| 研究生: |
黃勇憲 Huang, Yung-Hsien |
|---|---|
| 論文名稱: |
二十呎貨櫃篩檢站之合適換氣次數研究 The study on the appropriate air change rate of a 20-foot container screening station |
| 指導教授: |
潘振宇
Pan, Chen-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 117 |
| 中文關鍵詞: | 篩檢站 、20呎貨櫃 、換氣次數 |
| 外文關鍵詞: | screening station, 20-foot container, air changes per hour |
| 相關次數: | 點閱:56 下載:12 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
貨櫃擁有的改造靈活性、低成本、高機動等優點使其被廣泛應用於醫療、救災等用途,在疫情爆發的當下,使用貨櫃改裝為篩檢站是常見的方式。篩檢站為防止室外汙染空氣侵入室內,會以較高的換氣次數以確保室內維持正壓,而高換氣次數十分不利換氣及空調設備節能,且目前各國醫療空間設規範並未明確訂出篩檢空間的建議換氣次數。故本研究利用現場實測與CFD模擬工具,以探討20呎貨櫃改裝的篩檢站之合適換氣次數。評斷標準主要從室內壓差值及室內舒適性兩方面探討,室內壓差值的高低與貨櫃外殼的開口大小、氣密性程度有關;室內舒適性則與溫溼度、二氧化碳濃度、空調設定溫度有關,期望能將實驗所得資訊做為日後20呎貨櫃篩檢站改裝的參考資訊。
研究結果顯示,若可增強外殼氣密性並減少開口大小,則以較低的換氣次數即可達到室內正壓標準,且該換氣次數相當接近各國規範之正壓病房、潔淨作業區的換氣次數建議區間。而若要在室外高溫高濕的情況下保持在舒適的溫溼度區間,則應選擇較低的換氣次數及較低的空調設定溫度。經綜合考量後,本研究建議以10ACH作為貨櫃篩檢站之換氣次數,將搭配空調溫度設定為24℃、室內使用人數3人,即可使室內維持正壓+2.5Pa、溫度25-26℃、二氧化碳濃度1000ppm以下。此外,由於風機的耗電量高於風扇許多,若可確保進氣位置附近的外氣不受汙染,則可使用風扇作為換氣設備。
The flexibility, low cost, and high mobility of containers have made them widely used in medical, disaster relief and other purposes. During the epidemic, it is a common way to use containers to convert into screening stations. In order to prevent outdoor polluted air from entering the room, the screening station will use a high ventilation rate to ensure that the room maintains positive pressure. However, the high ventilation rate is not condusive unfavorable for energy saving, and there is no recommendation about the ventilation rate for the screening station. Therefore, this study uses on-site measurement and CFD simulation tools to explore the appropriate air exchange rate for the 20-foot container screening station. The evaluation standard is mainly discussed from the indoor pressure difference value and indoor comfort. It is hoped that the information obtained from the experiment can be used as reference information for the modification of the 20-foot container screening station in the future.
The results show that if the airtightness of the shell can be enhanced and the size of the opening can be reduced, the indoor positive pressure standard can be achieved with a lower ventilation rate. The lower air change rate and the lower set temperature of the air conditioner should be selected to maintain indoor comfortable temperature and humidity. After comprehensive consideration, this study recommends that 10ACH be used as the air exchange rate of the container screening station.Then the temperature of the air conditioner can be set to 24°C, and the number of users in the room is 3, so that the room can maintain a positive pressure of +2.5Pa and a temperature of 25-26℃, and the carbon dioxide concentration is lower than 1000ppm. In addition, since the power consumption of the centrifugal fan is much higher than the normal exhaust fan,so the normal exhaust fan can be used as a air-intake device if it can ensure that the outside air near the intake position is not polluted.
中文文獻
中華人民共和國國家標準(2013)。GB 50073潔淨廠房設計規範。中華人民共和國工業和信息化部。中國北京市。
王順志等(2010)。負壓病房總體設計與洩漏率研究。行政院勞工安全衛生研究所,37-38。
內政部營建署(2021)。建築技術規則建築設備編。第101條、第102條。
行政院環境保護署(2012)。室內空氣品質標準。第2條。
行政院勞動部(2020)。職業安全衛生設施規則。第312條。
行政院衛生福利部(2020) 。醫療機構設置標準。附表一 (四)醫療服務設施 第8項 隔離房、附表一(五)建築物之構造、設計與設備,附表一第三項 空調設備。
行政院衛生福利部疾病管制署(2013)。負壓隔離病房作業參考手冊。p11、p25。
吳文會(2013)。空調通風系統維持房間正壓的新風量計算探討。2013年建築科技與管理學術交流會(頁141-142)。中國北京市。
李思翰(2016)。不同空調通風條件對於負壓隔離病房內流場之CFD模擬(碩士論文)。國立中央大學,桃園市。
陳春萬、楊金源、鍾基強、陳友剛(2002)。整體換氣壓力差對有害物散布之影響。勞工安全衛生研究季刊,第十卷第二期,109-115。
張立山(2016)。正壓隔離病房氣流模擬分析(碩士論文) 。臺北科技大學,臺北市。
曹達和、張振平、莊啓佑、莊侑哲、林升傑、戴聿彤(2011)。病房門縫大小對負壓隔離病房負壓值之影響探討。勞工安全衛生研究季刊,第18卷第3期,306。
蘇志勳(2004)。一般居室空間改造為負壓隔離病房之換氣效能檢測與預測分析(碩士論文)。國立成功大學,台南市。
英文文獻
American Society Of Heating, Refrigerating And A-C Engineers Fdn. (2019). Ventilation for Acceptable Indoor Air Quality. Atlanta, GA. 17-21
American Society Of Heating, Refrigerating And A-C Engineers Fdn . (2021). Ventilation of Health Care Facilities. ASHRAE Standard 170,14-17.
American Institute of Architects (2006). Guidelines for design and construction of healthcare facilities. Washington, DC: Author. 130.
American Society Of Heating, Refrigerating And A-C Engineers Fdn . (2017). Measurement, Testing, Adjusting, and Balancing of Building HVAC Systems. ASHRAE Standard 111.
American Society Of Heating, Refrigerating And A-C Engineers Fdn . (2009). SI_Edition_2009_ASHRAE_HANDBOOK. Atlanta, GA.130.
Adams, N.J., Johnson, .D.J., & Lynch, R.A., (2011). The effect of pressure differential and care provider movement on airborne infectious isolation room containment effectiveness. American Journal of Infection Control, 39(2), 91-97. Doi: doi.org/10.1016/j.ajic.2010.05.025
Aroom, K., Ge, J., Al-Zogbi, L., White, M., Trustman, A., Greenbaum, A., Farley, J., & Krieger, A. (2022). Positive Pressure Testing Booths Development and Deployment In Response To The COVID-19 Outbreak. Journal of Medical Devices, Transactions of the The American Society of Mechanical Engineers,1(16),011001-4.
Bhattacharya, A., Metcalf, A., Mohammadi, A., & Mousavi, E. (2020). Particle dispersion in a cleanroom – effects of pressurization, door opening and traffic flow. Building Research and Information, 49(2),1-14.
Booth, R.D., Ponce,LT.S.J., Corso,G.J.,& Perkins,S.K.(2021). Current/Updated Health Care Facilities Ventilation Controls and Guidelines for Management of Patients with Suspected or Confirmed SARS-CoV-2 (COVID-19). The American Society for Health Care Engineering,11.
Bakowski, J. (2016). A mobile hospital – its advantages and functional limitations. International Journal of Safety and Security Engineering, 6(4), 746-747.
Erhorn-Kluttig, H., Erhorn,H., Lahmidi,H., & Anderson,R. (2008). Airtightness requirements for high performance buildings, The 29th AIVC Conference - Advanced Building Ventilation and Environmental Technology for Addressing Climate Change Issues,25-32.
Eykelbosh, A. (2021). Indoor CO2 Sensors for COVID-19 Risk Mitigation: Current Guidance and Limitations. Vancouver, BC: National Collaborating Centre for Environmental Health.
Fanger, P. O. (1967). Calculation of thermal comfort:Introduction of a basic thermo comfort equation, ASHRAE Trans, 73, 263-271.
Fountain, M., Bauman, F.S., Oguru, M., & Xu, T. (1999).An Investigation of Thermal Comfort at High Humidities, ASHRAE Trans, 105, Part 2,94-103.
Gupta, J.K., Lin, C. H., and Chen, Q. (2010). Characterizing exhaled airflow from breathing and talking. Indoor Air, 20, 31-39.
Launder, B.E., & Spalding, D.B. (1974).The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 3(2), 269-289.
Memarzadeh, F., Xu, W. Role of air changes per hour (ACH) in possible transmission of airborne infections. Build. Simul. ,5, 15–28. Doi: doi.org/10.1007/s12273-011-0053-4
Nair, S.S., Prajapati, A.K., Venkatesan, R.B., Chirathodi, V., & Kishore, A. (2020).Design and Evaluation of Chitra Swab Collection Booths for Health Professionals in COVID-19 Pandemic. Transactions of the Indian National Academy of Engineering, 5, 643–648.
National Health Service. (2021). Health Technical Memorandum 03-01 Specialised ventilation for healthcare premises Part A: The concept, design,specification, installation and acceptance testing of healthcare ventilation systems. London : Author.147-148.
Public Health Agency of Canada. (2014). Canadian Tuberculosis Standards (7th ed). Ottawa, Ontario:Author. 24.
Peña, J.A. & Schuzer, K. (2012). Design of reusable emergency relief housing units using general purpose (GP) shipping containers. International Journal of Engineering Research and Innovation , 4(N2), 55.
Peng,Z., & Jimenez,L.J. (2021). Exhaled CO2 as a COVID-19 Infection Risk Proxy for Different Indoor Environments and Activities. Environmental Science & Technology Letters,8(5),392-397.
Srivajana, W. (2003).Effects of Air Velocitv on Thermal Comfort in Hot and Humid Climate, Thammasat Int. J. Sc. Tech., 8, No. 2, 53
Tung, Y.C., Hu ,S.C., Tsai ,T.I.,& Chang ,I.L., (2009). An experimental study on ventilation efficiency of isolation room. Building and Environment, 44(2), 271-279.
Tanyer,A.M., Tavukcuoglu,A., & Bekboliev,M. (2018). Assessing the airtightness performance of container houses in relation to its effect on energy efficiency. Building and Environment,143,59-73.
U.S. Department of Health and Human Services Centers for Disease Control and Prevention. (2003). Guidelines for Environmental Infection Control in Health-Care Facilities. C(3),33&223.
Victorian Advisory Committee on Infection Control. (2007). Engineering guidelines for healthcare facilities: Volume 4 – Heating, ventilation and air conditioning. Melbourne, Victoria: Author. 25.
日文文獻
日本厚生勞動省(2021)。建築物環境衛生管理基準。第二章第一節,空気調和設備を設けている場合の空気環境の基準。
網路文獻
工研技術研究院新聞中心(2020)。工研院正壓採檢亭。檢自https://www.itri.org.tw/ListStyle.aspx?DisplayStyle=01_content&SiteID=1&MmmID=1036276263153520257&MGID=107211374442537640 (March. 2,2022)
行政院衛生福利部疾病管制署(2022)。2020年起COVID-19本土確定病例數及死亡數統計。檢自 https://sites.google.com/cdc.gov.tw/2019ncov/taiwan (March. 2,2022)
行政院衛生福利部疾病管制署(2021)。各地方政府社區篩檢站設置指引。檢自https://www.cdc.gov.tw/File/Get/YTduLyC-aofHUdmhfwi8Sw (March. 2,2022)
花蓮慈濟醫院新聞訊息防疫專區(2021)。因應春節國外返鄉人潮 花蓮慈院設計行動防疫採檢車。檢自https://hlm.tzuchi.com.tw/index.php/news/precaution/item/2194-2021-12-23-01-17-20 (March. 2,2022)
國立成功大學新聞中心(2020)。移動式緊急部署檢疫醫院原型QurE。檢自https://web.ncku.edu.tw/p/406-1000-206942,r2845.php?Lang=zh-tw (March. 2,2022)
國立臺灣大學醫學院附設醫院新竹臺大分院(2021)。工研院與新竹臺大分院聯手研發防疫 組合屋戶外篩檢站與正壓檢疫亭全面啟動。檢自https://www.hch.gov.tw/?aid=71&pid=106&page_name=detail&iid=134 (March. 2,2022)
鈦隼生物科技(2021)。零接觸防疫採檢站。檢自https://brainnavi.com/zero-contact-medical-station-%E4%B8%AD%E6%96%87/(March. 2,2022)
臺南奇美醫院(2021)。奇美醫院零接觸防疫採檢站。檢自http://www.chimei.org.tw/ePhotoAlbum/files/4A043B52341E788D9E67918E2613EACB.pdf (March. 2,2022)
臺灣急診醫學會(2020)。新光醫院急診戶外發燒篩檢站。檢自https://www.sem.org.tw/EJournal/Detail/259
蔡宗憲(2021,6月30日)。築Delta包圍網屏東枋寮建第二圈篩檢站共已採檢逾6千人。自由時報。檢自https://news.ltn.com.tw/news/life/breakingnews/3586746
Aardvark Mobile Health. (2021). Aardvark Mobile Health Clinic truck. Retrieved from https://www.aardvarkmobilehealth.com/ (March. 2,2022)
ALVO Medical. (2020). ALVO Mobile Hospital Isolation unit. Retrieved from http://www.alvo-mobilehospital.pl/en/offer/mobile-isolation-units/ (March. 2,2022)
BLU-MED Response Systems. (2020). Negative Pressure Isolation Rooms & Treatment Facilities. Retrieved from https://blu-med.com/negative-pressure-isolation-rooms/. (March. 2,2022)
Carlo Ratti Associati. (2020). CURA. Retrieved from https://carloratti.com/project/cura/ (March. 2,2022)
Esco Aster Pte Ltd. (2020). Covid-19 Esco Aster Mass Screening Swab Booth. Retrieved from https://escoaster.com/Products/COVID-19/mass-screening-swab-booth-mssb#covid-brochure (March. 2,2022)
ICT services brand of the EOH Group. (2020). ICULATE – Portable Isolation Wards. Retrieved from https://ioco.tech/solve/iculate-portable-isolation-wards/ (March. 2,2022)
SITU Studio. (2020). SITU Patient Screening Booth. Retrieved from https://situ.nyc/studio/projects/covid19-relief-efforts (March. 2,2022)
U.S. Department of Health and Human Services Centers for Disease Control and Prevention. (2021). Performing Broad-Based Testing for SARS-CoV-2 in Congregate Settings. Retrieved from https://www.cdc.gov/coronavirus/2019-ncov/hcp/broad-based-testing.html (March. 2,2022)
Vega Aviation Products Private Limited. (2020). Covisack Isolated Cabin. Retrieved from https://www.indiamart.com/vegaaviation/covid19-testing-lab.html (March. 2,2022)
World Health Organization. (2021). Roadmap to improve and ensure good indoor ventilation in the context of COVID-19, Retrieved from https://www.who.int/publications/i/item/9789240021280 (March. 2,2022). 8.
World Health Organization. (2022). Weekly epidemiological update on COVID-19 - 1 March 2022. Retrieved from https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---1-march-2022. (March. 2,2022