簡易檢索 / 詳目顯示

研究生: 吳祖儀
Wu, Tsu-Yi
論文名稱: 應用液相沉積法沉積高介電材料並研製氮化鋁鎵/氮化鎵金氧半高電子移動率電晶體
AlGaN/GaN Metal-Oxide-Semiconductor High Electron Mobility Transistors Using Liquid-phase Deposited High-k Gate Dielectrics
指導教授: 王永和
Wang, Yeong-Her
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 91
中文關鍵詞: 氮化鋁鎵/氮化鎵高電子移動率電晶體液相沉積法金氧半高介電材料功率元件
外文關鍵詞: AlGaN/GaN, High Electron Mobility Transistor, Liquid Phase Deposition, Metal–Oxide–Semiconductor, high-k material, power device
相關次數: 點閱:94下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文應用液相沉積法沉積高介電氧化層薄膜於氮化鎵材料上並研製為氮化鋁鎵/氮化鎵金氧半高電子移動率電晶體。液相沉積法是一便宜簡單的沉積方式,不需要外加額外的能量或電壓,且可於低溫下進行,減少熱應力造成的缺陷。數種不同的高介電氧化層包括二氧化鈦、鈦酸鍶及二氧化鋯皆以液相沉積法沉積於氮化鎵上並利用X射線光電子能譜、電子力顯微鏡等各項儀器進行化、物性分析。
    使用高介電常數材料為閘極介電層可有效克服轉導下降及介電層過薄導致的穿遂電流問題。二氧化鈦、鈦酸鍶兩者均有相當高之介電常數(>60),使用此兩種材料研製金氧半高電子移動率電晶體,與傳統高電子移動率電晶體相比,金氧半高電子移動率電晶體具有較小之漏電流,較高之崩潰電壓,且轉導與臨界電壓並為無大幅改變,此外亦能有效改善表面態位,降低界面散射。然而,此兩種材料具有能隙較低的缺點,為補足此缺陷,因此也以液相沉積法沉積二氧化鋯做為介電層,二氧化鋯具有不錯的介電常數(>20)以及高能矽(>6eV),適合做為介電層使用。結果顯示使用約2奈米二氧化鋯為介電層之金氧半高電子移動率電晶體即可有效改善元件漏電流與崩潰特性。
    具有高電流與高電壓的氮化鋁鎵/氮化鎵高電子移動率電晶體非常適合於於功率應用,然而散熱是一大問題,藉由使用高導熱的碳化矽基板,可以改善此問題,在本論文最後,將針對使用碳化矽基板的氮化鋁鎵/氮化鎵高電子移動率電晶體進行分析,並與使用矽基板的元件相比較,結果顯示使用碳化矽基板的元件具有較佳之特性,於1.2mm元件中,PAE可達38.4%而功率輸出為981mW。

    The high-k materials were deposited on GaN and AlGaN/GaN MOSHEMTs were fabricated with high-k gate dielectrics. Liquid-phase-deposition (LPD) is a simple, low-cost method. It works without complicated equipments or any assisting energy source, and can be used at low temperature. The relatively low deposition temperature effectively avoids thermal strain and defects. Several different high-k materials, including TiO2, STO, and ZrO2, were deposited on GaN and analyzed by XPS, SEM, etc.
    By using a high-k material as a gate dielectric, the decrease of transconductance and the tunneling current can be overcome by maintaining high gate-to-source capacitance and oxide thickness. TiO2 and STO both have quite high dielectric constant (>60). The MOSHEMTs using these 2 kinds of oxides show lower leakage current and larger breakdown voltage, compared with the counterpart HEMTs. There is no obviously change of transconductance and threshold voltage in the MOSHEMTs. The LPD oxides also improve surface states, and reduce influences from interface scattering. However, the bandgap of these two oxides is low, and this leads to the larger leakage current. To overcome this problem, ZrO2 was also deposited, due to its high dielectric constant (>20) and high bandgap (>6eV). It's demonstrated that the gate leakage current and breakdown characteristics can be improved in the AlGaN/GaN MOSJEMTs with 2 nm-thick ZrO2 show
    The high current and high voltage for high power applications of AlGaN/GaN HEMT usually cause strong self-heating effects related to power dissipation problems. This problem can be overcome by using SiC substrate. In the final chapter, the HEMTs using SiC substrate and Si substrate were compared, and the HEMTs using SiC substrate show the better performance. In the HEMT with gate width of 1.2 mm, the maximum PAE is 38.4% and output power is 981 mW.

