簡易檢索 / 詳目顯示

研究生: 陳觀賜
Chan, Kun-Chi
論文名稱: Clostridium acetobutylicum利用微藻殘渣產製生質丁醇之研究
Study of utilizing microalgae residues for butanol production by Clostridium acetobutylicum
指導教授: 黃良銘
Whang, Liang-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 67
中文關鍵詞: ABE醱酵Clostridium acetobutylicum酸鹼值微藻殘渣乙酸丁酸
外文關鍵詞: ABE fermentation, acetate, butyrate, Clostridium acetobutylicum, microalgae residues, pH
相關次數: 點閱:201下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在十八世紀工業革命後,由於急劇使用化石能源,導致地球暖化及空氣污染加劇,因此開發新興且永續的再生能源是國際間重要的議題。另外,現今萃取微藻製作生質柴油的程序,會有較大量的碳水化合物及化學需氧量(COD)殘留於剩餘物中。本研究的目的主要是探討Clostridium acetobutylicum產丁醇的特性,以及回收微藻殘渣中的有機物質作生質丁醇的原料,並藉由生質丁醇批次方式進行實驗,而批次的條件是探討pH、添加不同丁酸或乙酸濃度,以及水解微藻方法等對生產丁醇的影響。
    結果顯示Clostridium acetobutylicum須於pH大於5.5之初始條件下,方可生長和進行酸化(acidogenesis)程序,以及繼而進行醇化(solventogenesis)程序,並於初始pH為6及控制pH為5的情況下有較佳的丁醇產量及產率,分別是9.78 g/L 和154 mg-butanol/g-glucose。另外,在添加不同濃度之丁酸或乙酸批次中,添加18 g/L的丁酸及30 g/L的葡萄糖會有較佳的丁醇產率(308.9 mg-butanol/g-glucose),而添加4 g/L的乙酸及60 g/L的葡萄糖會有較佳的丁醇產率(196 mg-butanol/g-glucose)。利用微藻殘渣作基質之批次實驗中,發現利用先進行2%硫酸水解再用2%氫氧化鈉水解微藻殘渣之方法會有較佳的丁醇產率(21.96 mg-butanol/g-microalgae residues)。本研究發現Clostridium acetobutylicum可利用微藻殘渣生產生質丁醇,而且可調整其他操作條件作進一步提升回收微藻殘渣及生產丁醇的效率。

    Since the Industrial Revolution in the eighteenth century, world pollutions expanded exponentially because of the dramatic increase of human population. Global warming and energy crisis have already been proved as internal issues in recent year. The renewable energy become more and more important. Current technologies usually remain a large portion in percentages of carbohydrate and COD as residues during microalgae biomass extraction in biodiesel production process. In this study, we explored the characteristics of Clostridium acetobutylicum to enhance butanol production, and the hydrolysis method of microalgae residues for acetone, butanol and ethanol fermentation.
    Fermentation biobutanol batch tests, in order to exam the effects of pH, the addition of butyrate or/and acetate and to figure out a better pretreatment strategies for microalgae residues, were conducted in this study. Clostridium acetobutylicum grew up and acidogenesis occurred at initial pH > 5.5. The best condition was investigated when initial pH = 6 and maintained at 5, chieving a butanol concentration of 9.78 g/L and yielded 154 mg-butanol/g-glucose. The butanol yield under addition of 18 g/L butyrate were 308.9 mg-butanol/g-glucose at the initial concentration of 30 g/L glucose. The butanol yield under addition of 4 g/L acetate were 196 mg-butanol/g-glucose at the initial concentration of 60 g/L glucose. The maximum butanol production and yield were 2.197 g/L and 21.96 mg-butanol/g-microalgae residues, which microalgae residues were pretreated via 2% sulfuric acid followed 2% sodium hydroxide hydrolysis without filtration. Results indicate that microalgae residues are also suitable for ABE fermentation, but an optimized operational condition is still needed.

