| 研究生: |
劉至曜 Liu, Chih-Yao |
|---|---|
| 論文名稱: |
添加Bi於Sn-Zn-Ag系無鉛銲錫之機械、電性與電化學性質 The Effect of Bi addition on the Mechanical, Electric and Electrochemical Properties of Sn-Zn-Ag Solder Alloys |
| 指導教授: |
洪敏雄
Hon, Min-Hsiung |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 150 |
| 中文關鍵詞: | 銲錫合金 、機械性質 、電化學性質 、電性 、時效處理 |
| 外文關鍵詞: | electrochemical properties, mechanic properties, solder alloy, aging times, electric properties |
| 相關次數: | 點閱:103 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Bi添加於Sn形成共晶組織的Sn-58Bi,熔點溫度為139 oC,屬於低熔點的銲錫合金,不易成長錫鬚,其機械性質、潤濕性,抗腐蝕性及抗氧化性均優於Sn-Zn-Ag銲錫合金。本論文於Sn-9Zn-1.5Ag添加不同含量之Bi以形成Sn-9Zn-1.5Ag-xBi (x= 0.5, 1.0, 2.0, 3.0 mass %)四元無鉛銲錫合金,探討Bi之添加對此系列合金之機械及電化學性質與電性之影響。
研究中使用示差掃描熱卡計以量測不同合金成分之固、液相線溫度、熔區範圍與材料熔解熱。使用X-光繞射儀分析銲錫中的生成相及晶粒大小等。無鉛銲錫合金之接合強度以拉力試驗機進行量測,利用掃描式電子顯微鏡觀察試片拉力試驗斷面與表面形貌,並以能量散佈儀分析其元素分佈及化學組成。穿透式電子顯微鏡則用以觀察金屬間化合物的微觀型態,並利用電子繞射分析其結構。
DSC結果顯示,Sn-9Zn-1.5Ag-xBi (x=0.5, 1.0, 2.0, 3.0 mass%)無鉛銲錫合金的固相線溫度(Tonset)分別為195.9、194.5、193.4與190.4 oC,而液相線溫度(Tend)分別為217.6、217.3、216.8與215.9 oC。熔解熱分別為 131.5、149.6、158.9與173.9 J/g,顯示Sn-9Zn-1.5Ag-0.5Bi無鉛銲錫合金的熔解熱最低。Sn-9Zn-1.5Ag-0.5Bi銲錫合金為一近共晶之組成。添加不同成份Bi於Sn-9Zn-1.5Ag銲錫合金後,除固相線溫度會隨Bi含量的提升而逐漸降低外,熔區範圍亦隨Bi之添加量而變化。加入Bi後銲錫會偏離共晶組成,出現第二吸熱峰。Sn-9Zn-1.5Ag-xBi (x=0.5, 1.0, 2.0, 3.0 mass%)無鉛銲錫合金的熱膨脹係數依序分別為44.3、39.4、34.8與18.9 × 10-6/K,熱傳導係數依序分別為140.411、137.02、125.391、110.892與108.36 (W/m×K)。
改變時效處理時間影響研究之結果顯示,Sn-9Zn-1.5Ag-xBi銲錫合金之微結構主要由Sn與Ag3Sn化合物所組成。於添加Bi後,並無其他相生成於銲錫基地中,經過不同時間的時效處理後仍無相變化。另一方面,銲錫的晶粒大小隨時效處理時間的提高而有逐漸成長的趨勢。Sn-9Zn-1.5Ag-xBi銲錫合金的接合強度隨時效處理時間的增加而降低,但隨Bi含量的增加而提升。經拉力試驗後之試片表面觀察,顯示Sn-9Zn-1.5Ag-xBi銲錫合金與介金屬化合物之介面為破裂路徑。由TEM分析可知,經過時效處理後,Bi有散佈強化的效果,且Bi有明顯成長聚集現象。
Sn-9Zn-1.5Ag/Cu在3.5 wt% NaCl水溶液經腐蝕極化測試後的腐蝕阻抗、腐蝕電流密度、腐蝕電壓分別為6.74 × 103 Ωcm2,2.65 × 10-6 A/cm2與 -1.21V。而Sn-9Zn-1.5Ag-1Bi/Cu在3.5 wt% NaCl水溶液經腐蝕極化測試後的腐蝕阻抗、腐蝕電流密度、腐蝕電壓分別為7.54 × 103 Ωcm2,2.46 × 10-6A/cm2與-1.18V,腐蝕產物為ZnO,ZnCl2和SnCl2。顯示添加1 mass% Bi於Sn-9Zn-1.5Ag無鉛銲錫合金可提升抗腐蝕性。此外,3.5 wt% NaCl水溶液中的氯離子會腐蝕銲錫合金與Cu基材表面而產生小孔洞。
環境溫度50 oC 時,Sn-9Zn-1.5Ag-3Bi的導電率為 8.9 × 104 (Ω-cm)-1最高,隨著溫度的上升,導電率隨之下降。在150 oC下,Sn-9Zn-1.5Ag的導電率最低為3.7 × 104 (Ω-cm)-1。
Sn-58Bi solder alloy has a lower melted point 139 oC, better wetting effect and mechanic properties and corrosion resistant than Sn-Zn-Ag solder alloy. In order to establish the data base for a new lead-free solder alloy, the influence of aging treatment on mechanical, electric and electrochemical properties of Sn-9Zn-1.5Ag-xBi (x =0.5, 1.0, 2.0, 3.0 mass%) lead-free solder alloys have been investigated in present study by using different experimental methods.
