簡易檢索 / 詳目顯示

研究生: 林瑋榕
Lin, Way-Rong
論文名稱: 開發CRISPR/Cas9基因編輯系統提升小球藻之油脂產量
Development of CRISPR/Cas9 system in Chlorella species to enhance lipid accumulation
指導教授: 吳意珣
Ng, I-Son
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 71
中文關鍵詞: CRISPR/Cas9微藻小球藻油脂生產
外文關鍵詞: CRISPR/Cas9, microalgae, Chlorella, lipid production
相關次數: 點閱:151下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,微藻的開發與應用備受矚目,可用於生產多種高價值產品,因此研究極具前景。這十年來,由於基因編輯技術的蓬勃發展,許多研究致力於使用這些新興的技術在微藻基因工程上,以提高其油脂、色素、蛋白質、活性物質等之產量。相較於ZFN及TALEN,CRISPR/Cas9系統擁有高編輯效率、易於操作、低成本,且可以同時進行多組基因編輯的功能,因而被廣泛運用在微藻之相關研究。
    本研究第一部分為找出最適合小球藻的電穿轉植載體,嘗試幾次使用衣藻適用之質體於小球藻的電穿轉植失敗後,我們證明使用來自農桿菌帶有左右同源臂 (Left and right border) 及綠色螢光蛋白的質體,在電壓360 V、電容25 F及電阻200 ohm下,能夠增加小球藻的電穿轉化效率。透過分光光度計與倒立螢光顯微鏡之觀測,在Chlorella vulgaris中有兩株綠色螢光表達量高於原藻(28%與67%);而在Chlorella sorokiniana中則有三株(46%、58%與62%)。
    接下來我們將CRISPR/Cas9系統分別應用到Chlorella vulgaris, Chlorella sorokiniana與Chlorella variabilis NC64A。在C. vulgaris中,以帶有左右同源臂的載體pHSE401輔以CRISPR技術干擾fad3基因,使油脂產量較原藻提升高達40%。另外在C. variabilis的研究中,其全基因定序信息完整,能成功獲得PEPC基因,唯其電穿後修復能力不佳,導致後續研究無法進行。目前多數微藻由於基因組訊息尚不完整但藻體本身富涵高GC含量,故設計具有大量鳥糞嘌呤鹼基的sgRNA,命名為輔助調適基因調控 (ASGARD),分別搭配CRISPRi與CRISPRa系統送入C. sorokiniana中,並針對其生物量、油脂以及蛋白產量分析觀察。雖然轉植藻株之生物量與油脂產量與野生型相比並無明顯差異性,其蛋白產量卻有顯著增加,並可提升超過60%,說明目前開發技術具有顯著的潛力。

    Being the green gold of the future, microalgae have recently attracted considerable interest worldwide, for they can be used to produce different kinds of metabolites, such as lipids, protein, pigments and bioactive compounds. In the last decade, the efforts attended to enhance high-value compounds in microalgae are motivated by genetic manipulation. Among them, the CRISPR/Cas9 system appears to be the most efficient and novel technology. Compared to ZFN and TALEN, this newly developed gene editing tool was easier to work with, more affordable and was able to regulate multiple genes simultaneously. In this study, we aimed to enhance the lipid accumulation in three different species of Chlorella by CRISPR/Cas9-based gene editing tools and other characterization analyses, such as growth rate measurement and protein production, had been carried out as well.
