| 研究生: |
王綵綾 Wang, Cai-Ling |
|---|---|
| 論文名稱: |
單邊貼有壓電材料之Timoshenko樑的力與電壓耦合研究 Study of the Coupling Effects of Force and Voltage on Timoshenko Beam with One Side Surface Mounted Piezoelectric Material |
| 指導教授: |
王榮泰
Wang, Rong-Tyai |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 壓電片 、有限元素 、減震 |
| 外文關鍵詞: | Timoshenko beam, piezoelectric material, Newmark |
| 相關次數: | 點閱:67 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文目的為探討Timoshenko懸臂樑上方貼附有壓電片之模型受施加外力與電壓作用所呈現之行為。以本文內所研發的有限元素於進行分析,並採用Newmark法於計算此懸臂樑承受外力與感應電壓交互作用所呈現之動態行為。
靜態外力作用於此樑之尾端時,壓電片位置愈靠近樑之固定端,所形成尾端之橫向位移愈小。壓電片承受施加靜態電壓作用,壓電片位置離愈靠近樑的固定端,自由端之橫向位移愈大。以電阻元件連接壓電片之上下兩面作為此懸臂樑減震之用,結果顯示壓電片位置離固定端越近與壓電材料長度及厚度尺寸越大,減震效果越好。
The purpose of this thesis is to investigate the behavior of cantilevered Timoshenko beam, which is mounted with a piezoelectric material on the top surface, subjected by an external force and applied voltage.
Governing equations and boundary conditions are derived via the Hamilton’s principle. Shape functions are constructed from solving the equations of static equilibrium. Besides, the charge equation of the piezoelectric material is considered. In order to suppress the vibration of the beam, connecting a resistor between the top and bottom surfaces of Piezoelectric material. Newmark’s Integration Method is adopted to analyze the beam’s kinetic response. Results show that the location, length and thickness of the piezoelectric layer are significant factors on the deformation of the entire beam.
1. D. H. Robbins and J. N. Reddy, “Analysis of Piezoelectrically Actuated Beams Using a Layer-Wise Displacement Theory,”Computers and Structures, Vol. 41, No. 2, pp. 265-279, 1991.
2. J. G. Smits and A. Ballato, “Dynamic Admittance Matrix of Cantilever Bimorphs,”Journal of Microelectromechanical System, Vol. 3, No. 3, pp. 105-112, 1994.
3. Y. J. Lee, “Finite Element Approach of Vibration Control Using Self-Sensing Piezoelectric Actuators,”Computers and Structures, Vol.60, No.3, pp. 505-512, 1996.
4. S. Brooks and P. Heyliger, “Static Behavior of Piezoelectric Laminates with Distributed and Patched Actuators,”Journal of intelligent Material Systems and Structures, Vol. 5, pp. 635-646, 1994.
5. C. Q. Chen, X. M.Wang and Y. P. Shen,“ Finite Element Approach of Vibration Control Using Self-sensing Piezoelectric Actuators,” Computers and Structures, Vol. 60,No. 3,pp.502-512,1996.
6. A. Benjeddou, M. A. Trindade, and R. Ohayon, “New Shear Actuated Smart Structure Beam Finite Element,”AIAA Journal, Vol. 37, pp. 378-383, 1999.
7. E. F. Crawley and J. de Luis,“Use of Piezoelectric Actuators as Elements of Intelligent Structures,” AIAA Journal, Vol. 25, No.10. pp. 1373-1385, 1987
8. H. S. Tzou, and C. I. Tseng, “Distributed Vibration Control and Identification of Coupled Elastic/Piezoelectric System: Finite Element Formulation and Application, ”Mechanical Systems and Signal Processing, Vol. 5, No. 3, pp.215-231,1991.
9. J. H. Huang and H. I. Yu, “Dynamic Electromechanical Response of Piezoelectric Plates as Sensors or Actuators,”Materials Letters, Vol. 45, pp. 70-80, 2000.
10. X. D. Zhang and C. T. Sun,“Formulation of An Adaptive Sandwich Beam,”Smart Materials And Structures, Vol. 5, pp. 814, 1996.
11. M. D. Sciuva and U. Icardi,“Large Deflection of Adaptive Multilayered Timoshenko Beams,”Computers and Structures, Vol. 31, No.1, pp.49-60, 1995.
12. H. Abramovich and A. Livshits,“Dynamic Behavior of Cross-Ply Laminated Beams with Piezoelectric Layers,”Computers and Structures, Vol. 25, pp. 371-379, 1993.
13. X. D. Zhang and C. T. Sun,“Use of Thickness-Shear Mode in Adaptive Sandwich Structures,”Smart Materials And Structures, Vol. 4, pp. 202, 1995.
14. J. Pan, C. H. Hansen, and S. D. Snyder,“A study of Response of A Simple Supported Beam to Excitation by A Piezoelectric Actuator,”Journal of Intelligent Material Systems and Structures, Vol. 3, pp. 120-130, 1992.
15. M. C. Ray, K. M. Rao, and B. Sanmanta,“Exact Aolution for Static Analysis of An Intelligent Structure under Cylindrical Bending,”Computer and Structures, Vol. 47, No. 6, pp. 1031-1042, 1993.
16. J. G. Smits, W. S. Choi, and A. Ballato,“Resonance and Antiresonance of Symmetric and Asymmetric Piezoelectric Flexors,”Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions, Vol. 44, No. 2, pp. 250-258, 1997.
17. H. S. Tzou and G. C. Wang, “Distributed Structural Dynamics Control of Flexible Manipulators-I. Structural Dynamics and Viscoelastic Actuator,” Computers and Structures, Vol. 35, pp. 669-677, 1990.
18. R. L. Goldberg, M. J. Jurgents, D. M. Mills, C. S. Henrique,
D. Vaughan, and S. W. Smith,“Modeling of Piezoelectric Multilayer Ceramics Using Finite Element Analysis.”Ultrasonics, erroelectrics
19. H. A. Sodano, D. J. Inman and G. Park,“A Review of Power Harvesting from Vibration Using Piezoelectric Materials,”The Shock and Vibration Digest, Vol. 36, No. 3, pp. 197-205, May. 2004.
20. Y. C. Shu and I. C. Lien,“Analysis of Power Output for Piezoelectric Energy Harvesting Systems,”Smart Materials and Structures, Vol. 15, pp. 1499-1512, 2006.