    ABSTRACT (Chinese) I ABSTRACT (English) III ACKNOWLEDGMENT V CONTENTS VI FIGURE CAPTIONS IX TABLE CAPTIONS XII CHAPTER 1 Introduction 1.1 Background 1 1.2 Motivation 4 1.3 Organization 6 CHAPTER 2 Characteristics of liquid-phase-deposited TiO2 films on GaN and AlGaN/GaN MOSHEMTs 2.1 Liquid-phase-deposited TiO2 thin films 7 2.1.1 Introduction 7 2.1.2 Liquid-phase deposition procedures 9 2.1.3 Characteristics of Liquid-phase-deposited TiO2 12 2.2 AlGaN/GaN MOSHEMTs with TiO2 gate dielectric 20 2.2.1 Device Fabrication 20 2.2.2 Characteristics of AlGaN/GaN MOSHEMTs 24 2.3 Summary 31 CHAPTER 3 Characteristics of liquid-phase-deposited STO films on GaN and AlGaN/GaN MOSHEMTs 3.1 Liquid-phase-deposited STO thin films 32 3.1.1 Introduction 32 3.1.2 Liquid-phase deposition procedures 33 3.1.3 Characteristics of Liquid-phase-deposited STO 35 3.2 AlGaN/GaN MOSHEMTs with STO gate dielectric 40 3.2.1 Device Fabrication 40 3.2.2 Characteristics of AlGaN/GaN MOSHEMTs 42 3.3 Summary 48 CHAPTER 4 AlGaN/GaN MOSHEMTs with ZrO2 gate dielectric by liquid phase deposition 4.1 Introduction 49 4.2 Device Fabrication 52 4.3 The performance of ZrO2/AlGaN/GaN MOSHEMTs 56 4.4 Summary 63 CHAPTER 5 AlGaN/GaN HEMTs for power and microwave application 5.1 Introduction 64 5.2 Device Fabrication 66 5.3 The Performance of AlGaN/GaN HEMTs 67 5.4 Summary 75 CHAPTER 6 Conclusion and Future Works 6.1 Conclusion 76 6.2 Future Works 77 Reference 78 PUBLICATION LIST 90

    [1] H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov and M. Burns, “Large-band-gap SiC, Ⅲ-Ⅴ nitride, and Ⅱ-Ⅵ ZnSe-based semiconductor device technologies,” Journal of Applied Physics, vol. 76, pp. 1363-1398, 1994.
    [2] S. J. Pearton, F. Ren, A. P. Zhang and K. P. Lee, “Fabrication and performance of GaN electronic devices,” Materials Science and Engineering, vol. R30 pp. 55-212, 2000.
    [3] T. P. Chow, R. Tyagi, “Wide bandgap compound semiconductors for superior high-voltage unipolar power devices,” IEEE Transactions on Electron Devices, vol. 41, pp. 1481-1483, 1994
    [4] M. A. Kahn, j. N. Kuznia, A. R. Bhattrai and D. T. Olson, “Metal contacts to gallium nitride,” Applied Physics Letters, vol. 62, p.2859-2861, 1993
    [5] M.A. Khan, G. Simin, S.G. Pyte, A. Monti, E. Santi, and J.L. Hudgins, “New Developments in Gallium Nitride and the Impact on Power Electronics,” IEEE 36th Power Electronics Specialists Conference (PESC ’05), pp. 15-26, June 16, 2005.
    [6] S. J. Pearton, GaN and related materials, Ch. 1. Gordon and Breach Science Publishers.
    [7] Y. Uzawa, Z. Wang, A. Osinsky and B. Komiyama, “Submillimeter wave responses in NbN/AlN/NbN tunnel junctions,” Applied Physics Letters, vol. 66, pp. 1992-1994, 1995
    [8] Z. Z. Bandic, P. M. Bridger, E.C. Piquette, T. C. McGill, R. P. Vaudo, V. M. Phanse and J. M. Redwing, “High voltage (450 V) GaN Schottky rectifiers,” Applied Physics Letters, vol. 74, pp. 1266-1268, 1999.