    Abstract I 摘要 II 誌謝 III Chapter 1 Introduction 1 Chapter 2 Literature Review 2 2.1 The trend of energy utilization and renewable energy 2 2.1.1 Overview of biomass energy 4 2.1.2 The advantages of producing Biobutanol 7 2.2 The metabolic pathway of ABE fermentation 7 2.2.1 Acid-producing pathway 9 2.2.2 Solvent-producing pathway 9 2.2.3 Acidogenesis and solventogenesis referring to the life cycle stages 10 2.2.4 Stoichiometric reactions for ABE fermentation 11 2.3 Different factors on ABE fermentation 12 2.3.1 The effect of pH on ABE fermentation 13 2.3.2 The pH buffer solutions for ABE fermentation 14 2.3.3 The effect of lactate and pH on ABE fermentation 14 2.3.4 The effect of acetate on ABE fermentation 15 2.3.5 The effect of butyrate on ABE fermentation 17 2.4 Butanol producing bacteria 19 2.4.1 Clostridium acetobutylicum 20 2.4.2 Clostridium beijerinckii 20 2.4.3 Clostridium saccharoperbutlacetonicum 20 2.5 Complicated substrate for ABE fermentation 20 Chapter 3 Materials and Methods 22 3.1 Strain and growth conditions 22 3.2 Medium preparation 22 3.3 Microalgae residues pretreatment 22 3.3.1 Water hydrolysis method 23 3.3.2 2% sulfuric acid hydrolysis method 23 3.3.3 9% or 18% phosphoric acid hydrolysis method 23 3.3.4 2% sodium hydroxide hydrolysis method 23 3.3.5 2% sulfuric acid followed 2% sodium hydroxide hydrolysis method 24 3.3.6 Enzyme hydrolysis method 24 3.4 Batched fermentative biobutanol tests 24 3.5 Analytical methods 25 Chapter 4 Result and Discussion 27 4.1 Fermentative biobutanol batch tests utilizing pure compounds as substrate 27 4.1.1 Fermentative biobutanol test with/without activation 27 4.1.2 Fermentative biobutanol tests under different pH 32 4.1.2.1 Fermentative biobutanol tests under different initial pH 33 4.1.2.2 Fermentative biobutanol tests under different controlling pH 36 4.1.3 Fermentative biobutanol tests under the addition of acetate or/and butyrate 39 4.1.3.1 Fermentative biobutanol test under the addition of acetate 39 4.1.3.2 Fermentative biobutanol test under the addition of butyrate 41 4.1.3.3 Fermentative biobutanol test under the addition of acetate and butyrate 43 4.2 Fermentative biobutanol tests feeding microalgae residues 46 4.2.1 The efficiency of microalgae residues by different hydrolysis methods 46 4.2.2 First fermentative biobutanol tests under different microalgae residues pretreatment 47 4.2.3 Second fermentative biobutanol tests under different hydrolysis microalgae residues methods 50 4.3 Discussion 53 4.3.1 The product and biomass metabolic pathway of ABE fermentation 53 4.3.2 The optimum initial acetate concentration for producing solvent 55 4.3.3 The optimum initial butyrate concentration for producing butanol 56 4.3.4 The effect of addition of acetate or/and butyrate on the metabolic pathway of ABE fermentation 57 4.3.5 The optimum pH for ABE fermentation 58 Chapter 5 Conclusions 59 5.1 Conclusions 59 5.2 Recommendations 60 Chapter 6 Reference 61

    Abbasi, T. & Abbasi, S. Biomass energy and the environmental impacts associated with its production and utilization Renewable and Sustainable Energy Reviews 14, 919-937.(2010)
    Adams, E. E. Fossil Fuel Use Pushes Carbon Dioxide Emissions into Dangerous Territory, Carbon Emissions, Eco-Economy Indicators.(2013)
    Ahn, J.-H., Sang, B.-I. & Um, Y. Butanol production from thin stillage using< i> Clostridium pasteurianum</i> Bioresource technology 102, 4934-4937.(2011)
    Andersch, W., Bahl, H. & Gottschalk, G. Level of enzymes involved in acetate, butyrate, acetone and butanol formation by Clostridium acetobutylicum European journal of applied microbiology and biotechnology 18, 327-332.(1983)
    Bahl, H., Andersch, W., Braun, K. & Gottschalk, G. Effect of pH and butyrate concentration on the production of acetone and butanol by Clostridium acetobutylicum grown in continuous culture European journal of applied microbiology and biotechnology 14, 17-20.(1982)