The differential scanning calorimeter (DSC) determines the temperatures of solidus and liquidus, melting range and fusion heat of Sn-9Zn-1.5Ag-xBi solder alloys and the X-ray diffraction for the phase formation and crystallite size. The adhesion strength was analyzed by using a pull off tester machine. The adhesion morphology and chemical composition were observed by scanning electron microscope (SEM), a transmission electron microscope (TEM) with energy dispersive spectrometer (EDS).
The DSC results show the solidus temperature of Sn-9Zn-1.5Ag-xBi (x=0.5, 1.0, 2.0, 3.0 mass%) are 195.9, 194.5, 193.4 and 190.4 oC. In addition, liquidus temperature is 217.6, 217.3, 216.8 and 215.9 oC. The fusion heat are 131.5, 149.6, 158.9 and 173.9J/g. The chemical composition of Sn-9Zn-1.5Ag-0.5Bi solder alloy is a near-eutectic composition. The solidus temperature decreases with increasing Bi addition for Sn-9Zn-1.5Ag-xBi solder alloys. The composition of solder alloy deviates from eutectic composition after Bi added. The second endothermic peaks appear with Bi addition of Sn-9Zn-1.5Ag-xBi solder alloys. The conduction of thermal expansion are 140.411, 137.02, 125.391, 110.892 and 108.36 (W/m×K). The experimental results for various aging times show that the microstructures of Sn-9Zn-1.5Ag-xBi solder alloys are composed of Sn and Ag3Sn. No precipitation of Bi with IMCs was observed in the solder matrix for various Bi addition amounts and aging time. The grain size of solder alloy increases gradually with increasing aging time, but decreases as Bi content increases.
After electrochemical test of Sn-9Zn-1.5Ag solder alloy with Cu substrate in 3.5 wt% NaCl solution, corrosion resistance, corrosion current density, and corrosion voltage are 6.74 × 103 Ωcm2, 2.65 × 10-6 A/cm2 and -1.21V, respectively. On the other hand, the Sn-9Zn-1.5Ag-1Bi solder alloy with Cu substrate in 3.5 wt% NaCl solution, corrosion resistance, corrosion current density, and corrosion voltage are 7.54 × 103 Ωcm2, 2.46 × 10-6 A/cm2, -1.18V. The corrosion products are ZnO, ZnCl2 and SnCl2. In addition, pits formed from Cl- ions are attracting solder alloy with Cu substrate in 3.5 wt% NaCl solution.
The electric conduction is 8.9 × 104 (Ω-cm)-1 for Sn-9Zn-1.5Ag-3Bi at 50 oC, and 3.7 × 104 (Ω-cm)-1 for Sn-9Zn-1.5Ag at 150 oC.
1. S.M. Mcguire, M.E. Fine and J.D. Achenbach, “Crack detection by resonant frequency measurements”, Metal. Trans. A, Vol. 26A, pp. 1123-1127 (1995).
2. K. Zeng and K.N. Tu, “Six cases of reliability study of Pb-free solder joints in electronic packaging technology”, Mater. Sci. Eng. R Vol. 38, pp. 5-15 (2002).
3. C. Basaran and R. Chandaroy,”Intergranular thermal fatigue damage evolution in SnAgCu lead-free solder”, Comp. Struct. Vol. 74, pp. 215-231 (2000).
4. 劉立晟,”覆晶錫球陣列封裝之無鉛錫球接點可靠度分析”,國立中山大學機械與機電工程學系碩士論文,p. 45 (2003).
5. L. Ciampolini, M. Ciappa, P. Malberti, P. Regli and W. Fichtner,”Modelling thermal effects of large contiguous voids in solder joints”, Microelectronic. Journal, Vol. 30, pp. 1115-1123 (1999).
6. 葉楚榆,”覆晶在熱壓合製程中之結構分析及性能改善”,私立逢甲大學機械工程學系碩士論文,p. 2 (2005)
7. R.E. Reed-Hill, Physical Metallurgy Principles, PWS Publishing Company, Massachusetts, p. 306 (1994).
8. 游善溥,”錫鋅系無鉛銲錫與銅基材間附著性與界面反應之研究”,國立成功大學材料科學及工程學系博士論文,p. 3 (2000).
9. Y.C. Chan, A.C.K. So and J.K.L. Lai, “Growth kinetic studies of Cu-Sn intermetallic compound and its effect on shear strength of LCCC SMT solder joints”, Mater. Science and Eng. B, Vol. 55, pp. 5-13 (1998).
10. M. He, Z.Chen and G. Qi, “Solid state interfacial reaction of Sn–37Pb and Sn–3.5Ag solders with Ni–P under bump metallization”, Acta Mater., Vol. 52, pp. 2047-2056 (2004).