    [9] J. I. Pankove, E. A. Miller and J. E. Berkeyheiser, ”GaN electroluminescent diodes,” RCA Review, vol. 32, p.383-392, 1971.
    [10] H. P. Xin, R. J. Welty and C. W. Cu, “GaN0.011P0.989/GaP double-heterostructure red light-emitting diodes directly grown on GaP substructures,” Photonics Technology Letters, vol. 12, pp. 960-962, 2000.
    [11] R. Gaska, J. W. Yang, A. Osinsky, Q. Chen, M.A. Khan, A. O. Orlov, G. L. Snider and M. S. Shur, “Electron transport in AlGaN-GaN heterostructures grown on 6H-SiC substrates,” Applied Physics Letters, vol. 72, p. 707-709, 1998.
    [12] H. Morkoc, R. Cingolani, and B. Gil, “Polarization effects in nitride semiconductor device structures and performance of modulation doped field effect transistors,” Solid-State Electronics, vol. 43, pp. 1753-1771, 1999.
    [13] S. C. Jain, M. Willander, J. Narayan, and R. Van Overstraeten, “III-nitrides: Growth, characterization, and properties,” Journal Applied Physics, vol. 87, pp. 965-1006, 2000.
    [14] R. D. Underwood, P. Kozodoy, S. Keller, S. P. Denbaars, and U. K. Mishra, “Piezoelectric surface barrier lowering applied to InGaN/GaN field emitter arrays,” Applied Physics Letters, vol. 73, pp. 405-407, 1998.
    [15] S. C. Binari, P. B. Klein, and T. E. Kazior, “Trapping effects in GaN and SiC microwave FETs,” Proceedings of the IEEE, vol. 90, pp. 1048-1058, 2002.
    [16] M. A. Khan, M. S. Shur, Q. C. Chen, and J. N. Kuznia, “Current/voltage characteristic collapse in AlGaN/GaN heterostructure insulated gate field effect transistors at high drain bias,” Electronics Letters, vol. 30, pp. 2175-2176, 1994.
    [17] J. A. Mittereder, S. C. Binari, P. B. Klein, J. A. Roussos, D. S. Katzer, D. F. Storm, D. D. Koleske, A. E. Wickenden, and R. L. Henry, “Current collapse induced in AlGaN/GaN high-electron-mobility transistors by bias stress,” Applied Physics Letters, vol. 83, pp. 1650-1652, 2003.
    [18] F. Ren, M. Hong, S. N. G. Chu, M. A. Marcus, M. J. Schurman, A. Baca, S. J. Pearton, and C. R. Abernathy, “Effect of temperature on Ga2O3(Gd2O3)/GaN metal–oxide–semiconductor field-effect transistors,” Applied Physics Letters, vol. 73, pp. 3893-3895, 1998.
    [19] M. Hong, K. A. Anselm, J. Kwo, H. M. Ng, J. N. Baillargeon, A. R. Kortan., J. P. Mannaerts, A. Y. Cho, C. M. Lee, J. I. Chyi, and T. S. Lay, “Properties of Ga2O3(Gd2O3)/GaN metal–insulator–semiconductor diodes,” Journal of Vacuum Science & Technology B, vol. 18, pp. 1453-1456, 2000.
    [20] M. A. Khan, X. Hu, G. Sumin, A. Lunev, J. Yang, R. Gaska, and M. S. Shur, “AlGaN/GaN metal oxide semiconductor heterostructure field effect transistor,” IEEE Electron Device Letters, vol. 21, pp. 63-65, 2000.
    [21] S. Basu, P. K. Singh, J. J. Huang, and Y. H. Wang, “Liquid-phase deposition of Al2O3 thin films on GaN,” Journal of The Electrochemical Society, vol. 154, pp. H1041-H1046, 2007.
    [22] S. Basu, P. K. Singh, P. W. Sze, and Y. H. Wang, “AlGaN/GaN metal-oxide-semiconductor high electron mobility transistor with liquid phase deposited Al2O3 as Gate Dielectric,” Journal of The Electrochemical Society, vol. 157, pp. H947-H951, 2010.