    In the first part of this study, we attempted to determine plasmid with suitable genomic components which could be utilized in the transformation of Chlorella via electroporation. We had tested several plasmids which could be used in microalgae Chlamydomonas with hsp70A/rbcS and CaMV35S promoter, respectively. However, these plasmids were failed to transform into Chlorella. Finally, plasmid pCAMBIA1302 containing right border (RB), left border (LB) from Agrobacterium tumefaciens and a fragment of mGFP was successfully transformed into microalgae Chlorella vulgaris and Chlorella sorokiniana by electroporation under 360 V at 25 F and 200 ohm. Selected colonies were tested by spectrophotometer and inverted fluorescence microscopy (IFM) with detection at excitation 488 nm and emission 510 nm. Strain 29 and 48 from C. vulgaris as well as strain 2, 4 and 11 from C. sorokiniana showed higher fluorescent value compared with wild type (28% and 67% in C. vulgaris, 46%, 58% and 62% in C. sorokiniana, respectively), proved plasmid with RB/LB is suitable for gene insertion in Chlorella.
    Aside from that, pHSE401 containing fragment of Cas9, RB/LB was used as vector, with sgRNA designed from fad3 gene which can affect the lipid accumulation in C. vulgaris. The lipid content of transgenic strains was improved up to 40%. On the other hand, Chlorella variabilis NC64A had been completely sequenced and certain gene like PEPC has been located in its genomic DNA. However, its low recovery rate hampered the transformation efficacy and we were not able to proceed its genome editing. Due to the lack of genomic information in C. sorokiniana and consider most microalgae are in high guanine contents, we establish a new approach via high guanine in sgRNA which name “Adaptive Single Guide Assisted Regulation DNA (ASGARD)”. Coupled with the CRISPRi and CRISPRa system, characterization analyses were conducted to understand how it affect the biomass, lipid accumulation and protein productivity. Although there was no significant difference between wild type and transformants, the protein content of all the transgenic strains was improved up to 60%, g/g DCW. This novel idea and technology are high potential for gene regulating in microalgae.

    摘要....II Abstract...III Acknowledgements....V Table of contents...VI List of figures...IX List of table...XIV Chapter 1 Introduction...1 1-1 Research backgrounds...1 1-2 Research purpose...2 Chapter 2 Literature review...4 2-1 Genetic engineering tool for microalgae...4 2-1-1 CRISPR-based gene editing tools...4 2-1-2 Transformation methods for microalgae...6 2-2 Microalgae used for gene editing...8 2-2-1 Chlamydomonas reinhardtii...8 2-2-2 Chlorella species...10 2-2-3 Others...11 2-3 Applications...14 2-3-1 Lipids...14 2-3-2 Pigments...16 2-3-3 Other high-value compounds...17 Chapter 3 Material and methods...20 3-1 Materials and chemicals...20 3-2 Microorganism, plasmids and primers...22 3-3 Equipment...25 3-4 Strains, media and culture condition...26 3-5 Construction of CRISPR/Cas 9 expression system expression system for microalgae Chlorella...26 3-6 Construction of CRISPRi expression system ...26 3-7 Construction of CRISPRa expression system...27 3-8 Microalgal transformation...28 3-9 Genomic DNA extraction...28 3-10 Fluorescence analysis...29 3-11 Lipid analysis...30 3-12 Protein analysis...30 Chapter 4 Result and discussion...31 4-1 Development of an optimized transformation method for Chlorella...31 4-1-1 Attempts of transforming varied plasmid into Chlorella...31 4-1-2 Demonstration of successful transformation by plasmid harboring LB/RB...33 4-2 Applying CRISPR-related system in Chlorella vulgaris...37 4-2-1 Disruption of fad3 gene by CRISPR system in Chlorella vulgaris...37 4-2-2 Lipid productivity of the disruption of fad3 gene using the CRISPR system...39 4-2-3 Down-regulation of fad3 gene by CRISPRi system in Chlorella vulgaris...41 4-3 Applying CRISPR-related system in Chlorella sorokiniana...43 4-3-1 In search of DNA sequence for genetic engineering in Chlorella sorokiniana...43 4-3-2 Design and establishment of ASGARD (Adaptive Single Guide Assisted Regulating DNA) in Chlorella sorokiniana...45 4-4 Applying CRISPR-related system in Chlorella variabilis NC64A...55 4-4-1 Determination of PEPC gene in Chlorella variabilis...55 4-4-2 Applying CRISPRi system in Chlorella variabilis...56 Chapter 5 Conclusion and future work ...58 5-1 Conclusion...58 5-2 Future work...58 References...60

    1. Adli, M., 2018. The CRISPR tool kit for genome editing and beyond. Nat. Commun. 9(1), 1911.
    2. Ajjawi, I., Verruto, J., Aqui, M., Soriaga, L.B., Coppersmith, J., Kwok, K., et al., 2017. Lipid production in Nannochloropsis gaditana is doubled by decreasing expression of a single transcriptional regulator. Nat. Biotechnol. 35(7), 647-52.
    3. Altpeter, F., Baisakh, N., Beachy, R., Bock, R. et al., 2005. Particle bombardment and the genetic enhancement of crops: Myths and realities. Mol. Breed. 15, 305-327.
    4. Arriola, M. B., Velmurugan, N., Zhang, Y., Plunkett, M. H., Hondzo, H., Barney, B. M., 2018. Genome sequences of Chlorella sorokiniana UTEX 1602 and Micractinium conductrix SAG 241.80: implications to maltose excretion by a green alga. Plant J. 93(3), 566-586.
    5. Azencott, H. R., Peter, G. F., Prausnitz, M. R., 2007. Influence of the cell wall on intracellular delivery to algal cells by electroporation and sonication. Ultrasound Med. Biol. 33, 1805-1817
    6. Baier, T., Wichmann, J., Kruse, O., Lauersen, K. J., 2018. Intron-containing algal transgenes mediate efficient recombinant gene expression in the green microalga Chlamydomonas reinhardtii. Nucleic Acids Res. 46(13), 6909-6919.
    7. Ben-Amotz, A., Avron, M., 1992. Dunaliella: Physiology, Biochemistry, and Biotechnology. CRC Press.
    8. Blanc, G., Duncan, G., Agarkova, I., Borodovsky, M., Gurnon, J., Kuo, A., et al., 2010. The Chlorella variabilis NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex. Plant Cell 22(9), 2943-2955.
    9. Bolotin, A., Quinquis, B., Sorokin, A., Ehrlich, S. D., 2005. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151, 2551-2561.
    10. Borowitzka, M. A., 2013. High-value products from microalgae—their development and commercialisation. J. Appl. Phycol. 25(3), 743-756.
    11. Boynton, J.E., Gillham, N.W., Harris, E.H., Hosler, J.P., Johnson, A.M., Jones, A.R., et al., 1988. Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240, 1534-1538.
    12. Brooks, A.R., Nagy, B.P., Taylor, S., Simonet, W.S., Taylor, J.M., Levy-Wilson, B., 1994. Sequences containing the second-intron enhancer are essential for transcription of the human apolipoprotein B gene in the livers of transgenic mice. Mol. Cell. Biol. 14, 2243-2256.
    13. Brouns, S. J., Jore, M. M., Lundgren, M., Westra, E. R., Slijkhuis, R. J., Snijders, A. P., et al., 2008. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321(5891), 960-964.
    14. Capecchi, M.R., 1989. Altering the genome by homologous recombination. Science 244, 1288-1292.
    15. Chaogang, W., Zhangli, H., Anping, L., Baohui, J., 2010. Biosynthesis of poly‐3‐hydroxybutyrate (PHB) in the transgenic green alga Chlamydomonas reinhardtii. J. Phycol. 46(2), 396-402.
    16. Chen, C.Y., Kao, A.L., Tsai, Z.H., Shen, Y.M., Kao, P.H., Ng, I.S., Chang, J.S., 2017. Expression of synthetic phytoene synthase gene to enhance -carotene production in Scenedesmus sp. CPC2. Biotechnol. J. 12 (11), 1700204.
    17. Cheng, R., Ma, R., Li, K., Rong, H., Lin, X., Wang, Z., et al., 2012. Agrobacterium tumefaciens mediated transformation of marine microalgae Schizochytrium. Microbiol. Res. 167, 179-186.
    18. Chew, K.W., Yap, J.Y., Show, P.L., Suan, N.H., Juan, J.C., Ling, T.C., et.al., 2017. Microalgae biorefinery: high value products perspectives. Bioresour. Technol. 229, 53-62
    19. Chien, L. J., Hsu, T. P., Huang, C. C., Teng, K., Hsieh, H. J., 2015. Novel codon-optimization genes encoded in Chlorella for triacylglycerol accumulation. Energy Procedia 75, 44-55.
    20. Chow, K.C., Tung, W.L., 1999. Electrotransformation of Chlorella vulgaris. Plant Cell Rep. 18 (9), 778-780.
    21. Coll, J. M., 2006. Methodologies for transferring DNA into eukaryotic microalgae: a review. Span. J. Agric. Res. 4(4), 316-330.
    22. Couso, I., Vila, M., Rodriguez, H., Vargas, M. A., Leon, R., 2011. Overexpression of an exogenous phytoene synthase gene in the unicellular alga Chlamydomonas reinhardtii leads to an increase in the content of carotenoids. Biotechnol. Progr. 27(1), 54-60.
    23. de Jaeger, L., Springer, J., Wolbert, E. J., Martens, D. E., Eggink, G., Wijffels, R. H., 2017. Gene silencing of stearoyl-ACP desaturase enhances the stearic acid content in Chlamydomonas reinhardtii. Bioresour. Technol. 245, 1616-1626.
    24. Deng, X., Cai, J., Li, Y., Fei, X., 2014. Expression and knockdown of the PEPC1 gene affect carbon flux in the biosynthesis of triacylglycerols by the green alga Chlamydomonas reinhardtii. Biotechnol. Lett. 36(11), 2199-2208.
    25. Deveau, H., Barrangou, R., Garneau, J. E., Labonté, J., Fremaux, C., Boyaval, P., 2008. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J. Bacteriol. 190(4), 1390-1400.
    26. Devkota, S., 2018. The road less traveled: strategies to enhance the frequency of homology-directed repair (HDR) for increased efficiency of CRISPR/Cas-mediated transgenesis. BMB Rep. 51(9), 437.
    27. Doron, L., Segal, N. A., Shapira, M., 2016. Transgene expression in microalgae—from tools to applications. Front. Plant Sci. 7, 505.
    28. Eichler-Stahlberg, A., Weisheit, W., Ruecker, O., Heitzer, M., 2009. Strategies to facilitate transgene expression in Chlamydomonas reinhardtii. Planta 229(4), 873-883.
    29. Eilers, U., Bikoulis, A., Breitenbach, J., Büchel, C., Sandmann, G., 2016. Limitations in the biosynthesis of fucoxanthin as targets for genetic engineering in Phaeodactylum tricornutum. J. Appl. Phycol. 28(1), 123-129.
    30. Falciatore, A., Casotti, R., Leblanc, C., Abrescia, C., Bowler, C., 1999. Transformation of nonselectable reporter genes in marine diatoms. Marine Biotechnol. 1(3), 239-251.
    31. Fan, J., Cui, Y., Zhou, Y., Wan, M., Wang, W., Xie, J., Li, Y., 2014. The effect of nutrition pattern alteration on Chlorella pyrenoidosa growth, lipid biosynthesis-related gene transcription. Bioresour. Technol. 164, 214-220.
    32. Fuhrmann, M., Oertel, W., Hegemann, P., 1999. A synthetic gene coding for the green fluorescent protein (GFP) is a versatile reporter in Chlamydomonas reinhardtii. Plant J. 19(3), 353-361.
    33. Gao, Z.X., Zhao H., Li, Z.M., Tan, X.M., Lu, X.F., 2012. Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria. Energ. Environ. Sci. 5, 9857-9865.
    34. Gelvin, S. B., 2000. Agrobacterium and plant genes involved in T-DNA transfer and integration. Annu. Rev. Plant Biol. 51, 223-256.
    35. Guarnieri, M. T., Levering, J., Henard, C. A., Boore, J. L., Betenbaugh, M. J., Zengler, K., et al., 2018. Genome sequence of the oleaginous green alga, Chlorella vulgaris UTEX 395. Front. Bioeng. Biotechnol. 6, 37
    36. Hallmann, A., 2007. Algal transgenics and biotechnology. Transgen. Plant J. 1, 81-98.
    37. Harris, E.H., 1989. The Chlamydomonas sourcebook. San Diego: Academic.
    38. Harris, E.H., 2001. Chlamydomonas as a model organism. Annu. Review Plant Physiol. Plant Mol. Biol. 52, 363-406.
    39. Harris, J., Viner, K., Champagne, P., Jessop, P. G., 2018. Advances in microalgal lipid extraction for biofuel production: a review. Biofuel Bioprod. Bior. 12(6), 1118-1135.
    40. Hawkins, R. L., Nakamura, M., 1999. Expression of human growth hormone by the eukaryotic alga, Chlorella. Curr. Microbiol. 38, 335-341.
    41. Haznedaroglu, B. Z., Rismani-Yazdi, H., Allnutt, F. C. T., Reeves, D., Peccia, J., 2016. Algal Biorefinery for High-Value Platform Chemicals. Platform Chemical Biorefinery 333-360.
    42. He, Y., Peng, H., Liu, J., Chen, F., Zhou, Y., Ma, X., et al., 2018. Chlorella sp. transgenic with Scy-hepc enhancing the survival of Sparus macrocephalus and hybrid grouper challenged with Aeromonas hydrophila. Fish Shellfish Immunol. 73, 22-29.
    43. Hildebrand, M., 2008. Diatoms, biomineralization processes, and genomics. Chem. Rev. 108(11), 4855-4874.
    44. Himeno, M., Shibata, T., Kawahara, Y., Hanaoka, Y., Komano, T., 1984. Effect of polyethylene glycol in plasmid DNA solution on transformation of CaCl2-treated Escherichia coli cells. Agric. Biol. Chem. 48, 657-662.
    45. Hovde, B. T., Hanschen, E. R., Tyler, C. R. S., Lo, C. C., Kunde, Y., Davenport, K., et al., 2018. Genomic characterization reveals significant divergence within Chlorella sorokiniana (Chlorellales, Trebouxiophyceae). Algal Res. 35, 449-461.
    46. Ishino, Y., Shinagawa, H., Makino, K., Amemura, M., Nakata, A., 1987. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol. 169, 5429-5433.
    47. Jansen, R., Embden, J. D., Gaastra, W., Schouls, L. M., 2002. Identification of genes that are associated with DNA repeats in prokaryotes. Mol. Microbiol. 43, 1565-1575.
    48. Jeon, S., Lim, J., Lee, H., Shin, S., Kang, N., Park, Y.I., et.al., 2017. Current status and perspectives of genome editing technology for microalgae. Biotechnol. Biofuels. 10, 267.
    49. Jiang, W., Brueggeman, A. J., Horken, K. M., Plucinak, T. M., Weeks, D. P., 2014. Successful transient expression of Cas9 and single guide RNA genes in Chlamydomonas reinhardtii. Eukaryot. cell 13(11), 1465-1469.
    50. Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., Charpentier, E., 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096), 816-821.
    51. Kao, P. H., Ng, I. S., 2017. CRISPRi mediated phosphoenolpyruvate carboxylase regulation to enhance the production of lipid in Chlamydomonas reinhardtii. Bioresour. Technol. 245, 1527-1537.
    52. Kilian, O., Benemann, C. S., Niyogi, K. K., Vick, B., 2011. High-efficiency homologous recombination in the oil-producing alga Nannochloropsis sp. Proc. Natl. Acad. Sci. U.S.A. 108(52), 21265-21269.
    53. Kumar, M., Jeon, J., Choi, J., Kim, S-R., 2018. Rapid and efficient genetic transformation of the green microalga Chlorella vulgaris. J. Appl. Phycol. 30, 1735-45.
    54. Lau, C. C., Loh, S. H., Aziz, A., San Cha, T., 2017. Effects of disrupted omega-3 desaturase gene construct on fatty acid composition and expression of four fatty acid biosynthetic genes in transgenic Chlorella vulgaris. Algal Res. 26, 143-152.
    55. Leon, R., Fernandez, E., 2007. Nuclear transformation of eukaryotic microalgae: historical overview, achievements and problems. Adv. Exp. Med. Biol. 616, 1-11.
    56. Ling, X., Guo, J., Zheng, C., Ye, C., Lu, Y., Pan, X., Ng, I.S., et al., 2015. Simple, effective protein extraction method and proteomics analysis from polyunsaturated fatty acids-producing micro-organisms. Bioprocess Biosyst. Eng. 38 (12), 2331-2341.
    57. Liu, J., Mao, X., Zhou, W., Guarnieri, M. T., 2016. Simultaneous production of triacylglycerol and high-value carotenoids by the astaxanthin-producing oleaginous green microalga Chlorella zofingiensis. Bioresour. Technol. 214, 319-327.
    58. Liu, J., Sun, Z., Gerken, H., Huang, J., Jiang, Y., Chen, F., 2014. Genetic engineering of the green alga Chlorella zofingiensis: A modified norflurazon-resistant phytoene desaturase gene as a dominant selectable marker. Appl. Microbiol. Biotechnol. 98, 5069-5079.
    59. Lumbreras, V., Stevens, D. R., Purton, S., 1998. Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J. 14(4), 441-447.
    60. Ma, Y. H., Wang, X., Niu, Y. F., Yang, Z. K., Zhang, M. H., Wang, Z. M., et al., 2014a. Antisense knockdown of pyruvate dehydrogenase kinase promotes the neutral lipid accumulation in the diatom Phaeodactylum tricornutum. Microb. Cell Fact. 13(1), 100.
    61. Ma, Y.B., Wang, Z.Y., Yu, C.J., Yin, Y.H., Zhou, G.K., 2014b. Evaluation of the potential of 9 Nannochloropsis strains for biodiesel production. Bioresour. Technol. 167, 503-509
    62. Merchant, S.S., Prochnik, S.E., Vallon, O., Harris, E.H., Karpowicz, J., Witman, G.B., et al., 2007. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318, 245-250
    63. Miao, X.L., Wu, Q.Y., 2006. Biodiesel production from heterotrophic microalgal oil. Bioresour. Technol. 97, 841-846.
    64. Mojica, F. J., Diez-Villasenor, C., Garcia-Martinez, J. Soria, E., 2005. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol. 60, 174-182.
    65. Muñoz, C. F., de Jaeger, L., Sturme, M. H., Lip, K. Y., Olijslager, J. W., Springer, J., et al., 2018. Improved DNA/protein delivery in microalgae–A simple and reliable method for the prediction of optimal electroporation settings. Algal Res. 33, 448-455.
    66. Niu, Y. F., Yang, Z. K., Zhang, M. H., Zhu, C. C., Yang, W. D., Liu, J. S., 2012. Transformation of diatom Phaeodactylum tricornutum by electroporation and establishment of inducible selection marker. Biotechniques 52(6), 1-3.
    67. Nymark, M., Sharma, A. K., Sparstad, T., Bones, A. M., Winge, P., 2016. A CRISPR/Cas9 system adapted for gene editing in marine algae. Sci. Rep. 6, 24951.
    68. Ördög, V., Stirk, W.A., Bálint, P., van Staden, J., Lovász, C., 2012. Changes in lipid, protein and pigment concentrations in nitrogen-stressed Chlorella minutissima cultures. J. Appl. Phycol., 24, 907-914
    69. Paix, A., Folkmann, A., Goldman, D. H., Kulaga, H., Grzelak, M. J., Rasoloson, D., et al., 2017. Precision genome editing using synthesis-dependent repair of Cas9-induced DNA breaks. Proc. Natl. Acad. Sci. U.S.A. 114(50), E10745-E10754.
    70. Platt, R. J., Chen, S., Zhou, Y., Yim, M. J., Swiech, L., Kempton, H. R., et al., 2014. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159(2), 440-455.
    71. Poliner, E., Takeuchi, T., Du, Z.Y., Benning, C., Farré, E.M., 2018. Nontransgenic marker-free gene disruption by an episomal CRISPR system in the oleaginous microalga, Nannochloropsis oceanica CCMP1779. ACS Synth. Biol. 7 (4), 962-968.
    72. Poulsen, N., Chesley, P. M., Kröger, N., 2006. Molecular genetic manipulation of the diatom Thalassiosira pseudonana (Bacillariophyceae). J. Phycol., 42(5), 1059-1065.
    73. Pratheesh, P. T., Vineetha, M., Kurup, G. M., 2014. An efficient protocol for the Agrobacterium-mediated genetic transformation of microalga Chlamydomonas reinhardtii. Mol. Biotechnol. 56(6), 507-515.
    74. Radakovits, R., Eduafo, P. M., Posewitz, M. C., 2011. Genetic engineering of fatty acid chain length in Phaeodactylum tricornutum. Metab. Eng. 13(1), 89-95.
    75. Rudin, N., Sugarman, E. Haber, J. E., 1989. Genetic and physical analysis of double-strand break repair and recombination in Saccharomyces cerevisiae. Genetics 122, 519-534.
    76. Scranton, M.A., Ostrand, J.T., Georgianna, D.R., Lofgren, S.M., Li, D., Ellis, R.C., et al., 2016. Synthetic promoters capable of driving robust nuclear gene expression in the green alga Chlamydomonas reinhardtii. Algal Res. 15, 135-142.
    77. Shan, Q., Wang, Y., Li, J., Zhang, Y., Chen, K., Liang, Z., et al., 2013. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat. Biotechnol. 31(8), 686.
    78. Shao, N., Bock, R., 2008. A codon-optimized luciferase from Gaussia princeps facilitates the in vivo monitoring of gene expression in the model alga Chlamydomonas reinhardtii. Curr. Genet. 53, 381-388.
    79. Shimogawara, K., Fujiwara, S., Grossman, A., Usuda, H., 1998. High-efficiency transformation of Chlamydomonas reinhardtii by electroporation. Genetics 148, 1821-1828.
    80. Shin, S.E., Lim, J.M., Koh, H.G., Kim, E.K., Kang, N.K., Jeon, S., et al., 2016. CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii. Sci. Rep. 6, 27810.
    81. Simionato, D., Block, M. A., La Rocca, N., Jouhet, J., Maréchal, E., Finazzi, G., et al., 2013. The response of Nannochloropsis gaditana to nitrogen starvation includes de novo biosynthesis of triacylglycerols, a decrease of chloroplast galactolipids, and reorganization of the photosynthetic apparatus. Eukaryo. cell 12(5), 665-676.
    82. Somssich, M., 2018, A short history of the CaMV 35S promoter. PeerJ Prepr. 6, e27096v2: 692 1-16
    83. Stack, J., Le Gouic, A. V., Tobin, P. R., Guihéneuf, F., Stengel, D. B., FitzGerald, R. J., 2018. Protein extraction and bioactive hydrolysate generation from two microalgae, Porphyridium purpureum and Phaeodactylum tricornutum.
