutination test)15 Lewis antigen A&B assay(FLOW test)16 Lewis antigen A&B assay(ELISA test)17 Statistical 17 RESULTS 18 Summary of patient demographics and serological characteristics 18 HCV and blood type correlation 18 HCV viral load changes during DAA treatment 19 Related laboratory data changes during DAA treatment 20 HCV patient Lewis antigen changes during DAA treatment 20 DISCUSSION 22 REFERENCE 24 TABLE 34 TABLE.1. Summary of patient demographics and serological characteristics 35 TABLE.2. HCV patient Lewis antigen changes during DAA treatment 37 FIGURE 38 FIG.1. HCV and blood type correlation 38 FIG.2. HCV viral load changes during DAA treatment 39 FIG.3. GOT performance changes during DAA treatment 40 FIG.4. GPT performance changes during DAA treatment 41 FIG.5. T-Bili performance changes during DAA treatment 42 FIG.6. D-Bili performance changes during DAA treatment 43 FIG.7. AFP performance changes during DAA treatment 44 FIG.8. r-GT performance changes during DAA treatment 45 FIG.9. HbA1c performance changes during DAA treatment 46 FIG.10. RBC performance changes during DAA treatment 47 FIG.11. Hb performance changes during DAA treatment 48 FIG.12. PLT performance changes during DAA treatment 49 FIG.13. PT performance changes during DAA treatment 50 FIG.14. Lewis A Ag qualitative performance changes during DAA treatment 51 FIG.15. Lewis B Ag qualitative performance changes during DAA treatment 52 FIG.16. Lewis A Ag FLOW performance changes during DAA treatment 53 FIG.17. Lewis B Ag FLOW performance changes during DAA treatment 54 FIG.18. Lewis A Ag ELISA performance changes during DAA treatment 55 FIG.19. Lewis B Ag ELISA performance changes during DAA treatment 56 SUPPLEMENTAL FIGURE 57 Supplemental Figure 1. IRB 57 Supplemental Figure 2. Antigen agglutination test procedure 58 Supplemental Figure 3. Antigen agglutination test (Titer definition) 58 Supplemental Figure 4. Flow cytometer procedure 59 Supplemental Figure 5. Flow cytometer control definition 60 Supplemental Figure 6. Gating Strategy RBC Populations 62 Supplemental Figure 7. Flow cytometer data changes of 44 patients during DAA treatment 63 Supplemental Figure 8. Lewis A ELISA(CA19-9)195 Supplemental Figure 9. Lewis B ELISA(MUCA5)197

    1 Guidelines for the screening, care and treatment of persons with hepatitis infection. World Health Organization,2014 April. (2014).
    2 Liu, Q., Liu, M. & Liu, J. Burden and Trends of Acute Viral Hepatitis in Asia from 1990 to 2019. Viruses 14 (2022). https://doi.org:10.3390/v14061180
    3 National Policy Guidelines for Eliminating Hepatitis C White. (2025).
    4 Pawlotsky, J. M., Feld, J. J., Zeuzem, S. & Hoofnagle, J. H. From non-A, non-B hepatitis to hepatitis C virus cure. J Hepatol 62, S87-99 (2015). https://doi.org:10.1016/j.jhep.2015.02.006
    5 Chigbu, D. I., Loonawat, R., Sehgal, M., Patel, D. & Jain, P. Hepatitis C Virus Infection: Host(-)Virus Interaction and Mechanisms of Viral Persistence. Cells 8 (2019). https://doi.org:10.3390/cells8040376