    [23] H. R. Wu, K. W. Lee, T. B. Nian, D. W. Chou, J. J. Huang Wu, Y. H. Wang, M. P. Huang, P. W. Sze, Y. K. Su, S. J. Chang, C. H. Ho, C. I. Chiang, Y. T. Chern, F. S. Juang, T. C. Wen, W. I. Lee and J. I. Chyi., “Liquid phase deposited SiO2 on GaN,” Materials Chemistry and Physics, vol. 80, pp. 329-333, 2003.
    [24] U. Diebold, “The surface science of titanium dioxide,” Surface Science Reports, vol. 48, pp. 53-229, 2003.
    [25] H. Tang, K. Prasad, R. Sanjines, P. E. Schmid, and F. Levy, “Electrical and optical properties of TiO2 anatase thin films,” Journal of Applied Physics, vol. 75, pp. 2042-2047, 1994.
    [26] P. Alexandrov, J. Koprinarova, and D. Todorov, “Dielectric properties of TiO2-films reactively sputtered from Ti in an RF magnetron,” Vacuum, vol. 47, p. 1333-1336, 1996.
    [27] J. Robertson, “High dielectric constant gate oxides for metal oxide Si transistors,” Reports on Progress in Physics, vol. 69, pp. 327-396, 2006.
    [28] B. S. Jeong, J. D. Budai, and D. P. Norton, “Epitaxial stabilization of single crystal anatase films via reactive sputter deposition,” Thin Solid Films, vol. 422, pp. 166-169, 2002.
    [29] Y. Abe and T. Fukuda, “TiO2 thin films formed by electron cyclotron resonance plasma oxidation of Ti thin films,” Japanese Journal of Applied Physics, vol. 32, pp. 1167-1168, 1993.
    [30] V. Mikhelashvili and G. Eisenstein, “Effects of annealing conditions on optical and electrical characteristics of titanium dioxide films deposited by electron beam evaporation,” Journal of Applied Physics, vol. 89, pp. 3256-3269, 2001.
    [31] H. Nagayama, H. Honda, and H. Kawahara, “A new process for silica coating,” Journal of The Electrochemical Society, vol. 135, pp. 2013-2016, 1988.
    [32] P. Madhu Kumar, S. Badrinarayanan, and M. Sastry, “Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy: correlation to presence of surface states,” Thin Solid Films, vol. 358, pp. 122-130, 2000
    [33] B. R. Sankapal, M. Ch. Lux-Steiner, and A. Ennaoui, “Synthesis and characterization of anatase-TiO2 thin films,” Applied Surface Science, vol. 239, pp. 165-170, 2005.
    [34] Y. Irokawa, Y. Nakano, M. Ishiko, T. Kachi, J. Kim, F. Ren, B.P. Gila, A.H. Onstine, C.R. Abernathy, S.J. Pearton, C. C. Pan, G. T. Chen, J. I. Chyi, “MgO/p-GaN enhancement mode metal-oxide semiconductor field-effect transistors,” Applied Physics Letters, vol. 84, pp. 2919-2921, 2004
    [35] Y. C. Chang, Y. J. Lee, Y. N. Chiu, T. D. Lin, S. Y. Wu, H. C. Chiu, J., Kwo Y. H. Wang, M. Hong, “MBE grown high k dielectrics Ga2O3(Gd2O3) on GaN,” Journal of Crystal Growth, 301-302, pp. 390-393, 2007.
    [36] J. Kuzmik, G. Pozzovivo, S. Abermann, J. Carlin, M. Gonschorek, E. Feltin, N. Grandjean, E. Bertagnolli, G. Strasser, and D.Pogany, “Technology and performance of InAlN/AlN/GaN HEMTs with gate insulation and current collapse suppression using ZrO2 or HfO2,” IEEE Transactions on Electron Devices, Vol. 55, pp. 937-941, 2008.
    [37] S. L. Selvaraj, T. Ito, Y. Terada, and T. Egawa, “AlN/AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistor on 4 in. silicon substrate for high breakdown characteristics,” Applied Physics Letters, vol. 90, pp. 173506-1–173506-3, 2007.
