| 研究生: |
曾嘉裕 Tseng, Chia-Yu |
|---|---|
| 論文名稱: |
嵌入式針狀鰭片熱電模組之熱電性能測試及分析 Experimental and Numerical Analysis of Built-in Thermoelectric Generator Modules with Pin Fin Heat Sink |
| 指導教授: |
張錦裕
Jang, Jiin-Yuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 125 |
| 中文關鍵詞: | 數值模擬 、熱電發電 、針狀鰭片 |
| 外文關鍵詞: | Numerical simulation, Thermoelectric generator, Pin fin |
| 相關次數: | 點閱:77 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究建立嵌入式熱電發電模組與廢氣煙道之三維物理模型,並透過數值模擬分析煙道內之流場以及熱電模組之溫度場與電場之分布。煙道內工作流體為400K~700K之氣體,因此煙道內之流場必須同時考慮對流熱傳與輻射熱傳。嵌入式熱電模組在煙道內藉由嵌入式鰭片增加熱傳面積達到熱傳增強效果,但相對伴隨著鰭片所產生之泵功。為驗證數值模擬之準確性,本研究利用自行架設之小型風洞實驗系統,量測圓形針狀鰭片與橢圓形針狀鰭片在不同鰭片排列型式及操作條件下,熱電模組之性能曲線:V-I(voltage-current)與P-I(power-current)曲線,將實驗結果與數值模擬進行比對後,發現其最大誤差約為11%。
本研究採用圓形針狀鰭片(circular pin fin)與橢圓形針狀鰭片(elliptical pin fin)作為熱電模組之熱擷取裝置,探討不同的鰭片排列型式(水平排列, in-lined arrangement、交錯排列, staggered arrangement),以及鰭片幾何尺寸( 鰭片高度 0mm < Hfin < 150mm、鰭片橫向間距(Xt) )於不同操作條件下(進口風速Vin = 1、3、5 m/s;廢氣溫度Tgas = 450、550、650K)模組之發電性能。研究中分析熱電模組之理想發電密度(Pideal/A)與鰭片所造成的泵功密度(Ppump power/A),再藉由兩者相減而得的淨發電密度(Pnet/A)作為比較嵌入式鰭片熱電模組性能優劣之依據。在鰭片熱傳面積相近的條件下,操作條件為廢氣溫度550K時,本研究發現交錯式橢圓形針狀鰭片熱電模組相較於交錯式圓形針狀鰭片與平板式鰭片熱電模組,其淨發電密度分別可提升約17.9% 與35.8%。
A 3D numerical model of thermoelectric generator (TEG) modules are attached to a large chimney plate is proposed and solved numerically using a control volume based finite difference formulation. The thermoelectric module consists of a thermoelectric generator, an elliptical pin fin heat sink, a cold plate based on water cooling. In the chimney the temperature of flue gases would be 450-650K. Therefore, both the effects of convection and radiation heat transfer should be considered. Although the TEG hot side temperature and thus the electric power output can be increased through inserting elliptical pin-fin heat sink into the chimney tunnel to increase the heat transfer area, the pin fin heat sink would cause extra pumping power at the same time. On the whole, the main purpose of this study is to analyze the effects of the geometrical parameters on both the electric power output and the chimney pressure drop characteristics. In addition, the effects of different operating conditions, including different inlet velocities (Vin = 1、3、5 m/s) and different inlet temperatures (Tgas = 450、550、650K) are also discussed in detail. The predicted numerical data for the power vs. current (P-I) curve are in good agreement (within 11%) with the experimental data.
參考文獻
1. Seebeck, T.J.,“Magnetische polarisation der metalle und erzedurch
temperatur-differenz. abhand deut”, Akad. Wiss. Berlin, pp. 265-373,
1822.
2. Peltier, J.C., “Nouvelles experiences sur la caloriecete des courans
electriques”, Ann. Chem., LVI, pp. 371-387, 1834.
3. Thomson, W., “On a mechanical theory of thermoelectric currents”, Proc.
Roy. Soc. Edinburgh, pp. 91-98, 1851.
4. Altenkirch, E., “ber Den Nutzeffekt Der Thermosäule”, Physikalische
Zeitschrift, Vol. 10, pp. 560-580, 1909.