    84. Surzycki, R., Greenham, K., Kitayama, K., Dibal, F., Wagner, R., Rochaix, J. D., et al., 2009. Factors effecting expression of vaccines in microalgae. Biologicals 37, 133-138.
    85. Tréguer, P., Nelson, D. M., Van Bennekom, A. J., DeMaster, D. J., Leynaert, A., Quéquiner, B., 1995. The silica balance in the world ocean: a reestimate. Science 268, 375-9.
    86. Trentacoste, E. M., Shrestha, R. P., Smith, S. R., Glé, C., Hartmann, A. C., Hildebrand, M., Gerwick, W. H., 2013. Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth. Proc. Natl. Acad. Sci. U.S.A. 110(49), 19748-19753.
    87. Wang, C., Chen, X., Li, H., Wang, J., Hu, Z., 2017. Artificial miRNA inhibition of phosphoenolpyruvate carboxylase increases fatty acid production in a green microalga Chlamydomonas reinhardtii. Biotechnol. Biofuels. 10(1), 91.
    88. Wang, H., Yang, H., Shivalila, C. S., Dawlaty, M. M., Cheng, A. W., Zhang, F., Jaenisch, R., 2013. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153(4), 910-918.
    89. Wang, Q., Lu, Y., Xin, Y., Wei, L., Huang, S., Xu J., 2016. Genome editing of model oleaginous microalgae Nannochloropsis spp. by CRISPR/Cas9. Plant J. 88 (6), 1071-1081
    90. Weiner, I., Atar, S., Schweitzer, S., Eilenberg, H., Feldman, Y., Avitan, M., et al., 2018. Enhancing heterologous expression in Chlamydomonas reinhardtii by transcript sequence optimization. Plant J. 94, 22-31
    91. Wichmann, J., Baier, T., Wentnagel, E., Lauersen, K. J., Kruse, O., 2018. Tailored carbon partitioning for phototrophic production of (E)-α-bisabolene from the green microalga Chlamydomonas reinhardtii. Metab. Eng. 45, 211-222.
    92. Willaert, A., 2018. CRISPR/Cas9-mediated homology-directed repair by ssODNs in zebrafish induces complex mutational patterns resulting from genomic integration of repair-template fragments. Dis. Model Mech. 11(10), dmm035352.
    93. Xie, T., Xia, Y., Zeng, Y., Li, X., Zhang, Y., 2017. Nitrate concentration-shift cultivation to enhance protein content of heterotrophic microalga Chlorella vulgaris: Over-compensation strategy. Bioresour. Technol. 233, 247-255.
    94. Xing, H. L., Dong, L., Wang, Z. P., Zhang, H. Y., Han, C. Y., Liu, B., et al., 2014. A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol. 14(1), 327.
    95. Yang, B., Liu, J., Jiang, Y., Chen, F., 2016. Chlorella species as hosts for genetic engineering and expression of heterologous proteins: progress, challenge and perspective. Biotechnol. J. 11,1244-1261.
    96. Yao, L., Gerde, J. A., Lee, S. L., Wang, T., Harrata, K. A., 2015. Microalgae lipid characterization. J. Agric. Food Chem. 63(6), 1773-1787.
    97. Ye, Y., Huang, Y., Xia, A., Fu, Q., Liao, Q., Zeng, W., et al., 2018. Optimizing culture conditions for heterotrophic-assisted photoautotrophic biofilm growth of Chlorella vulgaris to simultaneously improve microalgae biomass and lipid productivity. Bioresour. Technol. 270, 80-87.
    98. Zaslavskaia, L. A., Lippmeier, J. C., Kroth, P. G., Grossman, A. R., Apt, K. E., 2000. Transformation of the diatom Phaeodactylum tricornutum (Bacillariophyceae) with a variety of selectable marker and reporter genes. J. Phycol. 36(2), 379-386.

    下載圖示 校內:2024-07-01公開
    校外:2024-07-01公開
    QR CODE