    [38] P. J. Hansen, V. Vaithyanathan, Y. Wu, T. Mates, S. Heikman, U. K. Mishra, R. A. York, D. G. Schlom, J. S. Speck “Rutile films grown by molecular beam epitaxy on GaN and AlGaN/GaN,” Journal of Vacuum Science & Technology B, vol. 23, pp. 499-506, 2005.
    [39] S. Yagi, M. Shimizu, M. Inada, Y. Yamamoto, G. Piao, H. Okumura, Y. Yano, N. Akutsu, H. Ohashi, “High breakdown voltage AlGaN/GaN MIS–HEMT with SiN and TiO2 gate insulator,” Solid-State Electronics, vol. 50, pp. 1057-1061, 2006.
    [40] T. Mizutani, Y. Ohno, M. Akita, S. Kishimoto, and K. Maezawa, “A study of current collapse in AlGaN/GaN HEMTs induced by bias stress,” IEEE Transactions on Electron Devices, vol. 50, pp. 2015-2020, 2003.
    [41] B. Luo, J. W. Johnson, J. Kim, R. M. Mehandru, F. Ren, B. P. Gila, A. H. Onstine, C. R. Abernathy, S. J. Pearton, A. G. Baca, R. D. Briggs, R. J. Shul, C. Monier, and J. Han, “Influence of MgO and Sc2O3 passivation on AlGaN/GaN high-electron-mobility transistors,” Applied Physics Letters, vol. 80, pp. 1661-1663, 2002.
    [42] J. Joh, A. del Alamo, and J. Jimenez, "A simple current collapse measurement technique for GaN high-electron mobility transistors," IEEE Electron Device Letters, vol. 29, pp. 665-667, 2008.
    [43] A. F. Tasch, Jr. and L. H. Parker, “Memory Cell and Technology Issues for 64- and 256-Mbit One-transistor Cell MOSD DRAMs,” Proceedings of the IEEE, vol. 77, pp. 374-388 ,1989.
    [44] P. C. Joshi and S. B. Krupanidhi, “Structural and Electrical Characteristics of SrTiO3 Thin Films for Dynamic Random Access Memory Applications,” Journal of Applied Physics, vol. 73, pp. 7627-7634, 1993.
    [45] M. N. Kamalasanan, N. D. Kumar, and S. Chandra, “Structural, Optical, and Dielectric Properties of Sol-gel Derived SrTiO3 Thin Films,” Journal of Applied Physics, vol. 74, pp. 679-686, 1993.
    [46] P. C. Joshi, S.B. Krupanidhi, “Structural and electrical characteristics of SrTiOs thin films for dynamic” Journal of Applied Physics, vol. 73, pp. 7627-7634, 1993.
    [47] T. Kunihisa, S. Yamamoto, M. Nishijima, T. Yokohama, M. Nishitsuji, K. Nishii, O. Ishikawa, “Low power dissipation single-supply MMIC power amplifier for 5.8 GHz electronic toll collection system,”IEICE Transactions Electronics, vol. E82-C, pp. 1921-1927, 1999.
    [48] G. D. Wilk, R.M. Wallace, J.M. Anthony, “High- gate dielectrics: Current status and materials properties considerations,” Journal of Applied Physics, vol. 89, pp. 5243-5275, 2001.
    [49] M. N. Kamalasanan, N. D. Kumar, and S. Chandra, “Structural optical, and dielectric properties of sol-gel derived SrTiO3 thin films,” Journal of Applied Physics, vol. 74, pp. 679-686, 1993.
    [50] S. Jeon, F. J. Walker, C. A. Billman, R. A. McKee, and H. Hwang, “Electrical characteristics of epitaxially grown SrTiO3 on silicon for metal–insulator–semiconductor gate dielectric applications,” IEEE Electron Device Letters, vol. 24, pp. 218-220, 2003
    [51] K. Eisenbeiser, J. M. Finder, Z. Yu, J. Ramdani, J. A. Curless, J. A. Hallmark, R. Droopad, W. J. Ooms, L. Salem, S. Bradshaw, and C. D. Overgaard, “Field effect transistors with SrTiO3 gate dielectric on Si,” Applied Physics Letters. Vol. 76, pp. 1324-1326, 2000.
    [52] J. Kim, L. Kim, D. Jung, Y. Kim, Y. Kim, “Growth of oxide BTO/STO artificial superlattice by pulsed laser deposition,” Ferroelectrics, vol. 272, pp. 369-374, 2002.
    [53] W. Zhou, J. Zhu, W. Luo, Y. Li, “Electrical characteristics of pulsed laser deposited SrTiO3 on TiO2 buffered AlGaN/GaN,” Ferroelectrics, vol. 407, pp. 10-15, 2010.
    [54] J. H. Ahn, S. W. Kang, J. Y. Kim, J. H. Kim, and J. S. Rohb, “Effect of Sr–Ruthenate seed layer on dielectric properties of SrTiO3 thin films prepared by plasma-enhanced atomic layer deposition,” Journal of The Electrochemical Society, vol. 155 , pp. G185-G188, 2008.
    [55] T. Nakamura, H. Inada and M. Iiyama, “In situ surface characterization of SrTiO3 (100) substrates and homoepitaxial SrTiO3 thin films grown by molecular beam epitaxy and pulsed laser deposition,” Applied Surface Science, Vol. 130-132, pp. 576-581, 1998.
    [56] T. J. Park, J. H. Kim, J. H. Jang, J. Lee, S. W. Lee, S. Y. Lee, H. S. Jung, and C. S. Hwang, “Effects of annealing environment on interfacial reactions and electrical properties of ultrathin SrTiO3 on Si,” Journal of The Electrochemical Society, vol. 156 , pp. G129-G133, 2009.
    [57] H. Mori and H. Ishiwara “Epitaxial growth of SrTiO3 films on Si(100) substrates using a focused electron beam evaporation method,” Japanese Journal of Applied Physics, vol. 30, pp. L1415-L1417, 1991.
    [58] Y. Gao, Y. Masuda, T. Yonezawa, K. Koumoto “Preparation of SrTiO3 thin films by the liquid phase deposition method,” Materials Science and Engineering B, vol. 99, pp. 290-293, 2003.
    [59] M. P. Houng, Y. H. Wang, C. J. Huang, S. P. Huang, and J. H. Horng, “Quality optimization of liquid phase deposition SiO2 films on gallium arsenide,” Solid-State Electronics, 44, 1917-1923, 2000.
    [60] T. Y. Wu, S. K. Lin, P. W. Sze, J. J. Huang, W. C. Chien, C. C. Hu, M. J. Tsai, and Y. H. Wang, “AlGaN/GaN MOSHEMTs with liquid-phase-deposited TiO2 as gate dielectric,” IEEE Transactions Electron Devices, vol. 56, pp. 2911-2916, 2009.
    [61] C. C. Hu, M. S. Lin, T. Y. Wu, P. W. Sze, and Y. H. Wang,” AlGaN/GaN metal-oxide-semiconductor high electron mobility transistor with liquid phase deposited barium-doped TiO2 as gate dielectric,” IEEE Transactions Electron Devices, vol. 59, no. 1, pp. 121-127, 2012.
    [62] K. W. Lee, J. S. Huang, Y. L. Lu, F. M. Lee, H. C. Lin, T. Y. Wu, and Y. H. Wang, “Investigation of TiO2 on AlGaAs prepared by liquid phase deposition and its application,” Solid-State Electron., vol. 68, pp. 85-89, 2012.
    [63] Y. Adachi, S. Kohiki, K. Wagatsuma, M. Oku, “Changes in the chemical state of monocrystalline SrTiO3 surface by argon ion bombardment,” Applied Surface Science, vol. 143, pp. 272-276, 1999.
    [64] J. G Yu, H. G. Yu, B. Cheng, X. J. Zhao, J. C. Yu, W. K. Ho, “The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition,” Journal of Physical Chemistry B, vol. 107, pp. 13871-13879, 2003.
    [65] S. W. Jiang, Q.Y. Zhang, Y.R. Li , Y. Zhang, X.F. Sun, B. Jiang, “Structural characteristics of SrTiO3 thin films processed by rapid thermal annealing,” Journal of Crystal Growth, vol. 274, pp. 500-505, 2005.