    Bahl, H., Andersch, W. & Gottschalk, G. Continuous production of acetone and butanol by Clostridium acetobutylicum in a two-stage phosphate limited chemostat European journal of applied microbiology and biotechnology 15, 201-205.(1982)
    Bahl, H. & Gottschalk, G. Biotechnol. Bioeng. Symp.;(United States).(1984)
    Bahl, H., Gottwald, M., Kuhn, A., Rale, V., Andersch, W. & Gottschalk, G. Nutritional factors affecting the ratio of solvents produced by Clostridium acetobutylicum Applied and environmental microbiology 52, 169-172.(1986)
    Bankar, S. B., Survase, S. A., Singhal, R. S. & Granström, T. Continuous two stage acetone–butanol–ethanol fermentation with integrated solvent removal using< i> Clostridium acetobutylicum</i> B 5313 Bioresource technology 106, 110-116.(2012)
    Beesch, S. C. Acetone-butanol fermentation of starches Applied microbiology 1, 85.(1953)
    Berezina, O., Zakharova, N., Yarotsky, C. & Zverlov, V. Microbial producers of butanol Applied Biochemistry and Microbiology 48, 625-638.(2012)
    Chen, C.-K. & Blaschek, H. Acetate enhances solvent production and prevents degeneration in Clostridium beijerinckii BA101 Applied microbiology and biotechnology 52, 170-173.(1999)
    Cheng, C.-L., Che, P.-Y., Chen, B.-Y., Lee, W.-J., Chien, L.-J. & Chang, J.-S. High yield bio-butanol production by solvent-producing bacterial microflora Bioresource technology 113, 58-64.(2012)
    Cheng, H.-H., Whang, L.-M., Wu, C.-W. & Chung, M.-C. A two-stage bioprocess for hydrogen and methane production from rice straw bioethanol residues Bioresource technology 113, 23-29.(2012)
    Clayton, M. As global food costs rise, are biofuels to blame The Christian Science Monitor.(2008)
    Council of Europe, C. o. t. E. o. a. E. P. European pharmacopoeia. 5th ed. 5th ed. Strasbourg: Council of Europe.(2004)
    Dürre, P. Biobutanol: an attractive biofuel Biotechnology journal 2, 1525-1534.(2007)
    Dabrock, B., Bahl, H. & Gottschalk, G. Parameters affecting solvent production by Clostridium pasteurianum Applied and Environmental Microbiology 58, 1233-1239.(1992)
    Demirbaş, A. Global renewable energy resources Energy sources 28, 779-792.(2006)
    Desai, R. P., Harris, L. M., Welker, N. E. & Papoutsakis, E. T. Metabolic Flux Analysis Elucidates the Importance of the Acid-Formation Pathways in Regulating Solvent Production by< i> Clostridium acetobutylicum</i> Metabolic engineering 1, 206-213.(1999)
    Diez-Gonzalez, F., Russell, J. B. & Hunter, J. B. The role of an NAD-independent lactate dehydrogenase and acetate in the utilization of lactate byClostridium acetobutylicum strain P262 Archives of microbiology 164, 36-42.(1995)
    El Kanouni, A., Zerdani, I., Zaafa, S., Znassni, M., Loutfi, M. & Boudouma, M. The improvement of glucose/xylose fermentation by Clostridium acetobutylicum using calcium carbonate World Journal of Microbiology and Biotechnology 14, 431-435.(1998)
    Eliasberger, P. Hydrogen and the butyric acid fermentation Biochem. Z 220, 259-277.(1930)
    Ellis, J. T., Hengge, N. N., Sims, R. C. & Miller, C. D. Acetone, butanol, and ethanol production from wastewater algae Bioresource technology 111, 491-495.(2012)
    Ennis, B. & Maddox, I. Use ofClostridium acetobutylicum P262 for production of solvents from whey permeate Biotechnology letters 7, 601-606.(1985)
    Ezeji, T., Qureshi, N. & Blaschek, H. Industrially relevant fermentations P. Durre, Handbook on Clostridia, 797-812.(2005)
    Förberg, C., Enfors, S.-O. & Häggström, L. Control of immobilized, non-growing cells for continuous production of metabolites European journal of applied microbiology and biotechnology 17, 143-147.(1983)
    Farone, W. A. & Cuzens, J. E. Method of producing sugars using strong acid hydrolysis: Google Patents.(1998)
    Fouad, M., Abou-Zeid, A. & Yassein, M. The fermentative production of acetone-butanol by Clostridium acetobutylicum Acta Biologica Academiae Scientiarum Hungaricae 27, 107-117.(1975)
    Geng, Q., Park, C.-H. & Janni, K. Uptake of organic acids byClostridium acetobutylicum B18 under controlled pH and reduced butanol inhibition Korean Journal of Chemical Engineering 12, 378-383.(1995)
    Girbal, L. & Soucaille, P. Regulation of solvent production in< i> Clostridium acetobutylicum</i> Trends in Biotechnology 16, 11-16.(1998)
    Gottwald, M. & Gottschalk, G. The internal pH of Clostridium acetobutylicum and its effect on the shift from acid to solvent formation Archives of microbiology 143, 42-46.(1985)
    Gutierrez, N., Maddox, I., Schuster, K., Swoboda, H. & Gapes, J. Strain comparison and medium preparation for the acetone-butanol-ethanol (ABE) fermentation process using a substrate of potato Bioresource technology 66, 263-265.(1998)
    Hüsemann, M. H. & Papoutsakis, E. T. Solventogenesis in Clostridium acetobutylicum fermentations related to carboxylic acid and proton concentrations Biotechnology and bioengineering 32, 843-852.(1988)
    Hartmanis, M. G. & Gatenbeck, S. Intermediary metabolism in Clostridium acetobutylicum: levels of enzymes involved in the formation of acetate and butyrate Applied and environmental microbiology 47, 1277-1283.(1984)
    Herbert, D., Philipps, P. & Strange, R. Carbohydrate analysis Methods Enzymol. B 5, 265-277.(1971)
    Herrero, A. A. End-product inhibition in anaerobic fermentations Trends in Biotechnology 1, 49-53.(1983)
    Herrero, A. A., Gomez, R. F., Snedecor, B., Tolman, C. J. & Roberts, M. F. Growth inhibition of Clostridium thermocellum by carboxylic acids: a mechanism based on uncoupling by weak acids Applied microbiology and biotechnology 22, 53-62.(1985)
    Jain, A. K. & Suhane, A. Biotechnology: A way to Control Environmental Pollution by Alternative Lubricants Research in Biotechnology 4.(2013)
    Jang, Y.-S., Malaviya, A., Cho, C., Lee, J. & Lee, S. Y. Butanol production from renewable biomass by clostridia Bioresource technology 123, 653-663.(2012)
    Jernigan, A., May, M., Potts, T., Rodgers, B., Hestekin, J., May, P. I., McLaughlin, J., Beitle, R. R. & Hestekin, C. Effects of drying and storage on year‐round production of butanol and biodiesel from algal carbohydrates and lipids using algae from water remediation Environmental Progress & Sustainable Energy 32, 1013-1022.(2013)
    Johnson, M., Peterson, W. & Fred, E. Oxidation and reduction relations between substrate and products in the acetonebutyl alcohol fermentation Journal of Biological Chemistry 91, 569-591.(1931)
    Jones, D. T. & Woods, D. R. Acetone-butanol fermentation revisited Microbiological reviews 50, 484.(1986)
    Khanal, S. K., Chen, W.-H., Li, L. & Sung, S. Biological hydrogen production: effects of pH and intermediate products International Journal of Hydrogen Energy 29, 1123-1131.(2004)
    Kim, B. H., Bellows, P., Datta, R. & Zeikus, J. Control of carbon and electron flow in Clostridium acetobutylicum fermentations: utilization of carbon monoxide to inhibit hydrogen production and to enhance butanol yields Applied and environmental microbiology 48, 764-770.(1984)
    Kralova, I. & Sjöblom, J. Biofuels–renewable energy sources: a review Journal of Dispersion Science and Technology 31, 409-425.(2010)
    Kubowitz, F. Inhibition of butyric acid fermentation by carbon monoxide Biochem. Z 274, 285-298.(1934)
    Lütke-Eversloh, T. & Bahl, H. Metabolic engineering of< i> Clostridium acetobutylicum</i>: recent advances to improve butanol production Current opinion in biotechnology 22, 634-647.(2011)
    Largier, S. T., Long, S., Santangelo, J. D., Jones, D. T. & Woods, D. R. Immobilized Clostridium acetobutylicum P262 mutants for solvent production Applied and environmental microbiology 50, 477-481.(1985)
    Li, S.-Y., Srivastava, R., Suib, S. L., Li, Y. & Parnas, R. S. Performance of batch, fed-batch, and continuous A–B–E fermentation with pH-control Bioresource technology 102, 4241-4250.(2011)
    Linden, J., Moreira, A. & Lenz, T. Acetone and butanol Comprehensive Biotechnology 3, 915-931.(1986)
    Maddox, I. Production of n-butanol from whey filtrate using Clostridium acetobutylicum NCIB 2951 Biotechnology Letters 2, 493-498.(1980)
    Marchal, R., Blanchet, D. & Vandecasteele, J. Industrial optimization of acetone-butanol fermentation: a study of the utilization of Jerusalem artichokes Applied microbiology and biotechnology 23, 92-98.(1985)
    Martin, J., Petitdemange, H., Ballongue, J. & Gay, R. Effects of acetic and butyric acids on solvents production by Clostridium acetobutylicum Biotechnology Letters 5, 89-94.(1983)
    Mermelstein, L. D., Papoutsakis, E. T., Petersen, D. J. & Bennett, G. N. Metabolic engineering of Clostridium acetobutylicum ATCC 824 for increased solvent production by enhancement of acetone formation enzyme activities using a synthetic acetone operon Biotechnology and bioengineering 42, 1053-1060.(1993)
    Michel-Savin, D., Marchal, R. & Vandecasteele, J. Control of the selectivity of butyric acid production and improvement of fermentation performance withClostridium tyrobutyricum Applied microbiology and biotechnology 32, 387-392.(1990)
    Moir, A. How do spores germinate? Journal of applied microbiology 101, 526-530.(2006)
    Momirlan, M. & Veziroglu, T. N. The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet International Journal of Hydrogen Energy 30, 795-802.(2005)
    Monot, F., Engasser, J.-M. & Petitdemange, H. Influence of pH and undissociated butyric acid on the production of acetone and butanol in batch cultures of Clostridium acetobutylicum Applied microbiology and biotechnology 19, 422-426.(1984)
    Monot, F. & Engasser, J. Production of acetone and butanol by batch and continuous culture of Clostridium acetobutylicum under nitrogen limitation Biotechnology Letters 5, 213-218.(1983)
    Monot, F., Martin, J.-R., Petitdemange, H. & Gay, R. Acetone and butanol production by Clostridium acetobutylicum in a synthetic medium Applied and environmental microbiology 44, 1318-1324.(1982)
    Muradov, N. Z. & Veziroğlu, T. N. “Green” path from fossil-based to hydrogen economy: an overview of carbon-neutral technologies International Journal of Hydrogen Energy 33, 6804-6839.(2008)
    Nakas, J., Schaedle, M., Parkinson, C., Coonley, C. & Tanenbaum, S. System development for linked-fermentation production of solvents from algal biomass Applied and environmental microbiology 46, 1017-1023.(1983)
    Network, R. E. P. Renewables 2012–Global Status Report Paris: REN21 Secretariat.(2012)
    Oshiro, M., Hanada, K., Tashiro, Y. & Sonomoto, K. Efficient conversion of lactic acid to butanol with pH-stat continuous lactic acid and glucose feeding method by Clostridium saccharoperbutylacetonicum Applied microbiology and biotechnology 87, 1177-1185.(2010)
    Owen, W., Stuckey, D., Healy Jr, J., Young, L. & McCarty, P. Bioassay for monitoring biochemical methane potential and anaerobic toxicity Water research 13, 485-492.(1979)
    Party, I. R. E. W. Renewable Energy–into the mainstream Sittard, Netherlands: November.(2002)
    Peterson, W. & Fred, E. Butyl-Acetone Fermentation of Corn Meal Interrelations of Substrate and Products Industrial & Engineering Chemistry 24, 237-242.(1932)
    Potts, T., Du, J., Paul, M., May, P., Beitle, R. & Hestekin, J. The production of butanol from Jamaica bay macro algae Environmental Progress & Sustainable Energy 31, 29-36.(2012)
    Qureshi, N. & Blaschek, H. Economics of Butanol Fermentation using Hyper-Butanol Producing< i> Clostridium Beijerinckii</i> BA101 Food and bioproducts processing 78, 139-144.(2000)
    Qureshi, N., Li, X. L., Hughes, S., Saha, B. C. & Cotta, M. A. Butanol production from corn fiber xylan using Clostridium acetobutylicum Biotechnology progress 22, 673-680.(2006)
    Ramey, D. & Yang, S.-T. Production of butyric acid and butanol from biomass final report to the US Department of Energy, Contract No.: DE-F-G02-00ER86106.(2004)
    Rice, E. W. & Association, A. P. H. Standard methods for the examination of water and wastewater. American Public Health Association Washington, DC.(2012)
    Rittmann, B. E. Opportunities for renewable bioenergy using microorganisms Biotechnology and bioengineering 100, 203-212.(2008)
    Roos, J. W., McLaughlin, J. K. & Papoutsakis, E. T. The effect of pH on nitrogen supply, cell lysis, and solvent production in fermentations of Clostridium acetobutylicum Biotechnology and bioengineering 27, 681-694.(1985)
    Rosenthal, E. Studies call biofuels a greenhouse threat New York Times 8.(2008)
    Schuster, K. C., Van Den Heuvel, R., Gutierrez, N. & Maddox, I. Development of markers for product formation and cell cycle in batch cultivation of Clostridium acetobutylicum ATCC 824 Applied microbiology and biotechnology 49, 669-676.(1998)
    Simon, E. The formation of lactic acid by Clostridium acetobutylicum (Weizmann) Archives of biochemistry 13, 237.(1947)
    Song, J.-H., Ventura, J.-R., Lee, C.-H. & Jahng, D. Butyric acid production from brown algae using Clostridium tyrobutyricum ATCC 25755 Biotechnology and Bioprocess Engineering 16, 42-49.(2011)
    Tashiro, Y., Shinto, H., Hayashi, M., Baba, S.-i., Kobayashi, G. & Sonomoto, K. Novel high-efficient butanol production from butyrate by non-growing< i> Clostridium saccharoperbutylacetonicum</i> N1-4 (ATCC 13564) with methyl viologen Journal of bioscience and bioengineering 104, 238-240.(2007)
    Tashiro, Y., Takeda, K., Kobayashi, G., Sonomoto, K., Ishizaki, A. & Yoshino, S. High butanol production by< i> Clostridium saccharoperbutylacetonicum</i> N1-4 in fed-batch culture with pH-Stat continuous butyric acid and glucose feeding method Journal of bioscience and bioengineering 98, 263-268.(2004)
    Thang, V. H., Kanda, K. & Kobayashi, G. Production of acetone–butanol–ethanol (ABE) in direct fermentation of cassava by Clostridium saccharoperbutylacetonicum N1-4 Applied biochemistry and biotechnology 161, 157-170.(2010)
    Thauer, R. K., Jungermann, K. & Decker, K. Energy conservation in chemotrophic anaerobic bacteria Bacteriological reviews 41, 100.(1977)
    Valentine, R. & Wolfe, R. Purification and role of phosphotransbutyrylase Journal of Biological Chemistry 235, 1948-1952.(1960)
    van der Wal, H., Sperber, B. L., Houweling-Tan, B., Bakker, R. R., Brandenburg, W. & López-Contreras, A. M. Production of acetone, butanol, and ethanol from biomass of the green seaweed< i> Ulva lactuca</i> Bioresource technology 128, 431-437.(2013)
    Ventura, J.-R. & Jahng, D. Improvement of butanol fermentation by supplementation of butyric acid produced from a brown alga Biotechnology and Bioprocess Engineering 18, 1142-1150.(2013)
    Ventura, J.-R. S., Hu, H. & Jahng, D. Enhanced butanol production in Clostridium acetobutylicum ATCC 824 by double overexpression of 6-phosphofructokinase and pyruvate kinase genes Applied microbiology and biotechnology 97, 7505-7516.(2013)
    Voget, C., Mignone, C. & Ertola, R. Butanol production from apple pomace Biotechnology letters 7, 43-46.(1985)
    Walton, M. & Martin, J. Production of butanol-acetone by fermentation. Academic Press.(1979)
    Wendland, R. T., Fulmer, E. I. & Underkofler, L. Butyl-acetonic fermentation of Jerusalem artichokes Industrial & Engineering Chemistry 33, 1078-1081.(1941)
    Wiegel, J., Kuk, S.-U. & Kohring, G. W. Clostridium thermobutyricum sp. nov., a moderate thermophile isolated from a cellulolytic culture, that produces butyrate as the major product International Journal of Systematic Bacteriology 39, 199-204.(1989)
    Wiesenborn, D. P., Rudolph, F. B. & Papoutsakis, E. T. Thiolase from Clostridium acetobutylicum ATCC 824 and its role in the synthesis of acids and solvents Applied and environmental microbiology 54, 2717-2722.(1988)
    Zheng, Y.-N., Li, L.-Z., Xian, M., Ma, Y.-J., Yang, J.-M., Xu, X. & He, D.-Z. Problems with the microbial production of butanol Journal of industrial microbiology & biotechnology 36, 1127-1138.(2009)

    下載圖示 校內:2019-08-22公開
    校外:2019-08-22公開
    QR CODE