11. B.S Chiou, J.H. Chang and J.G Duh, “Metallurgical reactions at the interface of SnPb solder and electroless copper-plated ALN substrate”, IEEE transaction on component, packaging and manufacturing technology: Part B, Vol. 18 (3), pp. 537-542 (1995).
12. C. Kanchanomai, W. Limtrakarn and Y. Mutoh, “Fatigue crack growth behavior in Sn–Pb eutectic solder/copper joint under mode I loading”, Mech. Mater.,Vol. 37, pp. 1166-1174 (2005).
13. 陳盈儒,”時效處理對Sn-9Zn-1.5Ag-xBi系無鉛銲錫合金機械性質之研究”, 國立高雄應用科技大學機械與精密工程研究所碩士論文,pp. 3-6, 54 (2008).
14. W.H. Zhong, Y.C. Chan, M.O. Alam, B.Y. Wu and J.F. Guan, “Effect of multiple reflow processes on the reliability of ball grid array (BGA) solder joints”, J. Alloys and Compds., Vol. 414, pp. 123-130 (2006).
15. Y. Xia and X. Xie, “Reliability of lead-free solder joints with different PCB surface finishes under thermal cycling”, J. Alloys and Compds., Vol. 454, pp. 174-179 (2008).
16. X. Ma, F. Wang, Y. Qian and F. Yoshida, “Development of Cu–Sn intermetallic compound at Pb-free solder/Cu joint interface”, Mater. Lett., Vol. 57, pp. 3361-3365 (2003).
17. A. A. El-Daly, Y. Swilem and A.E. Hammad, “Creep properties of Sn–Sb based lead-free solder alloys”, J. Alloys and Compds., Vol. 471, pp. 98-104 (2009).
18. Y. Xu, O.U. Sq, K.N. Tu, K. Zeng and R. Dunne, “Measurement of impact toughness of eutectic SnPb and SnAgCu solder joints in ball grid array by mini-impact tester”, J. Mater. Res., Vol. 23 (5) pp. 1482-1487 (2008).
19. M.O. Alam, B.Y. Wu, Y.C. Chanand K.N. Tu, “High electric current density-induced interfacial reactions in micro ball grid array (μBGA) solder joints”, Acta Mater., Vol. 54, pp. 613-621 (2006).
20. R. Mahmudi, A.R. Geranmayeh and H. Noori, ”A comparison of impression, indentation and impression-relaxation creep of lead-free Sn-9Zn and Sn-8Zn-3Bi solders at room temperature”, J. Mater. Sci-Mater. Electron., Vol. 20 (4) pp. 312-318 (2009).
21. S.Q. Ou, Y.H. Xu and K.N. Tu, “A study of impact reliability of lead-free BGA balls on Au/electrolytic Ni/Cu bond pad”, Mater. Tech. Relia. Advan. Intercon., Vol. 863, pp. 381-386 (2005).
22. C.M. Chen and C.C. Huang, “Effects of silver doping on electromigration of eutectic SnBi solder”, J. Alloys and Compds., Vol. 461, pp. 235-241 (2008).
23. F. Gao and T. Takemoto, “Mechanical properties evolution of Sn-3.5Ag based lead-free solders by nanoindentation”, Mater. Lett., Vol. 60, pp. 2315-2318 (2006).
24. K.S. Bae and S.J. Kim, “Microstructure and adhesion properties of Sn-0.7Cu/Cu solder joints”, J. Mater. Res., Vol. 17 pp.743-746 (2002).
25. L. L. Duan, D.Q. Yu, S.Q. Han, H.T. Ma and L. Wang,” Microstructural evolution of Sn-9Zn-3Bi solder/Cu joint during long-term aging at 170 oC”, J. Alloys and Compd., Vol. 381, pp. 202-207 (2004).
26. T.C. Chang, M.C. Wang and M.H. Hon, “Crystal growth of the intermetallic compounds at Sn-9Zn-xAg/Cu interface during isothermall aging”, J. Crystal Growth, Vol. 252, pp. 401-412 (2003).
27. J.M. Song and K.L. Lin, ”Behavior of intermetallics in liquid Sn-Zn-Ag solder alloys”, J. Mater. Res., Vol. 18, pp. 2060-2067 (2003).
28. C.T. Lin, C.S. Hsi, M.C. Wang, T.C. Chang and M.K. Liang, “Interfacial microstructures and solder joint strengths of the Sn–8Zn–3Bi and Sn-9Zn–lAl Pb–free solder pastes on OSP finished printed circuit boards”, J. Alloys and Compds., Vol. 459, pp. 225-231 (2008).
29. M. McCormack, K.S. Chen, G.W. Camelot and S. Jin, “Significantly improved mechanical properties of Bi-Sn solder alloys by Ag-doping”, J. Electron. Maters., Vol. 26, pp. 954-958 (1997).
30. C.Y. Liu, M.C. Wang and M.H. Hon, “ Intermetallic Compound and Adhesion Strength between the Sn-9Zn-1.5Ag-0.5Bi Lead-Free Solder and Unfluxed Cu Substrate”, J. Electron. Mater., Vol. 33 (12), pp. 1557-1560 (2004).