    [66] K. McKenna, A. Shluger, V. Iglesias, M. Porti, M. Nafría, M. Lanza, G. Bersuker, “Grain boundary mediated leakage current in polycrystalline HfO2 films,” Microelectronic Engineering, vol. 88, pp. 1272-1275, 2011.
    [67] J. J. Freedsman, T. Kubo, S. L. Selvaraj, T. Egawa, “Suppression of gate leakage and enhancement of breakdown voltage using thermally oxidized Al layer as gate dielectric for AlGaN/GaN metal--oxide--semiconductor high-electron-mobility transistors,” Japanese Journal of Applied Physics, vol. 50, pp. 04DF03-1-04DF03-4, 2011.
    [68] P. D. Ye, B. Yang, K. K. Ng, J. Bude, G. D. Wilk, S. Halder, and J. C. M. Hwang, “GaN metal-oxide-semiconductor high-electron-mobility-transistor with atomic layer deposited Al2O3 as gate dielectric,” Applied Physics Letters, vol. 86, pp. 063501-1-063501-3, 2005.
    [69] H. C. Chiu, C. W. Lin, C. H. Chen, C. W. Yang, C. K. Lin, J. S. Fu, L. B. Chang, R. M. Lin, K. P. Hsueh, “Low hysteresis dispersion La2O3 AlGaN ∕ GaN MOS-HEMTs semiconductor devices, materials, and processing,” Journal of The Electrochemical Society, vol. 157, pp. 160-164, 2010.
    [70] E. Miyazaki, Y. Goda, S. Kishimoto, T. Mizutani, “Comparative study of AlGaN/GaN metal–oxide–semiconductor heterostructure field-effect transistors with Al2O3 and HfO2 gate oxide, ” Solid-State Electronics, vol. 62, pp. 152-155, 2012.
    [71] J. W. Chung, J. C. Roberts, E. L. Piner, and T. Palacios, “Effect of gate leakage in the subthreshold characteristics of AlGaN/GaN HEMTs,” IEEE Transactions Electron Devices, vol. 29, pp. 1196-1198, 2008.
    [72] J. A. Duffy, Bonding Energy Levels and Bands in Inorganic Solids, John Wiley: New York, 1990.
    [73] R. O’Connor, G. Hughes, T. Kauerauf, L. A. Ragnarsson, “Reliability of thin ZrO2 gate dielectric layers,” Microelectronics Reliability, vol. 51, pp. 1118-1122, 2011.
    [74] D. K. Smith and C. F. Cline, “Verification of existence of cubic zirconia at high temperature,” Journal of the American Ceramic Society, vol. 45, pp. 249-250, 1962.
    [75] C. T. Lynch, F. W. Vahldiek, and L. B. Robinson, “Monoclinic-tetragonal transition of zirconia,” Journal of the American Ceramic Society, vol. 44, pp. 147-148, 1961.
    [76] R. Kofstad and D. J. Ruzicka, “On the defect structure of ZrO2 and HfO2,” Journal of the Electrochemical Society, vol. 110, pp. 181-184, 1963.
    [77] L. A. McClaine and C. P. Coppel, “Electrical conductivity studies of tetragonal zirconia,” Journal of The Electrochemical Society, vol. 113, pp. 80-85, 1966.
    [78] C. R. A. Catlow, O. T. Soresen, Nonstoichiometric Oxides, Academic, New York, 1981.
    [79] R. Ruh and H. J. Garrett, “Nonstoichiometry of ZrO¬ and its relation to tetragonal-cubic inversion in ZrO2,” Journal of the American Ceramic Society, vol. 50, pp. 257-261, 1967.
    [80] A. Nakajima, T. Kidera, H. Ishii, and S. Yokoyama, “Atomic-layer deposition of ZrO2 with a Si nitride barrier layer,” Applied Physics Letters, vol. 81, pp. 2824-2826, 2002.
    [81] R. Nieh, R. Choi, S. Gopalan, K. Onishi, C. S. Kang, H. J. Cho, S. Krishnan, and J. C. Lee, “Evaluation of silicon surface nitridation effects on ultra-thin ZrO2 gate dielectrics,” Applied Physics Letters, vol. 81, pp. 1663-1665, 2002.