    6 Chen SL, Morgan TR. The natural history of hepatitis C virus (HCV) infection. Int J Med Sci 2006; 3: 47-52. (2006).
    7 Modi, A. A. & Liang, T. J. Hepatitis C: a clinical review. Oral Dis 14, 10-14 (2008). https://doi.org:10.1111/j.1601-0825.2007.01419.x
    8 Chien, R. N. et al. Taiwan accelerates its efforts to eliminate hepatitis C. Glob Health Med 3, 293-300 (2021). https://doi.org:10.35772/ghm.2021.01064
    9 Zingaretti, C., De Francesco, R. & Abrignani, S. Why is it so difficult to develop a hepatitis C virus preventive vaccine? Clin Microbiol Infect 20 Suppl 5, 103-109 (2014). https://doi.org:10.1111/1469-0691.12493
    10 Echeverria, N., Moratorio, G., Cristina, J. & Moreno, P. Hepatitis C virus genetic variability and evolution. World J Hepatol 7, 831-845 (2015). https://doi.org:10.4254/wjh.v7.i6.831
    11 Manns, M. P. & Maasoumy, B. Breakthroughs in hepatitis C research: from discovery to cure. Nat Rev Gastroenterol Hepatol 19, 533-550 (2022). https://doi.org:10.1038/s41575-022-00608-8
    12 Negro, F. Natural History of Hepatic and Extrahepatic Hepatitis C Virus Diseases and Impact of Interferon-Free HCV Therapy. Cold Spring Harb Perspect Med 10 (2020). https://doi.org:10.1101/cshperspect.a036921
    13 Dietz, C. & Maasoumy, B. Direct-Acting Antiviral Agents for Hepatitis C Virus Infection-From Drug Discovery to Successful Implementation in Clinical Practice. Viruses 14 (2022). https://doi.org:10.3390/v14061325
    14 Jakobsen, J. C. et al. Direct-acting antivirals for chronic hepatitis C. Cochrane Database Syst Rev 9, CD012143 (2017). https://doi.org:10.1002/14651858.CD012143.pub3
    15 Lazarus, J. V., Roel, E. & Elsharkawy, A. M. Hepatitis C Virus Epidemiology and the Impact of Interferon-Free Hepatitis C Virus Therapy. Cold Spring Harb Perspect Med 10 (2020). https://doi.org:10.1101/cshperspect.a036913
    16 Nguyen, L. H. & Nguyen, M. H. Systematic review: Asian patients with chronic hepatitis C infection. Aliment Pharmacol Ther 37, 921-936 (2013). https://doi.org:10.1111/apt.12300
    17 Lee, S.-D. et al. Seroepidemiology of hepatitis C virus infection in Taiwan. Hepatology 13, 830-833 (1991). https://doi.org:10.1002/hep.1840130505
    18 Chen, Y. Y. et al. Secular Trends and Geographic Maps of Hepatitis C Virus Infection among 4 Million Blood Donors in Taiwan from 1999 to 2017. Hepatol Commun 4, 1193-1205 (2020). https://doi.org:10.1002/hep4.1531
    19 Tung, H. D. et al. Geographic variation of genotype 6 hepatitis C virus infection in an endemic area of southern Taiwan. J Formos Med Assoc 119, 1876-1880 (2020). https://doi.org:10.1016/j.jfma.2020.06.001
    20 Chen CH, Sheu JC, Wang JT, et al. Genotypes of hepatitis C virus in chronic liver disease in Taiwan. J Med Virol 1994; 44: 234-6. (1994).
    21 Hepatitis C virus proteins. (2007).
    22 Hagen, N., Bayer, K., Rosch, K. & Schindler, M. The intraviral protein interaction network of hepatitis C virus. Mol Cell Proteomics 13, 1676-1689 (2014). https://doi.org:10.1074/mcp.M113.036301
    23 Tsukiyama-Kohara, K. & Kohara, M. Hepatitis C Virus: Viral Quasispecies and Genotypes. Int J Mol Sci 19 (2017). https://doi.org:10.3390/ijms19010023
    24 Thong, V. D., Akkarathamrongsin, S., Poovorawan, K., Tangkijvanich, P. & Poovorawan, Y. Hepatitis C virus genotype 6: virology, epidemiology, genetic variation and clinical implication. World J Gastroenterol 20, 2927-2940 (2014). https://doi.org:10.3748/wjg.v20.i11.2927
    25 Lee CM LS, Hung CH, Tung WC, Wang JH, Tung HD, Chen CH, Hu TH, Changchien CS, Chen WJ. Hepatitis C virus genotypes in southern Taiwan: prevalence and clinical implications. Trans R Soc Trop Med Hyg 2006; 100: 767-74. (2006).