31. K.S. Kim, C.H. Yu and J.M. Yang, “Aging treatment characteristics of solder bump joint for high reliability optical module”, Thin Solid Films, Vol. 462-463, pp. 402-407 (2004).
32. J. Zhao, L. Qi, X.M. Wnag and L. Wang, “Influence of Bi on microstructures evolution and mechanical properties in Sn-Ag-Cu lead-free solder”, J. Alloys and Compds., Vol. 375, pp. 196-201 (2004).
33. M.J. Rizvi, Y.C. Chan, C. Bailey, H. Lu and M.N. Islam, “Effect of adding 1 wt% Bi into the Sn-2.8Ag-0.5Cu solder alloy on the intermetallic formations with Cu-substrate during soldering and isothermal aging”, J. Alloys and Compds., Vol. 407, pp. 208-214 (2006).
34. 呂宗興,”電子構裝技術的發展歷程”,工業材料,Vol. 115,p. 49 (1996).
35. 楊省樞,”覆晶新組裝技術”,工業材料,Vol. 163,p. 163. (2000).
36. C.L. Yeh, Y.S. Lai,” Investigations of solder joint damage potentials for board-level chip-scale packages subjected to consecutive drops”, Microelectron. Reliab.,Vol. 48, pp. 282-292 (2008).
37. 劉怡威,蘇艾,”覆晶式塑封球柵陣列熱系統分析”,國立台灣大學台大工程學報Vol. 22,p. 22 (2001).
38. V. Chidambaram, J. Hald and J. Hattel, “Development of gold based solder candidates for flip chip assembly”, Microelectron. Reliability, Vol. 49 (3), pp. 323-330 (2009).
39. M. Date, K.N. Tu and T. Shoji,” Interfacial reactions and impact reliability of Sn-Zn solder joints on Cu or electroless Au/Ni(P) bond-pads, J. Mater. Research, Vol. 19(10), pp. 2887-2896 (2004).
40. Y. He, “Thermal characterization of overmolded underfill materials for stacked chip scale packages”, Thermo. Acta, Vol. 433, pp. 98-104 (2005).
41. 龔錦川,”無鉛銲料於不同基材鍍層處理濕潤性與機械性質之研究”,國立台灣科技大學材料科技研究所碩士論文,pp. 2-3 (2007).
42. L.K. Teh, E. Anto, C.C. Wong, S.G. Mhaisalkar, E.H. Wong, P.S. Teo, Z. Chen,” Development and reliability of non-conductive adhesive flip-chip packages” Thin Solid Film, Vol. 462-463, pp. 446-453 (2004).
43. B. Cheng, L. Wang and Q. Zhang, “Flip chip solder joint reliability under harsh environment”, Soldering Surface Mount Tech. Vol. 15(3), pp. 15-20 (2003).
44. J. Li, L.Han, J. Zhong,” Observations on HRTEM features of thermosonic flip chip bonding interface”, Mater. Chemist. Phys., Vol. 106, pp. 457-460 (2007).
45. Y.S. Kim, K.S. Kim, C.W. Hwang and K. Suganuma, “Effect of composition and cooing rate on microstrucutre and tensile properties of Sn-Zn-Bi alloys”, J. Alloys and Compds., Vol. 352, pp. 237-245 (2003).
46. D.Q. Yu, H. Oppermann, J. Kleff and M. Hutter, “Interfacial metallurgical reaction between small flip-chip Sn/Au bumps and thin Au/TiW metallization under multiple reflow ”, Script. Mater.,Vol. 58, pp. 606-609 (2008).
47. P. Palaniappan and D.F. Baldwin,” In process stress analysis of flip-chip assemblies during”, Microelectron. Reliab., Vol. 40, pp. 1181-1190 (2000).
48. T. Takemoto, T. Funaki and A. Matsunawa, “Electrochemical investigation on the effect of silver addition on wettability of Sn-Zn system lead-free solder”, J. Jpn. Welding Soc., Vol. 17, pp. 251-258 (1999).
49. K.W. Jang, C.K. Chung, W.S. Lee and K.W. Paik,” Material properties of anisotropic conductive films (ACFs) and their flip chip assembly reliability in NAND flash memory applications”, Microelectron. Reliab., Vol. 48, pp. 1052-1061 (2008).
50. J.W. Nah, J. H. Kim, H. M. Lee and K.W. Paik, “Electromigration in flip chip solder bump of 97Pb–3Sn/37Pb–63Sn combination structure”, Acta Mater., Vol. 52, pp. 129-136 (2004).
51. S.K. Kang, P.A. Lauro, D.Y. Shih, D.W. Henderson and K.J. Puttlitz, “Microstructure and mechanical properties of lead-free solders and solder joints used in microelectronic application”, IBM J. Res. Dev., Vol. 49 (4/5), pp. 607-620 (2005).
52. J. LaDou, “Printed circuit board industry”, Int. J. Hyg. Environ. Health, Vol. 209, pp. 211–219 (2006).
53. H. Hojjati and S. Rohani, “Measurement and prediction of solubility of paracetamol in water-isopropanol solution”, Org. Process Res. Dev., Vol. 10 (6), pp. 1110-1118 (2006).