5. Altenkirch, E., “Elektrothermische Kälteerzeugung Und Reversible
Elektrische Heizung”, Physikalische Zeitschrift, Vol. 12, pp. 920-924,
1911.
6. Ioffe, A.F., “Semiconductor thermoelements and thermoelectric cooling”,
Infosearch Limited, London, 1957.
7. Bejan, A., Editor, Advanced engineering thermodynamics, 3rd ed., John
Wiley & Sons, Hoboken, USA, 2006.
8. Angrist, S.W., Editor, Direct energy conversion, 4th ed., Allyn and
Bacon, Boston, USA, 1992.
9. Min, G., Rowe, D.M., “Optimization of thermoelectric module geometry
for ‘waste heat’ electric power generation”. Journal of Power Sources,
Vol. 38, No. 3, pp. 253–259, 1992.
10. Min, G., Rowe, D.M., “Evaluation of thermoelectric modules for power
generation”, Journal of Power Sources, Vol. 73, No. 2, pp. 193–198,
1998.
11. Chen, J., Yan, Z., Wu, L., “The influence of thomson effect on the
maximum power output and maximum efficiency of a thermoelectric
generator”, Journal of Applied Physics, Vol. 79, No. 11, pp. 8823–8828,
1996.
12. Crane, D.T. and Jackson, G.S., “Optimization of Cross Flow Heat
Exchangers for Thermoelectric Waste Heat Recovery”, Energy
conversion and management, Vol. 45, pp. 1565-1582, 2004.
13. Yu, J. and Zhao, H., “A Numerical Model for Thermoelectric Generator
with the Parallel-Plate Heat Exchanger”, Journal of Power Sources, Vol.
172, pp. 428-434, 2007.
14. Dai, D., Zhou, Y. and Liu, J., “Liquid Metal Based Thermoelectric
Generation System for Waste Heat Recovery”, Renewable Energy, Vol.
36, pp. 3530-3536, 2011.
15. Niu, X., Yu, J. and Wang, S., “Experimental Study on Low-Temperature
Waste Heat Thermoelectric Generator”, Journal of Power Sources, Vol.
188, pp. 621-626, 2009.
16. Rezania, A., Rosendahl, L.A., Andreasen, S.J., “Experimental
investigation of thermoelectric power generation versus coolant pumping
power in a microchannel heat sink”, International Communications in
Heat and Mass Transfer, Vol. 39, No. 8, pp. 1054–1058, 2012.
17. Gou, X., Xiao, H. and Yang, S., “Modeling, Experimental Study and
Optimization on Low-Temperature Waste Heat Thermoelectric
Generator System”, Applied Energy, Vol. 87, pp. 3131-3136, 2010.
18. Riffat, S.B. and Ma, X., “Thermoelectrics: A Review of Present and
Potential Applications”, Applied thermal engineering, Vol. 23, pp.
913-935, 2003.
19. Suzuki, R.O. and Tanaka, D., “Mathematical Simulation of
Thermoelectric Power Generation with the Multi-Panels”, Journal of
Power Sources, Vol. 122, pp. 201-209, 2003.
20. Khattab, N.M., El Shenawy E. T., “Optimal operation of thermoelectric
cooler driven by solar thermoelectric generator”, Energy Conversion and
Management, Vol. 47, No. 4, pp. 407–426, 2006.
21. Hsiao, Y.Y., Chang, W.C. and Chen, S.L., “A Mathematic Model of
Thermoelectric Module with Applications on Waste Heat Recovery from
Automobile Engine”, Energy, Vol. 35, pp. 1447-1454, 2010.
22. Thacher, E.F., Helenbrook, B.T., Karri, K.A., Richter, C.J., “Testing of
an automobile exhaust thermoelectric generator in a light truck”,
Proceedings of the Institution of Mechanical Engineers - Part D: Journal
of Automobile Engineering, Vol. 221, pp. 95-107, 2007.
23. Hsu, C.T., Huang, G.Y., Chu, H.S., Yu, B. and Yao, D.J., “Experiments
and Simulations on Low-Temperature Waste Heat Harvesting System by
Thermoelectric Power Generators”, Applied Energy, Vol. 88, pp.
1291-1297, 2011.
24. Qiu, K. and Hayden, A.C.S., “Development of a Thermoelectric
Self-Powered Residential Heating System”, Journal of Power Sources,
Vol. 180, pp. 884-889, 2008.
25. Antonova, E.E., Looman, D.C., “Finite elements for thermoelectric
device analysis in ANSYS”, Proceedings of the 24th International
Conference on Thermoelectrics, Clemson, SC, USA, 2005.
26. Cheng, C.H., Huang, S.Y., Cheng, T.C., “A three-dimensional theoretical
model for predicting transient thermal behavior of thermoelectric
coolers”, International Journal of Heat and Mass Transfer, Vol. 53, No.
9-10, pp. 2001–2011, 2010.
27. Chen, M., Rosendahl, L.A., Condra, T., “A three-dimensional numerical
model of thermoelectric generators in fluid power systems”,
International Journal of Heat and Mass Transfer, Vol. 54, No. 1-3, pp.
345–355, 2011.
28. Rezania, A., Rosendahl, L.A., “Thermal effect of a thermoelectric
generator on parallel microchannel heat sink”, Energy, Vol. 37, pp. 220–
227, 2012.
29. Martínez, A., Vián, J.G., Astrain, D., Rodríguez, A. and Berrio, I.,
“Optimization of the Heat Exchangers of a Thermoelectric Generation
System”, Journal of electronic materials, Vol. 39, pp. 1463-1468, 2010.
30. Astrain, D., Vian, JG, Martínez, A. and Rodríguez, A., “Study of the
Influence of Heat Exchangers' Thermal Resistances on a Thermoelectric
Generation System”, Energy, Vol. 35, pp. 602-610, 2010.
31. Lee, S., “Optimum Design and Selection of Heat Sinks”, Components,
Packaging, and Manufacturing Technology, Part A, IEEE Transactions
on, Vol. 18, pp. 812-817, 1995.
32. Wirtz, R.A., Chen, W. and Zhou, R., “Effect of Flow Bypass on the
Performance of Longitudinal Fin Heat Sinks”, Journal of Electronic
Packaging, Vol. 116, pp. 206, 1994.
33. Jousson, H. and Palm, B., “Thermal and Hydraulic Behavior of Plate Fin
and Strip Fin Heat Sinks under Varying Bypass Conditions”,
Components and Packaging Technologies, IEEE Transactions on, Vol.
23, pp. 47-54, 2000.
34. Jonsson, H. and Moshfegh, B., “Modeling of the Thermal and Hydraulic
Performance of Plate Fin, Strip Fin, and Pin Fin Heat Sinks-Influence of Flow Bypass”, Components and Packaging Technologies, IEEE
Transactions on, Vol. 24, pp. 142-149, 2001.
35. Hossain, R., Culham, J.R. and Yovanovich, M.M., “Influence of Bypass
on Flow through Plate Fin Heat Sinks”, Semiconductor Thermal
Measurement and Management Symposium, 2007. SEMI-THERM 2007.
Twenty Third Annual IEEE, pp. 220-227, 2007.
36. Barrett, A.V. and Obinelo, I.F., “Characterization of Longitudinal Fin
Heat Sink Thermal Performance and Flow Bypass Effects through CFD
Methods”, Semiconductor Thermal Measurement and Management
Symposium, 1997. SEMI-THERM XIII., Thirteenth Annual IEEE, pp.
158-164, 1997.
37. Prstic, S., Iyengar, M. and Bar-Cohen, A., “Bypass Effect in High
Performance Heat Sinks”, Strojniski Vestnik, Vol. 47, pp. 441-448,
2001.
38. Huang, Y.C., ”Experimental and Numerical Thermal-Electrical Analysis
of Thermoelectric Module with Built-in Fin”, National Cheng Kung
University, Department of Mechanical Engineering, 2012.
39. Jang, J.Y., Tsai, Y.C. and Wu, C.W. "A study of 3-D numerical
simulation and comparison with experimental results on turbulent flow
of venting flue gas using thermoelectric generator modules and plate fin
heat sink," Energy, vol. 53, pp. 270-281, 2013.
40. Behnia, M., Copeland, D., Soodphakdee, D., “A Comparison of Heat
Sink Geometries for Laminar Forced Convection: Numerical Simulation
of Periodically Developed Flow”, Thermal and Thermomechanical
Phenomena in Electronic Systems, 1998. ITHERM '98. The Sixth
Intersociety Conference on, pp. 310-315, 1998.
41. Sahiti, N., Lemouedda, A., Stojkovic, D., Durst, F., Franz, E.,
“Performance comparison of pin fin in-duct flow arrays with various pin
cross-sections”, Applied Thermal Engineering, vol. 26, pp. 1176-1192,
2006.
42. Jang, J. Y. and Yang, J. Y., “Experimental and numerical analysis of the
thermal-hydraulic characteristics of elliptic finned-tube heat exchangers”,
Heat Transfer Engineering, Vol.19, No. 4, PP. 55-67, 1998.
43. Launder, B.E. and Spalding, D.B. “The Numerical Computation of
Turbulent Flows”, Computer methods in applied mechanics and
engineering, Vol. 3, pp. 269-289, 1974.
44. Chen, Y.S., Kim, S.W., “Computation of turbulent flows using an
extended turbulence closure model”, NASA CR-179204. 1987
κ − e
45. Wang, T. S., Chen, Y. S., “Unified Navier-Stokes Flow Field and
Performance Analysis of Liquid Rocket Engines”, Journal of Propulsion
and Power, Vol. 9, No. 5, pp. 678-685, 1993.
46. Modest, M.F., Editor, “Radiative heat transfer”, 2nd ed., McGraw-Hill
New York, USA, 2003.
47. Fiveland, W., “Discrete-ordinates solutions of the radiative transport
equation for rectangular enclosures”, Journal of Heat Transfer, Vol. 106,
No. 4, pp. 699–706, 1984.
48. Incoropera, F.P., DeWitt, D.P., Editor, “Fundamentals of heat and mass
transfer”, 5th ed., John Wiley & Sons, Hoboken, USA, 2002.
49. Hottel, H.C., Chap 4. “Radiant heat transmission”, Edited McAdams,
W.H., “Heat transmission”, 3rd ed., McGraw-Hill, New York, USA,
1954.
50. CFD-ACE(U), CFD Research Corporation, Albama, USA, 2004.
51. STAR-CD, Methodology, Version 3.15, Japan, 2001
52. ANSYS Fluent, A Release 12.0, Documentation for ANSYS Workbench,
ANSYS Ltd., 2009
53. Van Doormaal, J.P. and Raithby, F.D., “Enhancements of the SIMPLE
Method predicting Incompressible fluid flows”, Numerical Heat Transfer,
Vol. 7, pp. 147-163, 1984.
54. Patankar, S.V., “Numerical Heat Transfer and Fluid Flow”, Hemisphere
Publishing Corporation, 1984.
55. Jian, C.H., ”The Analysis and Design of Thermoelectric Generator
Module used in Waste Heat Recovery System”, National Cheng Kung
University, Department of Mechanical Engineering, 2013.
56. Jonsson, H, Moshfegh, B., “Enhancement of the cooling performance of
circular pin fin heat sinks under flow bypass conditions”, Thermal and
Thermomechanical Phenomena in Electronic Systems, 2002. ITHERM
2002. The Eighth Intersociety Conference on, pp. 425-432, 2002.
57. Sparrow E.M., Ramsey J.W., Altemani C.A.C., “Experiments on
In-line Pin Fin Arrays and Performance Comparisons with Staggered
Arrays”, Journal of Heat Transfer, Vol. 102, No. 1, pp. 44-50, 1980.
58. Li, Q.L., Chen, Z., “Heat transfer and pressure drop characteristics in
rectangular channels with elliptic pin fins“, International Journal of Heat
and Fluid Flow, Vol. 19, Issue 3, pp. 245-250, 1998.
59. Chapman, C.L., Lee, S., Schmidt, B.L., “Thermal performance of an
elliptical pin fin heat sink”, Semiconductor Thermal Measurement and
Management Symposium, 1994. SEMI-THERM X., Proceedings of
1994 IEEE/CPMT 10th, pp. 24-31, 1994.
60. Soodphakdee, D., Behnia, M., Copeland, D., “A comparison of fin
geometries for heatsinks in laminar forced convection: Part I - Round,
elliptical, and plate fins in staggered and in-line configurations”, The
International journal of microcircuits and electronic packaging, Vol. 24,
No. 1, pp. 68-76, 2001.
61. Irvine, T.F., Liley, P.E., Editor, “Steam and gas Tables with Computer
Equations”, 1st ed., Academic Press, Orlando, USA, 1984.