簡易檢索 / 詳目顯示

研究生: 曾嘉裕
Tseng, Chia-Yu
論文名稱: 嵌入式針狀鰭片熱電模組之熱電性能測試及分析
Experimental and Numerical Analysis of Built-in Thermoelectric Generator Modules with Pin Fin Heat Sink
指導教授: 張錦裕
Jang, Jiin-Yuh
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 125
中文關鍵詞: 數值模擬熱電發電針狀鰭片
外文關鍵詞: Numerical simulation, Thermoelectric generator, Pin fin
相關次數: 點閱:77下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究建立嵌入式熱電發電模組與廢氣煙道之三維物理模型,並透過數值模擬分析煙道內之流場以及熱電模組之溫度場與電場之分布。煙道內工作流體為400K~700K之氣體,因此煙道內之流場必須同時考慮對流熱傳與輻射熱傳。嵌入式熱電模組在煙道內藉由嵌入式鰭片增加熱傳面積達到熱傳增強效果,但相對伴隨著鰭片所產生之泵功。為驗證數值模擬之準確性,本研究利用自行架設之小型風洞實驗系統,量測圓形針狀鰭片與橢圓形針狀鰭片在不同鰭片排列型式及操作條件下,熱電模組之性能曲線:V-I(voltage-current)與P-I(power-current)曲線,將實驗結果與數值模擬進行比對後,發現其最大誤差約為11%。
    本研究採用圓形針狀鰭片(circular pin fin)與橢圓形針狀鰭片(elliptical pin fin)作為熱電模組之熱擷取裝置,探討不同的鰭片排列型式(水平排列, in-lined arrangement、交錯排列, staggered arrangement),以及鰭片幾何尺寸( 鰭片高度 0mm < Hfin < 150mm、鰭片橫向間距(Xt) )於不同操作條件下(進口風速Vin = 1、3、5 m/s;廢氣溫度Tgas = 450、550、650K)模組之發電性能。研究中分析熱電模組之理想發電密度(Pideal/A)與鰭片所造成的泵功密度(Ppump power/A),再藉由兩者相減而得的淨發電密度(Pnet/A)作為比較嵌入式鰭片熱電模組性能優劣之依據。在鰭片熱傳面積相近的條件下,操作條件為廢氣溫度550K時,本研究發現交錯式橢圓形針狀鰭片熱電模組相較於交錯式圓形針狀鰭片與平板式鰭片熱電模組,其淨發電密度分別可提升約17.9% 與35.8%。

    A 3D numerical model of thermoelectric generator (TEG) modules are attached to a large chimney plate is proposed and solved numerically using a control volume based finite difference formulation. The thermoelectric module consists of a thermoelectric generator, an elliptical pin fin heat sink, a cold plate based on water cooling. In the chimney the temperature of flue gases would be 450-650K. Therefore, both the effects of convection and radiation heat transfer should be considered. Although the TEG hot side temperature and thus the electric power output can be increased through inserting elliptical pin-fin heat sink into the chimney tunnel to increase the heat transfer area, the pin fin heat sink would cause extra pumping power at the same time. On the whole, the main purpose of this study is to analyze the effects of the geometrical parameters on both the electric power output and the chimney pressure drop characteristics. In addition, the effects of different operating conditions, including different inlet velocities (Vin = 1、3、5 m/s) and different inlet temperatures (Tgas = 450、550、650K) are also discussed in detail. The predicted numerical data for the power vs. current (P-I) curve are in good agreement (within 11%) with the experimental data.

    目 錄 摘 要 ...... I Abstract..... II 誌 謝 ..... VII 目 錄 ..... IX 表 目 錄 ..... XI 圖 目 錄 ..... XII 符號說明 .....XVII 第一章 緒論 ..... 1 1.1 前言 ..... 1 1.2 文獻回顧 ..... 2 1.3 研究目的 ..... 11 第二章 理論分析 ..... 13 2.1 物理模型 ..... 14 2.2 統御方程式 ..... 14 2.3 邊界條件 ..... 21 2.4 工作流體之熱物理性質 ... 23 第三章 數值分析 ..... 35 3.1 數值方法 ..... 36 3.2 解題流程 ..... 44 3.3 收斂條件 ..... 44 3.4 網格測試 ..... 44 第四章 實驗設備與方法 ... 49 小型風洞之熱電發電系統 .... 49 實驗設備 ..... 49 實驗步驟 ..... 51 第五章 結果與討論 ..... 60 5.1 完整熱電晶片與簡化熱電晶片之比較 ... 60 5.2 實驗數據與數值模擬之比對 ... 60 5.3 嵌入式針狀鰭片熱電模組之性能分析 ... 61 5.4 圓形與橢圓形針狀鰭片熱電模組之性能比較 ... 65 5.5 嵌入式橢圓形針狀鰭片之高度(Hfin)分析 .. 67 5.6 嵌入式橢圓形針狀鰭片橫向間距(Xt)之分析 .. 68 第六章 結論 ..... 112 參考文獻 ..... 114 附 錄 ..... 120

    參考文獻
    1. Seebeck, T.J.,“Magnetische polarisation der metalle und erzedurch
    temperatur-differenz. abhand deut”, Akad. Wiss. Berlin, pp. 265-373,
    1822.
    2. Peltier, J.C., “Nouvelles experiences sur la caloriecete des courans
    electriques”, Ann. Chem., LVI, pp. 371-387, 1834.
    3. Thomson, W., “On a mechanical theory of thermoelectric currents”, Proc.
    Roy. Soc. Edinburgh, pp. 91-98, 1851.
    4. Altenkirch, E., “ber Den Nutzeffekt Der Thermosäule”, Physikalische
    Zeitschrift, Vol. 10, pp. 560-580, 1909.
    5. Altenkirch, E., “Elektrothermische Kälteerzeugung Und Reversible
    Elektrische Heizung”, Physikalische Zeitschrift, Vol. 12, pp. 920-924,
    1911.
    6. Ioffe, A.F., “Semiconductor thermoelements and thermoelectric cooling”,
    Infosearch Limited, London, 1957.
    7. Bejan, A., Editor, Advanced engineering thermodynamics, 3rd ed., John
    Wiley & Sons, Hoboken, USA, 2006.
    8. Angrist, S.W., Editor, Direct energy conversion, 4th ed., Allyn and
    Bacon, Boston, USA, 1992.
    9. Min, G., Rowe, D.M., “Optimization of thermoelectric module geometry
    for ‘waste heat’ electric power generation”. Journal of Power Sources,
    Vol. 38, No. 3, pp. 253–259, 1992.
    10. Min, G., Rowe, D.M., “Evaluation of thermoelectric modules for power
    generation”, Journal of Power Sources, Vol. 73, No. 2, pp. 193–198,
    1998.
    11. Chen, J., Yan, Z., Wu, L., “The influence of thomson effect on the
    maximum power output and maximum efficiency of a thermoelectric
    generator”, Journal of Applied Physics, Vol. 79, No. 11, pp. 8823–8828,
    1996.
    12. Crane, D.T. and Jackson, G.S., “Optimization of Cross Flow Heat
    Exchangers for Thermoelectric Waste Heat Recovery”, Energy
    conversion and management, Vol. 45, pp. 1565-1582, 2004.
    13. Yu, J. and Zhao, H., “A Numerical Model for Thermoelectric Generator
    with the Parallel-Plate Heat Exchanger”, Journal of Power Sources, Vol.
    172, pp. 428-434, 2007.
    14. Dai, D., Zhou, Y. and Liu, J., “Liquid Metal Based Thermoelectric
    Generation System for Waste Heat Recovery”, Renewable Energy, Vol.
    36, pp. 3530-3536, 2011.
    15. Niu, X., Yu, J. and Wang, S., “Experimental Study on Low-Temperature
    Waste Heat Thermoelectric Generator”, Journal of Power Sources, Vol.
    188, pp. 621-626, 2009.
    16. Rezania, A., Rosendahl, L.A., Andreasen, S.J., “Experimental
    investigation of thermoelectric power generation versus coolant pumping
    power in a microchannel heat sink”, International Communications in
    Heat and Mass Transfer, Vol. 39, No. 8, pp. 1054–1058, 2012.
    17. Gou, X., Xiao, H. and Yang, S., “Modeling, Experimental Study and
    Optimization on Low-Temperature Waste Heat Thermoelectric
    Generator System”, Applied Energy, Vol. 87, pp. 3131-3136, 2010.
    18. Riffat, S.B. and Ma, X., “Thermoelectrics: A Review of Present and
    Potential Applications”, Applied thermal engineering, Vol. 23, pp.
    913-935, 2003.
    19. Suzuki, R.O. and Tanaka, D., “Mathematical Simulation of
    Thermoelectric Power Generation with the Multi-Panels”, Journal of
    Power Sources, Vol. 122, pp. 201-209, 2003.
    20. Khattab, N.M., El Shenawy E. T., “Optimal operation of thermoelectric
    cooler driven by solar thermoelectric generator”, Energy Conversion and
    Management, Vol. 47, No. 4, pp. 407–426, 2006.
    21. Hsiao, Y.Y., Chang, W.C. and Chen, S.L., “A Mathematic Model of
    Thermoelectric Module with Applications on Waste Heat Recovery from
    Automobile Engine”, Energy, Vol. 35, pp. 1447-1454, 2010.
    22. Thacher, E.F., Helenbrook, B.T., Karri, K.A., Richter, C.J., “Testing of
    an automobile exhaust thermoelectric generator in a light truck”,
    Proceedings of the Institution of Mechanical Engineers - Part D: Journal
    of Automobile Engineering, Vol. 221, pp. 95-107, 2007.
    23. Hsu, C.T., Huang, G.Y., Chu, H.S., Yu, B. and Yao, D.J., “Experiments
    and Simulations on Low-Temperature Waste Heat Harvesting System by
    Thermoelectric Power Generators”, Applied Energy, Vol. 88, pp.
    1291-1297, 2011.
    24. Qiu, K. and Hayden, A.C.S., “Development of a Thermoelectric
    Self-Powered Residential Heating System”, Journal of Power Sources,
    Vol. 180, pp. 884-889, 2008.
    25. Antonova, E.E., Looman, D.C., “Finite elements for thermoelectric
    device analysis in ANSYS”, Proceedings of the 24th International
    Conference on Thermoelectrics, Clemson, SC, USA, 2005.
    26. Cheng, C.H., Huang, S.Y., Cheng, T.C., “A three-dimensional theoretical
    model for predicting transient thermal behavior of thermoelectric
    coolers”, International Journal of Heat and Mass Transfer, Vol. 53, No.
    9-10, pp. 2001–2011, 2010.
    27. Chen, M., Rosendahl, L.A., Condra, T., “A three-dimensional numerical
    model of thermoelectric generators in fluid power systems”,
    International Journal of Heat and Mass Transfer, Vol. 54, No. 1-3, pp.
    345–355, 2011.
    28. Rezania, A., Rosendahl, L.A., “Thermal effect of a thermoelectric
    generator on parallel microchannel heat sink”, Energy, Vol. 37, pp. 220–
    227, 2012.
    29. Martínez, A., Vián, J.G., Astrain, D., Rodríguez, A. and Berrio, I.,
    “Optimization of the Heat Exchangers of a Thermoelectric Generation
    System”, Journal of electronic materials, Vol. 39, pp. 1463-1468, 2010.
    30. Astrain, D., Vian, JG, Martínez, A. and Rodríguez, A., “Study of the
    Influence of Heat Exchangers' Thermal Resistances on a Thermoelectric
    Generation System”, Energy, Vol. 35, pp. 602-610, 2010.
    31. Lee, S., “Optimum Design and Selection of Heat Sinks”, Components,
    Packaging, and Manufacturing Technology, Part A, IEEE Transactions
    on, Vol. 18, pp. 812-817, 1995.
    32. Wirtz, R.A., Chen, W. and Zhou, R., “Effect of Flow Bypass on the
    Performance of Longitudinal Fin Heat Sinks”, Journal of Electronic
    Packaging, Vol. 116, pp. 206, 1994.
    33. Jousson, H. and Palm, B., “Thermal and Hydraulic Behavior of Plate Fin
    and Strip Fin Heat Sinks under Varying Bypass Conditions”,
    Components and Packaging Technologies, IEEE Transactions on, Vol.
    23, pp. 47-54, 2000.
    34. Jonsson, H. and Moshfegh, B., “Modeling of the Thermal and Hydraulic
    Performance of Plate Fin, Strip Fin, and Pin Fin Heat Sinks-Influence of Flow Bypass”, Components and Packaging Technologies, IEEE
    Transactions on, Vol. 24, pp. 142-149, 2001.
    35. Hossain, R., Culham, J.R. and Yovanovich, M.M., “Influence of Bypass
    on Flow through Plate Fin Heat Sinks”, Semiconductor Thermal
    Measurement and Management Symposium, 2007. SEMI-THERM 2007.
    Twenty Third Annual IEEE, pp. 220-227, 2007.
    36. Barrett, A.V. and Obinelo, I.F., “Characterization of Longitudinal Fin
    Heat Sink Thermal Performance and Flow Bypass Effects through CFD
    Methods”, Semiconductor Thermal Measurement and Management
    Symposium, 1997. SEMI-THERM XIII., Thirteenth Annual IEEE, pp.
    158-164, 1997.
    37. Prstic, S., Iyengar, M. and Bar-Cohen, A., “Bypass Effect in High
    Performance Heat Sinks”, Strojniski Vestnik, Vol. 47, pp. 441-448,
    2001.
    38. Huang, Y.C., ”Experimental and Numerical Thermal-Electrical Analysis
    of Thermoelectric Module with Built-in Fin”, National Cheng Kung
    University, Department of Mechanical Engineering, 2012.
    39. Jang, J.Y., Tsai, Y.C. and Wu, C.W. "A study of 3-D numerical
    simulation and comparison with experimental results on turbulent flow
    of venting flue gas using thermoelectric generator modules and plate fin
    heat sink," Energy, vol. 53, pp. 270-281, 2013.
    40. Behnia, M., Copeland, D., Soodphakdee, D., “A Comparison of Heat
    Sink Geometries for Laminar Forced Convection: Numerical Simulation
    of Periodically Developed Flow”, Thermal and Thermomechanical
    Phenomena in Electronic Systems, 1998. ITHERM '98. The Sixth
    Intersociety Conference on, pp. 310-315, 1998.
    41. Sahiti, N., Lemouedda, A., Stojkovic, D., Durst, F., Franz, E.,
    “Performance comparison of pin fin in-duct flow arrays with various pin
    cross-sections”, Applied Thermal Engineering, vol. 26, pp. 1176-1192,
    2006.
    42. Jang, J. Y. and Yang, J. Y., “Experimental and numerical analysis of the
    thermal-hydraulic characteristics of elliptic finned-tube heat exchangers”,
    Heat Transfer Engineering, Vol.19, No. 4, PP. 55-67, 1998.
    43. Launder, B.E. and Spalding, D.B. “The Numerical Computation of
    Turbulent Flows”, Computer methods in applied mechanics and
    engineering, Vol. 3, pp. 269-289, 1974.
    44. Chen, Y.S., Kim, S.W., “Computation of turbulent flows using an
    extended turbulence closure model”, NASA CR-179204. 1987
    κ − e
    45. Wang, T. S., Chen, Y. S., “Unified Navier-Stokes Flow Field and
    Performance Analysis of Liquid Rocket Engines”, Journal of Propulsion
    and Power, Vol. 9, No. 5, pp. 678-685, 1993.
    46. Modest, M.F., Editor, “Radiative heat transfer”, 2nd ed., McGraw-Hill
    New York, USA, 2003.
    47. Fiveland, W., “Discrete-ordinates solutions of the radiative transport
    equation for rectangular enclosures”, Journal of Heat Transfer, Vol. 106,
    No. 4, pp. 699–706, 1984.
    48. Incoropera, F.P., DeWitt, D.P., Editor, “Fundamentals of heat and mass
    transfer”, 5th ed., John Wiley & Sons, Hoboken, USA, 2002.
    49. Hottel, H.C., Chap 4. “Radiant heat transmission”, Edited McAdams,
    W.H., “Heat transmission”, 3rd ed., McGraw-Hill, New York, USA,
    1954.
    50. CFD-ACE(U), CFD Research Corporation, Albama, USA, 2004.
    51. STAR-CD, Methodology, Version 3.15, Japan, 2001
    52. ANSYS Fluent, A Release 12.0, Documentation for ANSYS Workbench,
    ANSYS Ltd., 2009
    53. Van Doormaal, J.P. and Raithby, F.D., “Enhancements of the SIMPLE
    Method predicting Incompressible fluid flows”, Numerical Heat Transfer,
    Vol. 7, pp. 147-163, 1984.
    54. Patankar, S.V., “Numerical Heat Transfer and Fluid Flow”, Hemisphere
    Publishing Corporation, 1984.
    55. Jian, C.H., ”The Analysis and Design of Thermoelectric Generator
    Module used in Waste Heat Recovery System”, National Cheng Kung
    University, Department of Mechanical Engineering, 2013.
    56. Jonsson, H, Moshfegh, B., “Enhancement of the cooling performance of
    circular pin fin heat sinks under flow bypass conditions”, Thermal and
    Thermomechanical Phenomena in Electronic Systems, 2002. ITHERM
    2002. The Eighth Intersociety Conference on, pp. 425-432, 2002.
    57. Sparrow E.M., Ramsey J.W., Altemani C.A.C., “Experiments on
    In-line Pin Fin Arrays and Performance Comparisons with Staggered
    Arrays”, Journal of Heat Transfer, Vol. 102, No. 1, pp. 44-50, 1980.
    58. Li, Q.L., Chen, Z., “Heat transfer and pressure drop characteristics in
    rectangular channels with elliptic pin fins“, International Journal of Heat
    and Fluid Flow, Vol. 19, Issue 3, pp. 245-250, 1998.
    59. Chapman, C.L., Lee, S., Schmidt, B.L., “Thermal performance of an
    elliptical pin fin heat sink”, Semiconductor Thermal Measurement and
    Management Symposium, 1994. SEMI-THERM X., Proceedings of
    1994 IEEE/CPMT 10th, pp. 24-31, 1994.
    60. Soodphakdee, D., Behnia, M., Copeland, D., “A comparison of fin
    geometries for heatsinks in laminar forced convection: Part I - Round,
    elliptical, and plate fins in staggered and in-line configurations”, The
    International journal of microcircuits and electronic packaging, Vol. 24,
    No. 1, pp. 68-76, 2001.
    61. Irvine, T.F., Liley, P.E., Editor, “Steam and gas Tables with Computer
    Equations”, 1st ed., Academic Press, Orlando, USA, 1984.

    下載圖示 校內:2020-02-24公開
    校外:2020-02-24公開
    QR CODE