54. J.O. Suh, K.N Tu and G.V. Lutsenko,” Size distribution and morphology of Cu6Sn5 scallops in wetting reaction between molten solder and copper”, Acta Mater., Vol. 56 (5) , pp. 1075-1083 (2008).
55. 王木琴,”工程材料”,台灣復文興業股份有限公司出版,台灣台南,pp. 42,184 (1996).
56. J.O. Suh, K.N. Tu, N. Tamura, “Preferred orientation relationship between Cu6Sn5 scallop-type grains and Cu substrate in reactions between molten Sn-based solders and Cu” J. Appl. Phys. Vol. 102, pp.131-135 (2007).
57. R. J. Wassink, Soldering in electronics, Electrochemical publications Ltd., p.99 (1984).
58. M. N. Islam, Y.C. Chan, M.J. Rizvi and W. Jillek,” Investigations of interfacial reactions of Sn–Zn based and Sn–Ag–Cu lead-free solder alloys as replacement for Sn–Pb solder”, J. Alloys and Compds., Vol. 400, pp. 136-144 (2005).
59. L.C. Prasad and A. Mikula, “Surface segregation and surface tension in Al–Sn–Zn liquid alloys”, Physica B, Vol. 373, pp.142-149 (2006).
60. J Zhou, Y. Sun and F. Xue,” Properties of low melting point Sn–Zn–Bi solders”, J. Alloys and Compds., Vol. 397, pp. 260-264 (2005).
61. A. Sharif, Y.C. Chan and H.W. Zhong, “Effect of multiple reflows on mechanical strength of the interface formed between Sn-Zn-Bi solder and Au/Ni/Cu bond pad”, J. Mater. Res., Vol. 22 (1), pp. 40-45 (2007).
62. P.T. Vianco and D.R. Frear, “Issues in the Replacement of Lead-Bearing, Solders”, JOM, Vol. 45, pp.14-19 (1993).
63. B. Brunetti, D. Gozzi, M. Iervolino, V. Piacente, G. Zanicchi, N. Parodi and G. Borzone, “Bismuth activity in lead-free solder Bi–In–Sn alloys”, Comp. Coupl. Phase Diag. and Thermochem., Vol. 30, pp. 431-442 (2006).
64. C. N. C. Luciano, K.I. Udoh, M. Nakagawa, S. Matsuya and M. Ohta,” AuCu–Sn pseudobinary phase diagram”, J. Alloys and Compds., Vol. 337, pp. 289-295 (2002).
65. R. Feder, M. Mooney and A.S. Nowick, “Ordering kinetics in long-range ordered Cu3Au La cinetique d'ordre dans Cu3Au ordonne a grande distance Ordnungskinetik in ferngeordhetem Cu3Au”, Acta Metal., Vol. 6, pp. 266-277 (1958).
66. Y. Kong, J. Shao, W. Wang Q. Liu and Z. Chen, “Electroless Sn-Ni alloy plating with high Sn content free of activation pretreatment”, J. Alloys and Compds., Vol. 477, pp. 328-32 (2009).
67. T. Baggio, “The Panasonic Mini Disk Player”. Turning a new leaf in a lead-free market, IPC Works’ 99, Mineapolis, Mn, Oct (1999).
68. C.Y. Liu, Y.R. Chen, W.L. Li, M.H. Hon and M.C. Wang, “Effect of thermal treatment on the intermetallic compounds formed at Sn-9Zn-1.5Ag-xBi (x=0 and 1) lead-free solder/Cu interface, Meter. Trans., Vol. 48 (8), pp. 2133-2138 (2007).
69. C.H. Shang, R.C. Cammarata, T.P. Weihs and C.L. Chien, “Microstructure and Hall-Petch behavior of Fe-Co-based hiperco alloys”, J. Mater. Res., Vol. 15 (4), pp. 835-837 (2000).
70. N. Oliver, I. Dostaler and E. Dewberry, “New product development benchmarks: The Japanese, North American, and UK consumer electronics industries”, J. High Tech. Manag. Res., Vol. 15, pp. 249-265 (2004).
71. T.C. Chang, M.H. Hon, M.C. Wnag and D.Y. Lin, “Electrochemical behaviors of the Sn-9Zn-xAg lead-free solders in 3.5 wt % NaCl solution”, J. Electro. Chem. Soc., Vol. 151 (7), pp. C484-C491 (2004).
72. N. Li, J. Huang, D. Zhou and D. Li, “Finding of gray points on the surface of the Sn-Fe alloy layer and its effects on the corrosion resistance of the alloy layer”, J. Mater. Sci. Technol., Vol. 19(2), pp. 174-176 (2003).
73. W.K. Choi, S.K. Kang and D.Y. Shih, “A study of the effects of solder volume on the interfacial reactions in solder joints using the differential scanning calorimetry technique”, J. Electron. Maters., Vol. 31 (11), pp. 1283-1291 (2002).
74. F. Zhu, H. Zhang, R. Guan and S. Liu, “The effect of temperature and strain rate on the tensile properties of a Sn99.3-Cu0.7(Ni) lead-free solder alloy”, Microelectron. Eng., Vol. 84, pp. 144-150 (2007).
75. T.C. Chang, M.H. Hon, M.C. Wnag and D.Y. Lin, “Electrochemical behaviors of the Sn-9Zn-xAg lead-free solders in 3.5 wt % NaCl solution”, J. Electro. Chem. Soc., Vol. 151 (7), pp. C484-C491 (2004).
76. I. Shohji, T. Yoshida, T. Takahashi and S. Hioki, “Tensile properties of Sn-Ag based lead-free solders and strain rate sensitivity”, Mater. Sci. Eng. A, 366, pp. 50-55 (2004).
77. H.L. Lai and J.G. Duh, “Lead-free Sn-Ag and Sn-Ag-Bi solder powders prepared by mechanical alloying”, J. Electron. Maters., Vol. 32 (4), pp. 215-220 (2003).
78. T. Baggio, “The Panasonic Mini Disk Player”, Turning a new leaf in a lead-free market, IPC Work, Mineapolis, MN, Oct. p. 99 (1999).
79. M. Hansen and K. Anderko, Constitution of Binary Alloys, McGraw-Hill, New York, pp. 52,336, 631, 861 (1958).
80. J. Zhou, Y.S. Sun, F. Xue, “Properties of low melting point Sn-Zn-Bi solders”, J. Alloys Compds., Vol. 397, pp. 260-264 (2005).
81. I. Larky and W.T. Thompson, “The Pb-Sn System”, Bull. Alloy Phase Diagrams, Vol. 9, pp. 142-152 (1998).
82. Q. Xiang, R.Z. Wu and M.L. Zhang, “Influence of Sn on microstructure and mechanical properties of Mg-5Li-3Al-2Zn alloys”, J. Alloys and Compds., pp. 832-835 (2009).
83. K.N. Suganuma, T.R. Bieler and J.P. Lucas, “Microstructural Engineering of Solders”, J. Electron. Mater., Vol. 28 (11), pp. 1176-1183 (1999).
84. C.B. Lee, S.B. Jung, Y.E. Shih and C.C. Shur, “The effect of Bi concentration on wettability of cu substrate by Sn-Bi solder”, Mater. Trans., Vol. 42, pp. 751-755 (2001).
85. M.N. Islam, Y.C. Chan, M.J. Rizvi and W. Jillek, “Investigations of interfacial reactions of Sn–Zn based and Sn–Ag–Cu lead-free solder alloys as replacement for Sn–Pb solder”, J. Alloys and Compds., Vol. 400, pp. 136-144 (2005).
86. I. Karakaya and W.T. Thompson, “The Ag-Sn system, Bull. Alloy Phase Diagrams, Vol. 8, pp. 340-347 (1987).
87. 日本國專利第3296289號。
88. 美國專利第6179935B1號。
89. 張道智,游善溥,張喬雲,”無鉛組裝之材料特性”,先進構裝技術聯盟季刊,Vol. 14, pp. 62-74 (2004).
90. 徳國專利第19616671C2號。
91. S.M. McGuire, M.E. Fine and J.D. Achenbach, “Crack Detection by Resonant Frequency Measurements”, Metal. Trans. A, Vol. 26A, pp. 1123-1127 (1995).
92. S. Vaynman and M.E. Fine, “Development of Fluxes for Lead-Free Solders Containing Zinc”, Scripta Materialia, Vol. 41, pp. 1269-1271 (1999).
93. B. Trumble, “Get the LEAD out”, IEEE Spectrum, pp. 55-60, May (1998).
94. M. Abtew and G. Selvaduray, “Lead-free Solders in Microelectronics”, Mater. Sci. Eng., Vol. 27, pp. 95-141 (2000).
95. J. Glazer, “Metallurgy of Low Temperature Pb-Free Solders for Electronic Assembly”, International Mater. Rev., Vol. 40, pp. 65-93 (1995).
96. 莊強名,“無鉛化共晶銲錫合金之振動破壞特性研究”,國立成功大學材料科學及工程學系博士論文, p. 15 (2001).
97. J.M. Song, T.S. Lui, L.H. Chan and D.Y. Tsai, “Resonant vibration behavior of lead-free solders”, J. Electron. Mater., Vol. 32, pp. 1501-1508 (2003).
98. C.Y. Liu, Y.R. Chen, W.L. Li, M.H. Hon and M.C. Wang, “Effect of thermal treatment on the intermetallic compounds formed at Sn-9Zn-1.5Ag-xBi (x=0 and 1) lead-free solder/Cu interface”, Meter. Trans., Vol. 48 (8), pp. 2133-2138 (2007).
99. J.E. Lee, K.S. Kim, M. Inoue, J. Jiang and K. Suganuma, “Effects of Ag and Cu addition on microstructural properties and oxidation resistance of Sn–Zn eutectic alloy”, J. Alloys and Compds., Vol. 454, pp. 310-320 (2008).
100. Y. Wu., J.A. Sees, C. Pouraghabagher, L.A. Foster, J.L. Marshall, E.G. Jacobs, and R.F. Pinizzotto, “The formation and growth of intermetallics in composite solder”, J. Electron. Mater., Vol. 22(7), pp. 769-777 (1993).
101. K. Kawashima, T. Ito and M. Samurai, “Strain-Rate and temperature-dependent stress-strain curves of Sn-Pb eutectic alloy”, J. Mater. Sci., Vol. 27, pp. 6387-6390 (1992).
102. W.J. Boettinger, C.A. Handwerker, B. Newbury, T.Y. Pan and J.M. Nicholson, “Mechanism of fillet lifting in Sn-Bi alloys”, J. Electron. Maters., Vol. 31, pp. 545-550, (2002).
103. J. Glazer, “Metallurgy of low temperature Pb-Free solders for electronic assembly”, Int. Mater. Rev., Vol. 40, pp. 65-93 (1995).
104. J. Glazer, “Microstructure and mechanical properties of Pb-Free solder alloy for low-cost electronic assembly: A Review”, J. Electron. Mater., Vol. 23, pp. 693-699 (1994).
105. Y.Y. Chen, J.G. Duh and B.S. Chiou, “The effect of substrate surface roughness on the wettability of Sn-Bi solders”, J. Mater. Sci.- Mater. El., Vol. 11, pp. 279-283 (2000).
106. C.B. Lee, S.B. Jung, Y.E. Shih and C.C. Shur, “The effect of Bi concentration on wettability of Cu substrate by Sn-Bi solders”, Mater. Trans., Vol. 42, pp. 751-755 (2001).
107. Q. Xiang, R.Z. Wu and M.L. Zhang, “Influence of Sn on microstructure and mechanical properties of Mg-5Li-3Al-2Zn alloys”, J. Alloys and Compds.,Vol. 477, pp. 832-835 (2009).
108. G.S. Al-Ganainy, M.R. Nagy, B.A. Khalifa and R. Afify, “Effect of phase transformation on creep characteristics of Sn-5 wt% Bi alloy” Phys. Stat. Sol., 158, pp. 463-469 (1996).
109. T.H. Alden, “The origin of superplasticity in the Sn-5%Bi alloy”, Acta Metall., Vol. 15, pp. 469-479 (1967).
110. C.H. Raeder, D. Mitlin and R.W. Messler, Jr., “Modelling the creep rates of eutectic Bi-Sn solder using the data from its constitutive phases”, J. Mater. Sci., Vol. 33, pp. 4503-4508 (1998).
111. K.N. Subramnian, T.R. Bieler and J.P. Lucas, “Microstructural Engineering of Solders”, J. Electron. Mater., Vol. 28 (11), pp. 1176-1183 (1999).
112. Y. Miyazawa and T. Ariga, “Influences of aging treatment on microstructure and hardness of Sn- (Ag, Bi, Zn) eutectic solder alloys”, Mater. Trans., Vol. 42, pp. 776-782 (2001).
113. C. Han, Q. Liu, D. G. Ivey,” Kinetics of Sn electrodeposition from Sn(II)–citrate solutions”, Electrochim. Acta, Vol. 53, pp. 8332-8340 (2008).
114. K. Suganuma, T. Shotoku, Y. Nakamura and K. Niihara, “Wetting and interface microstructure between Sn-Zn binary alloys and Cu”, J. Mater. Res., Vol. 13, pp. 2859-2865 (1998).
115. A. Wu, L. Guo, C. Liu, E. Jia and Z. Zhu, “Internal friction behavior of liquid Bi–Sn alloys”, Phys. B, Vol. 369, pp. 51-55 (2005).
116. C. Luef, H. Flandorfer and H. Ipser, ” Enthalpies of mixing of liquid alloys in the In–Pd–Sn system and the limiting binary systems”, Thermochimica Acta, Vol. 417, pp. 47-57 (2004).
117. S. Kang and A. Sarkhel, “Lead-free solders for electronic packaging”, J.Electron. Mater., Vol. 23 pp. 701-707 (1994).
118. W.J. Tomlinson and A. Fullylove, “Strength of tin-based soldered joints”, J. Mater. Sci., Vol. 27, pp. 5777-5782 (1992).
119. N.C. Lee, “Getting ready for lead-free solders”, Soldering & Surface Mount Technology, No. 26, pp. 65-69, July (1997).
120. S.H. Huh, K.S. Kim and K. Suganuma, “Effect of Ag addition on the microstructural and mechanical properties of Sn-Cu eutectic solder”, Mater. Trans., Vol. 43, No. 5, pp. 739-744 (2001).
121. J.W. Morris, Jr., J. L. Freer Goldstein and Z. Mei, “Microstructure and mechanical properties of Sn-In and Sn-Bi solders”, JOM, pp.25-27, July (1993).
122. Z. Mei and J. W. Morris, and Jr., “Characterization of eutectic Sn-Bi solder joints”, J. Electron. Maters., Vol. 21, pp. 599-607 (1992).
123. Z. Mei and J. W. Morris, and Jr., “Superplastic creep of low melting point solder joints”, J. Electron. Mater., Vol. 21, pp. 401-407 (1992).
124. I. Shohji, T. Nakamura, F. Mori and S. Fujiuchi, “Interface reaction and mechanical properties of lead-free Sn-Zn alloy/Cu joints”, Mater. Trans., Vol. 43, pp. 1797-1801 (2002).
125. J.M. Song, G.F. Lan, T.S. Lui and L.H. Chen, “Microstructure and tensile properties of Sn-9Zn-xAg lead-free solder alloys”, Scripta Materialia, Vol. 48, pp. 1047-1051 (2003).
126. T. Hirano, K. Fukuda, K Ito, T. Kiga and Y. Taniguchi, “Reliability of lead-free solder joint by using chip size package”, Proceedings of the 2001 IEEE International Symposium on Electronics and Environment, pp. 285-289 (2001).
127. A. Sebaoun, D. Vincent and D.Treheux, “Al-Zn-Sn phase diagram isothermal diffusion in ternary system ” Mater. Sci., Tech., Vol. 3, pp. 241-248 (1987).
128. K.L. Lin, L.H. Wen and T.P. Liu, “The microstructure of the Sn-Zn-Al solder alloys”, J. Electron. Mater., Vol. 27, pp. 97-105 (1998).
129. S.C. Cheng and K.L. Lin, “The thermal property of lead-free Sn-8.55Zn-1Ag-xAl solder alloys and its wetting interaction with Cu”, J. Electron. Maters., Vol. 31, pp. 940-945 (2002).
130. C.M. Chuang, T.S. Lui and L.H. Chen, “Effect of aluminum addition on tensile properties of naturally aging Sn-Zn eutectic solder”, J. Mater. Sci., Vol. 37, pp. 191-195 (2002).
131. K.I. Chen and K.L. Lin, “The microstructures and mechanical properties of the Sn-Zn-Ag-Al-Ga solder alloys-the Effect of Ag”, J. Electron. Maters., Vol. 31, pp. 861-867 (2002).
132. M. McCormack, H.S. Chen, G.W. Camelot and S. Jin, “Significantly improved Mechanical Properties of Bi-Sn solder alloys by Ag-doping”, J. Electron. Maters., Vol. 26, pp. 954-958 (1997).
133. T. Shimizu, H. Ishikawa, I. Ohnuma and K. Ishida, “Zn-Al-Mg-Ga Alloys as Pb-Free Solder for Die-Attaching Use”, J. Electron. Maters., Vol. 28, p. 1172 -1176 (1999).
134. C.F. Yang, F.L Chen, W. Gierlotka, S.W. Chen, K.C. Hsieh and L.L. Huang,” Thermodynamic properties and phase equilibria of Sn–Bi–Zn ternary alloys”, Mater. Chem. Phys., Vol. 112, pp. 94-103 (2008).
135. M. McCormack, S. Jin, H.S. Chen and D.A. Machusak, “New lead-free Sn-Zn-In solder alloys”, J. Electron. Maters., Vol. 23, pp. 687-690 (1994).
136. C.M. L. Wu, D.Q. Yu, C.M. T. Law and L. Wang, “The properties of Sn-9Zn lead-free solder alloys doped with trace rare earth elements”, J. Electron. Maters., Vol. 31, pp. 921-927 (2002).
137. K.L. Lin and L.H. Wen, “The wetting of copper by Al-Zn-Sn solders”, J. Mater. Sci. Electron., Vol. 9, pp 5-8 (1998).
138. B.T. Lampe, “Room temperature aging properties of some solder alloys”, Welding Res., Oct., pp. 330-340 (1976).
139. T. Takemoto, M. Takahashi and A. Matsunawa, “Tensile deformation Properties and Microstructure of Sn-Zn System Lead-Free Solders”, Advances in Electronic Packaging, Vol. 1, pp. 575-580 (1999).
140. S. Chada, R.A. Fournelle, W. Laubb and D. Shangguan, “Copper substrate dissolution in eutectic Sn-Ag solder and its effect on microstructure”, J. Electron. Maters., Vol. 29 (10), pp.1214-1221 (2000).
141. J. Tavares, A. Sharyari, J. Harvey, S. Coulombe and S. Omanovic, “Corrosion behavior and fibrinogen adsorptive interaction of SS316L surfaces covered with ethylene glycol plasma polymer-coated Ti nanoparticles”, Surface & coatings tech., Vol. 203, pp. 2278-87 (2009).
142. K. Nisancioglu, “Corrosion mechanism of AZ91 magnesium alloy” J. Electrochem. Soc., Vol. 137, pp. 43-50 (1990).
143. K.L. Lin, F.C. Chung, and T.P. Liu,” The potentiodynamic polarization behavior of Pb-free XIn-9(5Al-Zn)-YSn solders”, Mater. Chem. Phys., Vol. 53, pp. 55-59 (1998).
144. S.Ahat, M. Sheng and L. Luo, “Microstructure and shear strength evolution of SnAg/Cu surface mount solder joint during aging”, J. Electro. Maters. Vol. 30 (10) pp. 1317-1322 (2001).
145. A. Barbucci, G. Gerisola, G. Bruzzone and A. Saccone, “Activation of aluminium anodes by the presence of intermetallic compounds”, Electrochimica Acta, Vol. 42, pp. 2369-2380 (1997).
146. M.R. Harrison, J.H. Vincent and H.A.H. Steen, “Lead-free reflow soldering for electronics assembly”, Soldering & Surface Mount Tech., Vol. 13(3), pp. 21-38 (2001).