    [82] J. H. Choi, H. G. Kim, and S. G. Yoon, “Effects of the reaction parameters on the deposition characteristics in ZrO2 CVD,” Journal of Materials Science: Materials in Electronics, vol. 3, pp. 87-92, 1992.
    [83] T. Yao, T. Inui, A. Ariyoshi, “Novel method for zirconium oxide synthesis from aqueous solution,” Journal of the American Ceramic Society, vol. 79, pp. 3329-3330, 1996.
    [84] T. Yao, “Synthesis of functional ceramic materials from aqueous solutions,” Journal of Materials Research, vol. 13, pp. 1091-1098, 1998.
    [85] Y. Gao, Y. Masuda, H. Ohta, and K. Koumoto, “Room-temperature preparation of ZrO2 precursor thin film in an aqueous peroxozirconium-complex solution,” Chemistry of Materials, vol. 16, pp. 2615-2622, 2004.
    [86] J. Lee, J. Koo, H. S. Sim and H. Jeon, “Characteristics of ZrO2 films deposited by using the atomic layer deposition method,” Journal of the Korean Physical Society, Vol. 44, pp. 915-919, 2004.
    [87] B. Gunduza, F. Yakuphanoglu, “Effects of UV and white light illuminations on photosensing properties of the 6,13-bis(triisopropylsilylethynyl)pentacene thin film transistor, ” Sensors and Actuator A: phyical, vol. 178, pp. 141-153, 2012.
    [88] L. F. Eastman, K. Chu, J. Smart, and J. R. Shealy, “GaN materials for high-power microwave amplifiers,” Materials Research Society Symposium Proceedings, vol. 512, pp. 3-7. 1998.
    [89] Y.-F. Wu, B. P. Keller, P. Fini, S. Keller, T. J. Jenkins, L. T. Kehias, S. P. Denbaars, and U. K. Mishra, “High Al-content AlGaN/GaN MODFET’s for ultrahigh performance,” IEEE Electron Device Letters, vol. 19, pp. 50-53, 1998.
    [90] Y.-F. Wu, B. P. Keller, P. Fini, J. Pusl, M. Le, N. X. Nguyen, C. Nguyen, D. Widman, S. Keller, S. P. Denbaars, and U. K. Mishra, “Short-channel Al0:5Ga0:5N/GaN MODFET’s with power densities >3 W/mm at 18 GHz,” Electronic Letters, vol. 33, pp. 1742-1743, 1997.
    [91] Y. -F. Wu et al., “GaN-based FET’s for microwave power amplification,” IEICE Transaction on Electronics, vol. E-82-C, pp. 1895-1905, Nov. 1999.
    [92] S. T. Sheppard et al., “High power microwave GaN/AlGaN HEMT’s on SiC substrates,” IEEE Electron Device Letters, vol. 20, pp. 61-163, 1999.
    [93] Y. -F. Wu, D. Kapolnek, J. P. Ibbetson, P. Parikh, B. P. Keller, and U. K. Mishra, “Very-high power density AlGaN/GaN HEMTs,” IEEE Transaction on Electronic Devices, vol. 48, pp. 586-590, 2001
    [94] R. A. Sadler, S. T. Allen, T. S. Alcorn, W. L. Pribble, J. Sumakeris, J. W. Palmour, and L. T. Kehias, “SiC MESFET with output power of 50 watts CW at S-band,” 56th Annu. Device Research Conference, pp. 92-93, Charlottesville, VA, June 1998.
    [95] B. M. Green, V. Tilak, S. Lee, H. Kim, J. A. Smart, K. J. Webb, J. R. Shealy, and L. F. Eastman, “High-power broad-band AlGaN/GaN HEMT MMICs on SiC substrates,’’ IEEE Transaction on Microwave Theory and Techniques, vol. 49, pp. 2486-2493, 2001.
    [96] C. Wetzel, D. Volm, B. K. Meyer, K. Pressel and S. Nilsson, E. N. Mokhov and P. G. Baranov, “GaN epitaxial layers grown on WI-SIC by the sublimation sandwich technique,” Applied Physics Letters, vol. 62, pp.1033-1035, 1994.

    無法下載圖示 校內:2018-09-03公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE