簡易檢索 / 詳目顯示

研究生: 林易鍾
Lin, Yi-Chong
論文名稱: 鋁/高含量碳化矽複合材料之製程參數及性質間關係之探討
Relationships between the Processing Parameters & Properties of Al/high SiC Content Composites
指導教授: 曹紀元
Tsao, C.Y.
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 113
中文關鍵詞: 高含量碳化矽鋁基複合材超固相燒結PSR熱壓
外文關鍵詞: Al/high SiC content composites, PSR, Hot Pressing, Supersolidus liquid phase sintering
相關次數: 點閱:83下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   高含量碳化矽鋁基複合材已逐漸在電子構裝應用上受到矚目,本研究將試著以粉末冶金的方法製作Al/40vol%SiC、Al/50vol%SiC及Al/60vol%SiC各種不同含量之Al/SiC複合材,製程上是使用熱壓加上超固相燒結,研究中會探討不同顆粒大小及熱壓時間對熱壓緻密度的影響,並發現不論是Al/40vol%SiC、Al/50vol%SiC或Al/60vol%SiC, SiC:Al之顆粒大小比(PSR)越大,對應的緻密度越高;由變異數分析可得知SiC顆粒大小為影響緻密度主要因素;在後續的超固相燒結也會發現,大致上,提高固相比及延長燒結時間會提高Al/SiC複合材的緻密度,對Al/SiC複合材機械性質會有所提升。

      High content silicon carbide particle reinforced aluminum composites have generally fixed someone's eyes upon the application of electronic packaging. In this research, Al/high content SiC composites (Al/40vol%SiC, Al/50vol%SiC & Al/60vol%SiC) will be fabricated by P/M method. The Al/high content SiC composites are first hot pressing and then Supersolidus Liquid Phase Sintering (SLPS). The effects of particles size and HP time for density will be conferred in the research. The results show that, no matter what SiC content in Al/SiC composites is, the density increases with the particle size ratio (SiC : Al) increasing. From analysis of variables, we know that the major factor controlling the density of composites is particles size of SiC. At following SLPS, it can find increasing the liquid fraction and extending sintering time will enhancing the density and improve the mechanical properties.

    摘要 I Abstract II 總目錄 III 表目錄 V 圖目錄 VII 第一章 緒論 1 1-1 前言 1 1-2 實驗目的 4 1-3 文獻回顧 5 1-3-1 雙氣流氣體霧化法 5 1-3-2 粉體緻密化 7 1-3-3 熱壓機構 8 1-3-4 高含量碳化矽鋁基複合材之開發 10 1-3-5 超固相燒結 11 1-3-6 田口式實驗設計及變異數分析 14 1-3-7 破斷面微觀組織分析及機械性質計算 16 第二章 實驗步驟與方法 18 2-1實驗步驟 18 2-1-1 材料選擇 18 2-1-2 AA6063粉末之製備 18 2-1-3 AA6063粉末之過篩 19 2-1-4 混合粉末之配置 19 2-1-5 粉體之混合 20 2-1-6 粉體之成型 20 2-1-7 模具之設計 21 2-1-8 試片切割 22 2-1-9 試片鑲埋 22 2-1-10 金相研磨拋光方案 23 2-1-11 緻密度之量測 23 2-1-12 硬度測試 24 2-1-13 橫向壓裂強度(TRS)及韌性(Toughness)測試 24 2-2 實驗流程圖 26 2-3 實驗設備 27 第三章 結果與討論 29 3-1熱壓壓力及除氣參數之決定 29 3-2 純熱壓結果分析 31 3-2-1 熱壓之位移(Stroke)-時間(Time)曲線圖討論 32 3-2-2 緻密商數(QD)與SiC含量及PSR之關係 33 3-2-3 F型和A型曲線形成的原因與機制 35 3-3 變異數分析及最佳熱壓參數決定 37 3-4 超固相燒結機械性質分析 42 3-4-1 硬度(Hv)測試分析 42 3-4-2 韌性(Toghness)測試及橫向破裂強度(TRS)測試分析 44 3-4-3 最佳超固相燒結參數 46 3-4-4 破斷面微觀組織分析 47 第四章 結論 48 第五章 參考文獻 50 附錄A 硬度值(Hv)量測 108 附錄B 三點抗彎最大負荷量測(計算TRS用) 110 附錄C 韌性(Toughness)量測 112

    [1] Byung G. Kim, “Effects of thermal processing on thermal expansion
    coefficient of a 50 vol.% SiCp-Al composite”, Materials Chemistry and Physics 72 (2001) p42–p47.
    [2] Qiang Zhang, “Thermal expansion and dimensional stability of Al–Si matrix composite reinforced with high content SiC”, Materials Chemistry and Physics 82 (2003) p780–p785.
    [3] 丁初稷, “電子構裝用高承載金屬/陶瓷複合材料及其構裝組件之製程探討”,國科會計畫NSC 86-2216-E-006-002.
    [4] Qiang Zhang, “The thermal expansion and mechanical properties of high reinforcement content SiCp/Al composites fabricated by squeeze casting technology”, Composites : Part A 34 (2003) p1023-p1027.
    [5] C.Y. Chen & C.G. Chao, “Effect of particle-size distribution on the properties of high-volume-fraction SiCp-Al-based composites”, Metall Mater Trans, vol.31A No.9 (2000) p2351-p2359.
    [6] Huyi Qin, “The effect of particle shape on ductility of SiCp reinforced 6061 Al matrix composites”, Materials Science and Engineering A272 (1999) p363–p370.
    [7] H. Xu, E.J. Palmiere, ”Particulate refinement and redistribution during the axisymmetric compression of an Al/SiCP metal matrix composite”, Composites : Part A 30 (1999) p203-p211.
    [8] J.C. Romero, L. Wang, R.J. Arsenault, “Interfacial structure of a SiC/Al composites”, Materials Science & Engineering A212 (1996) p1-p5.
    [9] Tongxiang Fan, “Chemical reaction of SiCp/Al composites during multiple remelting”, Compisites: Part A 34 (2003) p291-p299.
    [10] T. Sritharan, “A feature of the reaction between Al and SiC particles in an MMC”, Materials characterization 47 (2001) p75-p77.
    [11] Ziani, Abdelouahab, “Supersolidus liquid-phase sintering behavior of degassed 6061 Al powder”, International Journal of Powder Metallurgy Vol 35, no.8 (1999) p49-p58.
    [12] Lal, Anand, Iacocca, Ronald G.; German, Randall M, “Densification during the supersolidus liquid-phase sintering of nickel-based prealloyed powder mixtures”, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science Vol 30, no.8 (1999) p2201-p2208.
    [13] Myers, Neal S., German, Randall M, “Supersolidus liquid phase sintering of injection molded M2 tool steel”, International Journal of Powder Metallurgy Vol 35, no.6 (1999) p 45-p51.
    [14] Wright, C.S.; Youseffi, M.; Wronski, A.S.; Ansara, I.; Durand-Charre, M.; Mascarenhas, J.; Oliveira, M.M.; Lemoisson, F.; Bienvenu, Y., “Supersolidus liquid phase sintering of high speed steels. Part 3: Computer aided design of sinterable alloys”, Powder Metallurgy Vol 42, no.2 (1999) p131-p146.
    [15] Yong-Jin Kim, Jung-Ho Ahn & Hyungsik Chung, “Processing and properties of Cu matrix composites for microelectronic application”, Materials Science Forum Vols. 426-432 (2003) p2199-p2204
    [16] S. Özbilen, A. Űnal, and T. Sheppard, “Influence of liquid metal properties on particle size of inert gas atomized powders”, Powder Metallurgy, vol. 39 No. 1(1996) p44-p52.
    [17] German : Powder Metallurgy Science, 2nd, p103.
    [18] German : Powder Metallurgy Science, 2nd ,p99-p110.
    [19] H. Lefebvre : Atomization and Sprays, p11-p14.
    [20] Iver E. Anderson, “Progress toward gas atomization processing with increased uniformity and control”, Materials Science and Engineering A326 (2002) p101–p109.
    [21] H.M. Ortner, “Surface chemistry of water atomised aluminium alloy powders”, Applied Surface Science 191 (2002) p26–p43.
    [22] Stefan Markus, “Jet break up of liquid metal in twin fluid atomization”, Materials Science and Engineering A326 (2002) p122–p133.
    [23] S. Özbilen, “Influence of atomising gas on particle characteristics of Al, Al-1wt%Li, Mg, and Sn powder”, Powder Metallurgy, vol.43, no.2 (2000) p173-p180.
    [24] German : Powder Metallurgy Science, 2nd, p313.
    [25] Reed-Hill, Abbaschian : Physical Metallurgy Principles, p842-p844.
    [26] Velidandia V. Bhanuprasad & Radhakrishna B.V. Bhat, “P/M processing of Al-SiC composites”, The International Journal of Powder Metallurgy, vol27, no. 3(1991), p227-p235
    [27] K. Li, X,-D. Jin, B.-D. Yan & P,-X. Li, “Effect pf SiC particles on fatigue crack propagation in SiC/Al composites, Composites, vol 23, no. 1(1992), p54-p58
    [28] R. Rodriguez-Castro, “Microstructure and mechanical behavior of functionally graded Al A359/SiCP composites”, Materials Science & Engineering A323 (2002), p445-p456
    [29] Rajiv Tandon & R.M. German, “Particle Fragmentation During Supersolidus Sintering”, The International Journal of Powder Metallurgy Vol 33, no.1 (1997) p54-p60.
    [30] Yixiong Liu, Rajiv Tandon & R.M. German, “Modeling of Supersolidus Liquid Phase Sintering: Densification”, Metallirgical & Materials Transactions 26A (1995) p2423-p2430
    [31] Geiger & Poirier:Transport phenomena in metallurgy, p13-p22.
    [32] Solidification characteristics of aluminium alloys, vol.1,wrought alloys, p126.
    [33] 陳耀茂 譯:田口式實驗計畫法.
    [34] William D. Callister, JR. : Materials Science and Engineering An Introduction, p178-p184.
    [35] Metal Handbook, 9th edition, vol.8: Mechanical testing, p90-p103.
    [36] German : Powder Metallurgy Science, 2nd, p376-378.
    [37] P. Kumar, K. Vedula & A. Ritter, “Microstructure effects on the fracture micromechanisms in 7XXX Al P/M-SiC particulate metal matrix composites”, Processing & Properties for Powder Metallurgy Composites (1988), p117-p137

    下載圖示 校內:2005-08-30公開
    校外:2005-08-30公開
    QR CODE