簡易檢索 / 詳目顯示

研究生: 王怡靜
Wang, Yi-Jing
論文名稱: 含光敏性膽固醇液晶元嵌段性共聚物之自組裝研究
Study on the Self-Assembly of Amphiphilic Diblock Copolymers Containing a Photoresponsive Cholesteryl-based Mesogen
指導教授: 劉瑞祥
Liu, Jui-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 99
中文關鍵詞: 原子轉移自由基聚合法嵌段式共聚物偶氮苯自組裝
外文關鍵詞: ATRP, diblock copolymer, azobenzene, self-assembly
相關次數: 點閱:100下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了探討兩嵌段式共聚物之自組裝行為、及光照效應,本研究中利用原子轉移自由基聚合法合成一系列剛-柔兩嵌段式共聚物 PBMA-b-PM1和PMMA-b-PM1。其中,剛性鏈段PM1側鏈是含有光異構性偶氮苯和膽固醇官能基的液晶高分子,在攝氏100至250度間具有液晶相。所合成的單體及共聚物結構均以1H-NMR及GPC來鑑定。而熱性質和光學性質,則以DSC、TGA、POM及UV-Vis進行分析。
    本研究利用TEM和DLS分析發現,PBMA-b-PM1在THF/ H2O混合溶液下會自組裝形成微胞構形,經UV光誘導光異構化時,由於偶氮苯基團進行順-反式的構形變化,因此微胞發生解離成較小微胞的結構。經由可見光和熱處理後,微胞可再回復原來的尺寸。此外,由於PBMA-b-PM1在THF溶液中軟-硬鏈段之自組裝排列,可形成長條纖維狀的自組裝構形。由TEM發現纖維狀是由排列緊密的PBMA鏈段和排列鬆散的PM1鏈段交替構成。利用原子力顯微鏡觀察蒸氣處理後的嵌段共聚物薄膜,發現在不同時間下,表面構形一直產生變化,在特定的時間下,PBMA-b-PM1會排列長條纖維狀的構形,PMMA-b-PM1會形成許多圓形凹洞的構形。

    To investigate self-assembly and photo induced effect on self- assembly of diblock copolymers, a series of rod-coil diblock copolymers of poly(methyl methacrylate)-block-poly((-)-cholesteryl-4-[4-(11-meth- acryloyloxyundecyloxy carbonyl) phenylazo] benzene) (PBMA-b-PM1) and poly(tert-butylmethacrylate)-block-poly((-)-cholesteryl-4-[4-(11- methacryloyloxy undecyloxy carbonyl) phenylazo] benzene) (PMMA- b-PM1) was synthesized using atom transfer radical polymerization (ATRP). Rod like block PM1 containing both photoisomerizable diazo and cholesteryl groups was found to reveal liquid crystal phases from 100 to 250 ̊C. The structures of the synthesized monomer and copolymers were confirmed using 1H-NMR and GPC. The thermal, optical, photo-induced properties of the synthesized monomer and copolymers were analyzed using DSC, TGA, POM and UV-Vis.
    From the results of TEM and DLS analyses, it was found that polymer micelle of PBMA-b-PM1 dissociated forming smaller micelles in THF/ H2O mixture under UV exposure. After visible light illumination and thermal treatment, the morphology of the self-assembled construction recovered to the original micelle size. The results are ascribed to the variation of both morphology and polarity of polymer side chain before and after UV irradiation. In additional, due to the self-assembly of coil and rod like blocks, PBMA-b-PM1 formed fibrous structure in THF. From the results of TEM, the fibrous construction consists of highly ordered alternative PM1 rod block and PBMA coil block. Solvent vapor annealing of PBMA-b-PM1 was investigated using atomic force microscopy (AFM). Depending on annealing time, PBMA-b-PM1 thin film revealed uniform fibrous structure, and PMMA-b-PM1 showed circular valley patterns.

    目錄 中文摘要----------------------------------------Ⅰ 英文摘要----------------------------------------Ⅱ 目錄--------------------------------------------Ⅲ 表目錄------------------------------------------Ⅶ 圖目錄------------------------------------------Ⅷ Scheme----------------------------------------ⅩⅢ 第一章 緒論 1 1-1 奈米材料 1 1-2自組裝 1 1-3嵌段共聚物 2 1-4 偶氮苯嵌段共聚物 2 1-5 研究動機 3 第二章 原理及文獻回顧 4 2-1 自組裝 4 2-2 嵌段共聚物 7 2-2-1 嵌段共聚物的合成方法 10 2-2-2 Controlled/living free radical polymerization 12 2-2-3 Atom transfer radical polymerization (ATRP) 15 2-3 嵌段共聚物的自組裝 19 2-3-1嵌段共聚物在溶液中的自組裝 19 2-3-2 嵌段共聚物在膜的自組裝 23 2-4 含有偶氮苯基團的嵌段共聚物 29 2-4-1偶氮苯的性質 30 2-4-2偶氮苯嵌段共聚物的自組裝現象 32 2-5 液晶嵌段共聚物 37 第三章 實驗 42 3-1 藥品 42 3-2 儀器 44 3-3 藥品處理 45 3-3-1 純化單體 45 3-3-2 純化Copper (Ⅰ) bromide 和Copper (Ⅰ) chloride 45 3-3-3 純化溶劑 45 3-3-4 矽晶片清潔 46 3-4 合成單體 46 3-5 合成聚合物 49 3-5-1 合成PBMA-Br 巨分子起始劑 49 3-5-2 合成PMMA-Br 巨分子起始劑 50 3-5-3 合成PM1均聚物 51 3-5-3 合成嵌段共聚物 52 3-6 製備嵌段共聚物的自組裝 53 3-6-1 嵌段共聚物在THF/H2O混合溶液的自組裝 53 3-6-2 嵌段共聚物在溶劑的自組裝 54 3-6-3 嵌段共聚物膜的自組裝 54 3-7單體及嵌段共聚物分析與鑑定 55 第四章 結果與討論 58 4-1單體之合成及分析 58 4-2 巨分子起始劑的合成 60 4-2-1 巨分子起始劑PBMA-Br合成及分析 60 4-2-2 巨分子起始劑PMMA-Br合成及分析 62 4-2-3 PM1均聚物合成及分析 64 4-3 嵌段共聚物合成及分析 66 4-4 嵌段共聚物在溶液中的自組裝 75 4-4-1 BCP 1 在THF/H2O混合溶液中的自組裝 75 4-4-2 BCP 1在THF溶液中的自組裝和光異構化反應 80 4-4-3 不同鏈段比嵌段共聚物在THF溶液中自組裝構形的影響 82 4-5嵌段共聚物膜的自組裝 84 第五章 結論 91 第六章 參考文獻 93

    [1] T. K. Haifeng Yu, Molecules 2010, 15, 570-603.
    [2] a) G. S. Kumar and D. C. Neckers, Chemical Reviews 1989, 89, 1915-1925; b) S. Xie, A. Natansohn and P. Rochon, Chemistry of Materials 1993, 5, 403-411; c) Y. H. Zhao, J., Soft Matter 2009, 5, 2686-2693; d) N. Viswanathan, D. Kim, S. Bian, J. Williams, W. Liu, L. Samuelson, J. Kumar and S. Tripathy, Journal of Materials Chemistry 1999, 9, 1941-1955; e) K. Ichimura, Chem. Rev 2000, 100, 1847-1874; f) S. Hvilsted and P. Ramanujam, Monatshefte fur Chemie/Chemical Monthly 2001, 132, 43-51; g) A. Natansohn and P. Rochon, Chem. Rev 2002, 102, 4139-4176; h) K. Yager and C. Barrett, Journal of Photochemistry and Photobiology A: Chemistry 2006, 182, 250-261; i) T. Ikeda, Journal of Materials Chemistry 2003, 13, 2037-2057.
    [3] a) H. Yu, J. Li, T. Ikeda and T. Iyoda, Advanced Materials 2006, 18, 2213-2215; b) H. Yu, T. Iyoda and T. Ikeda, Journal of the American Chemical Society 2006, 128, 11010-11011; c) Y. Tian, K. Watanabe, X. Kong, J. Abe and T. Iyoda, Macromolecules 2002, 35, 3739-3747.
    [4] S. Forster and T. Plantenberg, Angewandte Chemie-International Edition 2002, 41, 689-714.
    [5] M. Seul and D. Andelman, Science 1995, 267, 476-483.
    [6] V. Abetz, Block copolymers, Springer-Verlag, Berlin, 2005, p.
    [7] M. W. Matsen and M. Schick, Physical Review Letters 1994, 72, 2660.
    [8] M. W. Matsen and F. S. Bates, Macromolecules 1996, 29, 7641-7644.
    [9] F. S. Bates, Fredrickson, Glenn H., Physics Today 1999, 52, 32-38.
    [10] R. A. Segalman, Materials Science and Engineering 2005, 48, 191–226.
    [11] M. C. Szwarc, Living Polymers and Electron-Transfer Process, Wiley-Interscience, New York, 1968, p.
    [12] K. Matyjaszewski in Cationic Polymerization: Mechanisms, Synthesis and Applications, Vol. Marcle Dekker, New York, 1996.
    [13] K. Matyjaszewski and J. H. Xia, Chemical Reviews 2001, 101, 2921-2990.
    [14] V. Coessens, T. Pintauer and K. Matyjaszewski, Progress in Polymer Science 2001, 26, 337-377.
    [15] a) J. L. Wang, T. Grimaud and K. Matyjaszewski, Macromolecules 1997, 30, 6507-6512; b) D. A. Shipp, J. L. Wang and K. Matyjaszewski, Macromolecules 1998, 31, 8005-8008.
    [16] K. A. Davis and K. Matyjaszewski, Macromolecules 2000, 33, 4039-4047.
    [17] V. Percec, B. Barboiu, A. Neumann, J. C. Ronda and M. Y. Zhao, Macromolecules 1996, 29, 3665-3668.
    [18] A. Choucair and A. Eisenberg, European Physical Journal E 2003, 10, 37-44.
    [19] H. G. Cui, Z. Y. Chen, K. L. Wooley and D. J. Pochan, Macromolecules 2006, 39, 6599-6607.
    [20] a) D. J. Pochan, Z. Y. Chen, H. G. Cui, K. Hales, K. Qi and K. L. Wooley, Science 2004, 306, 94-97; b) Z. Y. Chen, H. G. Cui, K. Hales, Z. B. Li, K. Qi, D. J. Pochan and K. L. Wooley, Journal of the American Chemical Society 2005, 127, 8592-8593; c) Z. B. Li, E. Kesselman, Y. Talmon, M. A. Hillmyer and T. P. Lodge, Science 2004, 306, 98-101; d) S. Jain and F. S. Bates, Science 2003, 300, 460-464; e) L. Cui, X. Tong, X. H. Yan, G. J. Liu and Y. Zhao, Macromolecules 2004, 37, 7097-7104; f) L. F. Zhang and A. Eisenberg, Science 1995, 268, 1728-1731.
    [21] a) K. J. Hanley, T. P. Lodge and C. I. Huang, Macromolecules 2000, 33, 5918-5931; b) J. R. Quintana, M. D. Janez, M. Villacampa and I. Katime, Macromolecules 1995, 28, 4139-4143; c) Y. S. Yu, L. F. Zhang and A. Eisenberg, Macromolecules 1998, 31, 1144-1154; d) Y. S. Yu and A. Eisenberg, Journal of the American Chemical Society 1997, 119, 8383-8384; e) A. Choucair, C. Lavigueur and A. Eisenberg, Langmuir 2004, 20, 3894-3900; f) Y. Y. He, Z. B. Li, P. Simone and T. P. Lodge, Journal of the American Chemical Society 2006, 128, 2745-2750; g) I. Korczagin, M. A. Hempenius, R. G. Fokkink, M. A. C. Stuart, M. Al-Hussein, P. H. H. Bomans, P. M. Frederik and G. J. Vancso, Macromolecules 2006, 39, 2306-2315.
    [22] L. F. Zhang, K. Yu and A. Eisenberg, Science 1996, 272, 1777-1779.
    [23] A. S. Lee, V. Butun, M. Vamvakaki, S. P. Armes, J. A. Pople and A. P. Gast, Macromolecules 2002, 35, 8540-8551.
    [24] S. Forster, N. Hermsdorf, W. Leube, H. Schnablegger, M. Regenbrecht, S. Akari, P. Lindner and C. Bottcher, Journal of Physical Chemistry B 1999, 103, 6657-6668.
    [25] a) Y. Li, R. Xu, S. Couderc, D. M. Bloor, E. Wyn-Jones and J. F. Holzwarth, Langmuir 2001, 17, 183-188; b) L. M. Bronstein, D. M. Chernyshov, G. I. Timofeeva, L. V. Dubrovina, P. M. Valetsky, E. S. Obolonkova and A. R. Khokhlov, Langmuir 2000, 16, 3626-3632; c) K. W. Zhang, B. Lindman and L. Coppola, Langmuir 1995, 11, 538-542; d) E. Hecht and H. Hoffmann, Langmuir 1994, 10, 86-91; e) T. K. Bronich, A. M. Popov, A. Eisenberg, V. A. Kabanov and A. V. Kabanov, Langmuir 2000, 16, 481-489.
    [26] H. W. Shen and A. Eisenberg, Journal of Physical Chemistry B 1999, 103, 9473-9487.
    [27] M. J. Fasolka, P. Banerjee, A. M. Mayes, G. Pickett and A. C. Balazs, Macromolecules 2000, 33, 5702-5712.
    [28] J. Peng, Y. Xuan, H. F. Wang, Y. M. Yang, B. Y. Li and Y. C. Han, Journal of Chemical Physics 2004, 120, 11163-11170.
    [29] A. Knoll, A. Horvat, K. Lyakhova, G. Krausch, G. Sevink, A. Zvelindovsky and R. Magerle, Physical Review Letters 2002, 89, 35501.
    [30] a) T. Thurn-Albrecht, J. Schotter, C. A. Kastle, N. Emley, T. Shibauchi, L. Krusin-Elbaum, K. Guarini, C. T. Black, M. T. Tuominen and T. P. Russell, Science 2000, 290, 2126-2129; b) T. L. Morkved, M. Lu, A. M. Urbas, E. E. Ehrichs, H. M. Jaeger, P. Mansky and T. P. Russell, Science 1996, 273, 931-933.
    [31] P. Mansky, Y. Liu, E. Huang, T. P. Russell and C. J. Hawker, Science 1997, 275, 1458-1460.
    [32] a) K. Fukunaga, H. Elbs, R. Magerle and G. Krausch, Macromolecules 2000, 33, 947-953; b) K. Fukunaga, T. Hashimoto, H. Elbs and G. Krausch, Macromolecules 2002, 35, 4406-4413; c) H. Elbs, K. Fukunaga, R. Stadler, G. Sauer, R. Magerle and G. Krausch, Macromolecules 1999, 32, 1204-1211; d) S. Walheim, M. Boltau, J. Mlynek, G. Krausch and U. Steiner, Macromolecules 1997, 30, 4995-5003; e) H. Elbs, C. Drummer, V. Abetz and G. Krausch, Macromolecules 2002, 35, 5570-5577; f) Q. L. Zhang, O. K. C. Tsui, B. Y. Du, F. J. Zhang, T. Tang and T. B. He, Macromolecules 2000, 33, 9561-9567; g) S. J. Niu and R. F. Saraf, Macromolecules 2003, 36, 2428-2440.
    [33] T. H. Kim, J. Huh, J. Hwang, H. C. Kim, S. H. Kim, B. H. Sohn and C. Park, Macromolecules 2009, 42, 6688-6697.
    [34] J. H. Liu and Y. H. Chiu, Journal of Polymer Science: Part A: Poymer Chmistry 2010, 48, 1142–1148.
    [35] H. Rau, Photochemistry and Photophysics, Rabek, J. F., Ed., Boca Raton, 1990.
    [36] S. Kadota, K. Aoki, S. Nagano and T. Seki, Journal of the American Chemical Society 2005, 127, 8266-8267.
    [37] a) M. Hackel, L. Kador, D. Kropp and H. W. Schmidt, Advanced Materials 2007, 19, 227-+; b) H. F. Yu, K. Okano, A. Shishido, T. Ikeda, K. Kamata, M. Komura and T. Iyoda, Advanced Materials 2005, 17, 2184-2188.
    [38] G. Wang, X. Tong and Y. Zhao, Macromolecules 2004, 37, 8911-8917.
    [39] Q. Yan, W. Su, Y. L. Chen, Y. H. Luo and Q. J. Zhang, Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy 2009, 71, 1644-1647.
    [40] W. Su, Y. H. Luo, Q. Yan, S. Wu, K. Han, Q. J. Zhang, Y. Q. Gu and Y. M. Li, Macromolecular Rapid Communications 2007, 28, 1251-1256.
    [41] a) I. W. Hamley, V. Castelletto, P. Parras, Z. B. Lu, C. T. Imrie and T. Itoh, Soft Matter 2005, 1, 355-363; b) S. Boisse , J. Rieger, A. Di-Cicco, P. Albouy, C. Bui, M. Li and B. Charleux, Macromolecules 2009, 42, 8688-8696; c) M. Li and P. Keller, Soft Matter 2009, 5, 927-937.
    [42] D. C. Elyes Mabrouk, Franc¸oise Brochard-Wyart, Pierre Nassoy, and Min-Hui Li, PNAS 2009, 106, 7294–7298.
    [43] 廖怡芬,“長碳鏈醇類添加劑對帶電陰陽離子液胞物理穩定性的影響", 國立成功大學化工所碩士論文, 2006,p. 19。

    下載圖示 校內:2012-07-13公開
    校外:2014-07-13公開
    QR CODE