    26 Tung, H. D. et al. Hepatitis C Virus Subtypes Novel 6g-Related Subtype and 6w Could Be Indigenous in Southern Taiwan with Characteristic Geographic Distribution. Viruses 13 (2021). https://doi.org:10.3390/v13071316
    27 Seifert, L. L., Perumpail, R. B. & Ahmed, A. Update on hepatitis C: Direct-acting antivirals. World J Hepatol 7, 2829-2833 (2015). https://doi.org:10.4254/wjh.v7.i28.2829
    28 Molin, G. D., Tiribelli, C. & Campello, C. A rational use of laboratory tests in the diagnosis and management of hepatitis C virus infection. Annals of Hepatology 2, 76-83 (2003). https://doi.org:10.1016/s1665-2681(19)32145-3
    29 Lopez-Martinez, R. et al. Significant Improvement in Diagnosis of Hepatitis C Virus Infection by a One-Step Strategy in a Central Laboratory: an Optimal Tool for Hepatitis C Elimination? J Clin Microbiol 58 (2019). https://doi.org:10.1128/JCM.01815-19
    30 Seida, Y. A. M., Moemen, M. M. H., Moustafa, M. S. A., Raouf, M. M. E. M. & Elshaer, N. S. M. Hepatitis-C Virus Infection and Exposure to Blood and Body Fluids among Nurses and Paramedical Personnel at the Alexandria University Hospitals, Egypt. Alexandria Journal of Medicine 54, 265-271 (2019). https://doi.org:10.1016/j.ajme.2017.06.005
    31 Zoulim F, Chevallier M, Maynard M, Trepo C. Clinical consequences of hepatitis C virus infection. Rev Med Virol2003; 13: 57-68.
    32 Hajarizadeh, B. et al. Patterns of hepatitis C virus RNA levels during acute infection: the InC3 study. PLoS One 10, e0122232 (2015). https://doi.org:10.1371/journal.pone.0122232
    33 Hajarizadeh, B. et al. Dynamics of HCV RNA levels during acute hepatitis C virus infection. J Med Virol 86, 1722-1729 (2014). https://doi.org:10.1002/jmv.24010
    34 Gupta, E., Bajpai, M. & Choudhary, A. Hepatitis C virus: Screening, diagnosis, and interpretation of laboratory assays. Asian J Transfus Sci 8, 19-25 (2014). https://doi.org:10.4103/0973-6247.126683
    35 Buket, C. A., Ayse, A., Selcuk, K., Suleyman, O. & Emel, S. C. Comparison of HCV core antigen and anti-HCV with HCV RNA results. Afr Health Sci 14, 816-820 (2014). https://doi.org:10.4314/ahs.v14i4.7
    36 Freiman, J. M. et al. Hepatitis C Core Antigen Testing for Diagnosis of Hepatitis C Virus Infection: A Systematic Review and Meta-analysis. Ann Intern Med 165, 345-355 (2016). https://doi.org:10.7326/M16-0065
    37 Ghany, M. G., Strader, D. B., Thomas, D. L., Seeff, L. B. & American Association for the Study of Liver, D. Diagnosis, management, and treatment of hepatitis C: an update. Hepatology 49, 1335-1374 (2009). https://doi.org:10.1002/hep.22759
    38 Forman, M. S. & Valsamakis, A. Verification of an assay for quantification of hepatitis C virus RNA by use of an analyte-specific reagent and two different extraction methods. J Clin Microbiol 42, 3581-3588 (2004). https://doi.org:10.1128/JCM.42.8.3581-3588.2004
    39 Kemp, W. & Roberts, S. Pegylated Interferon and Ribavirin for the Treatment of Chronic Hepatitis C. Clinical Medicine Insights: Therapeutics 3 (2011). https://doi.org:10.4137/cmt.S4015
    40 Pearlman, B. L. & Traub, N. Sustained virologic response to antiviral therapy for chronic hepatitis C virus infection: a cure and so much more. Clin Infect Dis 52, 889-900 (2011). https://doi.org:10.1093/cid/cir076
    41 Fried, M. W. Side effects of therapy of hepatitis C and their management. Hepatology 36, S237-244 (2002). https://doi.org:10.1053/jhep.2002.36810
    42 Bergman, S. J., Ferguson, M. C. & Santanello, C. Interferons as therapeutic agents for infectious diseases. Infect Dis Clin North Am 25, 819-834 (2011). https://doi.org:10.1016/j.idc.2011.07.008
    43 Baumert, T. F., Berg, T., Lim, J. K. & Nelson, D. R. Status of Direct-Acting Antiviral Therapy for Hepatitis C Virus Infection and Remaining Challenges. Gastroenterology 156, 431-445 (2019). https://doi.org:10.1053/j.gastro.2018.10.024
    44 Alazard-Dany, N., Denolly, S., Boson, B. & Cosset, F. L. Overview of HCV Life Cycle with a Special Focus on Current and Possible Future Antiviral Targets. Viruses 11 (2019). https://doi.org:10.3390/v11010030
    45 Asselah, T., Boyer, N., Saadoun, D., Martinot-Peignoux, M. & Marcellin, P. Direct-acting antivirals for the treatment of hepatitis C virus infection: optimizing current IFN-free treatment and future perspectives. Liver Int 36 Suppl 1, 47-57 (2016). https://doi.org:10.1111/liv.13027
    46 Manns, M. P. & von Hahn, T. Novel therapies for hepatitis C - one pill fits all? Nat Rev Drug Discov 12, 595-610 (2013). https://doi.org:10.1038/nrd4050
    47 Direct-Acting Antiviral Medications for Chronic Hepatitis C Virus Infection. (2011).
    48 Gao, L. H., Nie, Q. H. & Zhao, X. T. Drug-Drug Interactions of Newly Approved Direct-Acting Antiviral Agents in Patients with Hepatitis C. Int J Gen Med 14, 289-301 (2021). https://doi.org:10.2147/IJGM.S283910
    49 Jiang, X. et al. The use of all-oral direct-acting antivirals in hepatitis C virus-infected patients with substance use disorders. J Manag Care Spec Pharm 27, 873-881 (2021). https://doi.org:10.18553/jmcp.2021.27.7.873
    50 Geddawy, A., Ibrahim, Y. F., Elbahie, N. M. & Ibrahim, M. A. Direct Acting Anti-hepatitis C Virus Drugs: Clinical Pharmacology and Future Direction. J Transl Int Med 5, 8-17 (2017). https://doi.org:10.1515/jtim-2017-0007
    51 Piecha, F. et al. Treatment and re-treatment results of HCV patients in the DAA era. PLoS One 15, e0232773 (2020). https://doi.org:10.1371/journal.pone.0232773
    52 Scheel, T. K. & Rice, C. M. Understanding the hepatitis C virus life cycle paves the way for highly effective therapies. Nat Med 19, 837-849 (2013). https://doi.org:10.1038/nm.3248
    53 Ghany, M. G. et al. An update on treatment of genotype 1 chronic hepatitis C virus infection: 2011 practice guideline by the American Association for the Study of Liver Diseases. Hepatology 54, 1433-1444 (2011). https://doi.org:10.1002/hep.24641
    54 Fierer, D. S. & Wyles, D. L. Re-treatment of Hepatitis C Infection After Multiple Failures of Direct-Acting Antiviral Therapy. Open Forum Infect Dis 7, ofaa095 (2020). https://doi.org:10.1093/ofid/ofaa095
    55 Sarrazin, C. Treatment failure with DAA therapy: Importance of resistance. J Hepatol 74, 1472-1482 (2021). https://doi.org:10.1016/j.jhep.2021.03.004
    56 Cheung, M. C. M. et al. Outcomes after successful direct-acting antiviral therapy for patients with chronic hepatitis C and decompensated cirrhosis. J Hepatol 65, 741-747 (2016). https://doi.org:10.1016/j.jhep.2016.06.019
    57 stanislas.pol@aphp.fr, A. c. s. g. o. h. c. E. a. Lack of evidence of an effect of direct-acting antivirals on the recurrence of hepatocellular carcinoma: Data from three ANRS cohorts. J Hepatol 65, 734-740 (2016). https://doi.org:10.1016/j.jhep.2016.05.045
    58 Reig, M. et al. Unexpected high rate of early tumor recurrence in patients with HCV-related HCC undergoing interferon-free therapy. J Hepatol 65, 719-726 (2016). https://doi.org:10.1016/j.jhep.2016.04.008
    59 Hayes, C. N., Zhang, P., Zhang, Y. & Chayama, K. Molecular Mechanisms of Hepatocarcinogenesis Following Sustained Virological Response in Patients with Chronic Hepatitis C Virus Infection. Viruses 10 (2018). https://doi.org:10.3390/v10100531
    60 Lee, Y. A. & Friedman, S. L. Reversal, maintenance or progression: what happens to the liver after a virologic cure of hepatitis C? Antiviral Res 107, 23-30 (2014). https://doi.org:10.1016/j.antiviral.2014.03.012
    61 Khullar, V. & Firpi, R. J. Hepatitis C cirrhosis: New perspectives for diagnosis and treatment. World J Hepatol 7, 1843-1855 (2015). https://doi.org:10.4254/wjh.v7.i14.1843
    62 Luna-Cuadros, M. A. et al. Risk of hepatocellular carcinoma after hepatitis C virus cure. World J Gastroenterol 28, 96-107 (2022). https://doi.org:10.3748/wjg.v28.i1.96
    63 Peeling, R. W., Boeras, D. I., Marinucci, F. & Easterbrook, P. The future of viral hepatitis testing: innovations in testing technologies and approaches. BMC Infect Dis 17, 699 (2017). https://doi.org:10.1186/s12879-017-2775-0
    64 Goetz, L. H. & Schork, N. J. Personalized medicine: motivation, challenges, and progress. Fertil Steril 109, 952-963 (2018). https://doi.org:10.1016/j.fertnstert.2018.05.006
    65 Young, J., Wong, S., Janjua, N. Z. & Klein, M. B. Comparing direct acting antivirals for hepatitis C using observational data - Why and how? Pharmacol Res Perspect 8, e00650 (2020). https://doi.org:10.1002/prp2.650
    66 Valva, P., Rios, D. A., De Matteo, E. & Preciado, M. V. Chronic hepatitis C virus infection: Serum biomarkers in predicting liver damage. World J Gastroenterol 22, 1367-1381 (2016). https://doi.org:10.3748/wjg.v22.i4.1367
    67 Cheng, Y. et al. Carbohydrate biomarkers for future disease detection and treatment. Sci China Chem 53, 3-20 (2010). https://doi.org:10.1007/s11426-010-0021-3
    68 Protein biomarkers in cancer: Natural glycoprotein microarray approaches. (2008).
    69 Varki, A. Biological roles of glycans. Glycobiology 27, 3-49 (2017). https://doi.org:10.1093/glycob/cww086
    70 Sunayama T,Sunayama TElevated plasma levels of a carbohydrate antigen, sialyl Lewis X, in liver diseases.J Hepatol. 1993 Nov;19(3):451-8. (1993).
    71 Tanwar, S., Rhodes, F., Srivastava, A., Trembling, P. M. & Rosenberg, W. M. Inflammation and fibrosis in chronic liver diseases including non-alcoholic fatty liver disease and hepatitis C. World J Gastroenterol 26, 109-133 (2020). https://doi.org:10.3748/wjg.v26.i2.109
    72 Reily, C., Stewart, T. J., Renfrow, M. B. & Novak, J. Glycosylation in health and disease. Nat Rev Nephrol 15, 346-366 (2019). https://doi.org:10.1038/s41581-019-0129-4
    73 Stanley, P. Golgi glycosylation. Cold Spring Harb Perspect Biol 3 (2011). https://doi.org:10.1101/cshperspect.a005199
    74 Goettig, P. Effects of Glycosylation on the Enzymatic Activity and Mechanisms of Proteases. Int J Mol Sci 17 (2016). https://doi.org:10.3390/ijms17121969
    75 Naseri, R. et al. Targeting Glycoproteins as a therapeutic strategy for diabetes mellitus and its complications. Daru 28, 333-358 (2020). https://doi.org:10.1007/s40199-020-00327-y
    76 de Mattos, L. C. Structural diversity and biological importance of ABO, H, Lewis and secretor histo-blood group carbohydrates. Rev Bras Hematol Hemoter 38, 331-340 (2016). https://doi.org:10.1016/j.bjhh.2016.07.005
    77 Cooling, L. Blood Groups in Infection and Host Susceptibility. Clin Microbiol ;2015,doi:10.1128. https://doi.org:10.1128/CMR.00109-14
    78 Kirwan, A., Utratna, M., O'Dwyer, M. E., Joshi, L. & Kilcoyne, M. Glycosylation-Based Serum Biomarkers for Cancer Diagnostics and Prognostics. Biomed Res Int 2015, 490531 (2015). https://doi.org:10.1155/2015/490531
    79 Sharma, S. Tumor markers in clinical practice: General principles and guidelines. Indian J Med Paediatr Oncol 30, 1-8 (2009). https://doi.org:10.4103/0971-5851.56328
    80 Li, Q. et al. ABO blood group and the risk of hepatocellular carcinoma: a case-control study in patients with chronic hepatitis B. PLoS One 7, e29928 (2012). https://doi.org:10.1371/journal.pone.0029928
    81 Okada.The hepatocellular expression of a carbohydrate antigen ‘sialyl Lewis X in chronic hepatitis.1990. (1990).
    82 Elevated plasma levels of a carbohydrate antigen, sialyl Lewis X, in liver diseases. (1994).
    83 Mitra, R., Mishra, N. & Rath, G. P. Blood groups systems. Indian J Anaesth 58, 524-528 (2014). https://doi.org:10.4103/0019-5049.144645
    84 Subramaniyan, R. Serological characteristics of Lewis antibodies and their clinical significance - A case series. Hematol Transfus Cell Ther (2021). https://doi.org:10.1016/j.htct.2021.07.007
    85 Jajosky, R. P. et al. ABO Blood Group Antigens and Differential Glycan Expression: Perspective on the Evolution of Common Human Enzyme Deficiencies. iScience (2022). https://doi.org:10.1016/j.isci.2022.105798
    86 Zhang, H. et al. Typing of blood-group antigens on neutral oligosaccharides by negative-ion electrospray ionization tandem mass spectrometry. Anal Chem 85, 5940-5949 (2013). https://doi.org:10.1021/ac400700e
    87 Ewald, D. R. & Sumner, S. C. Blood type biochemistry and human disease. Wiley Interdiscip Rev Syst Biol Med 8, 517-535 (2016). https://doi.org:10.1002/wsbm.1355
    88 Wagner, G. K., Pesnot, T., Palcic, M. M. & Jorgensen, R. Novel UDP-GalNAc Derivative Structures Provide Insight into the Donor Specificity of Human Blood Group Glycosyltransferase. J Biol Chem 290, 31162-31172 (2015). https://doi.org:10.1074/jbc.M115.681262
    89 Lewis blood group system review. (2009).
    90 Ma, Z. et al. Expression of the Carbohydrate Lewis Antigen, Sialyl Lewis A, Sialyl Lewis X, Lewis X, and Lewis Y in the Placental Villi of Patients With Unexplained Miscarriages. Front Immunol 12, 679424 (2021). https://doi.org:10.3389/fimmu.2021.679424
    91 Thurin, M. Tumor-Associated Glycans as Targets for Immunotherapy: The Wistar Institute Experience/Legacy. Monoclon Antib Immunodiagn Immunother 40, 89-100 (2021). https://doi.org:10.1089/mab.2021.0024
    92 Gayathri, A. M. & Gupta, D. Case series investigation on the Lewis system antibodies encountered during a routine screening in a tertiary care hospital-based blood center. Asian J Transfus Sci 14, 54-56 (2020). https://doi.org:10.4103/ajts.AJTS_60_19
    93 Liumbruno, G. M. & Franchini, M. Beyond immunohaematology: the role of the ABO blood group in human diseases. Blood Transfus 11, 491-499 (2013). https://doi.org:10.2450/2013.0152-13
    94 Liu, J. & Wang, D. ABO(H) and Lewis blood group substances and disease treatment. Transfus Med 32, 187-192 (2022). https://doi.org:10.1111/tme.12820
    95 Jaff, M. S. Higher frequency of secretor phenotype in O blood group - its benefits in prevention and/or treatment of some diseases. Int J Nanomedicine 5, 901-905 (2010). https://doi.org:10.2147/IJN.S13980
    96 Cooling, L. Blood Groups in Infection and Host Susceptibility. Clin Microbiol Rev 28, 801-870 (2015). https://doi.org:10.1128/CMR.00109-14
    97 Hassan, S. U., Donia, A., Sial, U., Zhang, X. & Bokhari, H. Glycoprotein- and Lectin-Based Approaches for Detection of Pathogens. Pathogens 9 (2020). https://doi.org:10.3390/pathogens9090694
    98 Arthur, C. M. et al. Innate immunity against molecular mimicry: Examining galectin-mediated antimicrobial activity. Bioessays 37, 1327-1337 (2015). https://doi.org:10.1002/bies.201500055
    99 Anstee, D. J. The relationship between blood groups and disease. Blood 115, 4635-4643 (2010). https://doi.org:10.1182/blood-2010-01-261859
    100 Jing, W., Zhao, S., Liu, J. & Liu, M. ABO blood groups and hepatitis B virus infection: a systematic review and meta-analysis. BMJ Open 10, e034114 (2020). https://doi.org:10.1136/bmjopen-2019-034114
    101 Behal, R., Jain, R., Behal, K. K. & Dhole, T. N. Variation in the host ABO blood group may be associated with susceptibility to hepatitis C virus infection. Epidemiol Infect 138, 1096-1099 (2010). https://doi.org:10.1017/S0950268809991117
    102 Li, X., Xu, H., Ding, Z., Jin, Q. & Gao, P. Association between ABO blood group and HCV-related hepatocellular carcinoma risk in China. Medicine (Baltimore) 95, e5587 (2016). https://doi.org:10.1097/MD.0000000000005587
    103 Mahnoor et al. Association of blood groups with hepatitis C viremia. Saudi J Biol Sci 28, 5359-5363 (2021). https://doi.org:10.1016/j.sjbs.2021.05.062
    104 Rong, X. et al. Correlation of viral loads with HCV genotypes: higher levels of virus were revealed among blood donors infected with 6a strains. PLoS One 7, e52467 (2012). https://doi.org:10.1371/journal.pone.0052467
    105 Tani, J. et al. Simple scoring system for prediction of hepatocellular carcinoma occurrence after hepatitis C virus eradication by direct-acting antiviral treatment: All Kagawa Liver Disease Group Study. Oncol Lett 19, 2205-2212 (2020). https://doi.org:10.3892/ol.2020.11341
    106 Sugiura, A. et al. Effectiveness of Glecaprevir/Pibrentasvir for Hepatitis C: Real-World Experience and Clinical Features of Retreatment Cases. Biomedicines 8 (2020). https://doi.org:10.3390/biomedicines8040074
    107 Wilton, J. et al. Real-world Effectiveness of Sofosbuvir/Velpatasvir for Treatment of Chronic Hepatitis C in British Columbia, Canada: A Population-Based Cohort Study. Open Forum Infect Dis 7, ofaa055 (2020). https://doi.org:10.1093/ofid/ofaa055
    108 Mangia, A. et al. SVR12 rates higher than 99% after sofosbuvir/velpatasvir combination in HCV infected patients with F0-F1 fibrosis stage: A real world experience. PLoS One 14, e0215783 (2019). https://doi.org:10.1371/journal.pone.0215783
    109 Chang, T. S. et al. Effectiveness and safety of 8-week glecaprevir/pibrentasvir in HCV treatment-naive patients with compensated cirrhosis: real-world experience from Taiwan nationwide HCV registry. Hepatol Int 17, 550-561 (2023). https://doi.org:10.1007/s12072-023-10506-z
    110 Giannini, E. G., Testa, R. & Savarino, V. Liver enzyme alteration: a guide for clinicians. CMAJ 172, 367-379 (2005). https://doi.org:10.1503/cmaj.1040752
    111 Guerra Ruiz, A. R. et al. Measurement and clinical usefulness of bilirubin in liver disease. Advances in Laboratory Medicine / Avances en Medicina de Laboratorio 2, 352-361 (2021). https://doi.org:10.1515/almed-2021-0047
    112 Zhang, J. et al. The threshold of alpha-fetoprotein (AFP) for the diagnosis of hepatocellular carcinoma: A systematic review and meta-analysis. PLoS One 15, e0228857 (2020). https://doi.org:10.1371/journal.pone.0228857
    113 Sherwani, S. I., Khan, H. A., Ekhzaimy, A., Masood, A. & Sakharkar, M. K. Significance of HbA1c Test in Diagnosis and Prognosis of Diabetic Patients. Biomark Insights 11, 95-104 (2016). https://doi.org:10.4137/BMI.S38440

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE