| 研究生: |
林政霖 Lin, Zheng-Lin |
|---|---|
| 論文名稱: |
不同幾何形狀的散熱片陣列中流動與熱傳的數值模擬 Numerical Study of Flow and Heat Transfer in Heat Sink Arrays with Varied Fin Geometries |
| 指導教授: |
李崇綱
Li, Chung-Gang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 強制對流 、熱傳增強 、多樣化鰭片 、紐塞數 |
| 外文關鍵詞: | Forced Convection, Heat Transfer Enhancement, Varied Fin Geometries, Nusselt Number |
| 相關次數: | 點閱:57 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
[1]Yu, X., Feng, J., Feng, Q., and Wang, Q. (2005). Development of a plate-pin fin heat sink and its performance comparisons with a plate fin heat sink. Appl. Therm. Eng. 25 (2–3), 173–182.
[2]Khattak, Z., and Ali, H. M. (2019). Air cooled heat sink geometries subjected to forced flow: A critical review. Int. J. Heat. Mass Transf. 130, 141–161.
[3]Tuckerman, D. B., & Pease, R. F. W. (1981). High-performance heat sinking for VLSI. IEEE Electron Device Letters, 2(5), 126–129.
[4]Kays, W. M., and London, A. L. (1984). Compact Heat Exchangers. 3rd ed. McGraw-Hill, New York.
[5]Yadav, R. K., Basak, R., and Pandey, K. M. (2017). Review on heat transfer from fins. IOP Conf. Ser. Mater. Sci. Eng. 225 (1), 012145.
[6]Hu, X., Wan, H., and Patnaik, S. S. (2015). Numerical modeling of heat transfer in open-cell micro-foam with phase change material. Int. J. Heat. Mass Transf. 88, 617–626.
[7]Mokhtari, M., Barzegar Gerdroodbary, M., Yeganeh, R., and Fallah, K. (2017). Nu-merical study of mixed convection heat transfer of various fin arrangements in a hor-izontal channel. Eng. Sci. Technol. Int. J. 20 (3), 1106–1114.
[8]Yan, W. M., & Sheen, P. J. (2000). Heat transfer and friction characteristics of fin-and-tube heat exchangers with wavy fin geometry. International Journal of Heat and Mass Transfer, 43(6), 1121–1132.
[9]Lin, C. X., et al. "Wave fins for heat transfer enhancement." Applied Thermal Engi-neering 102 (2016): 152-161.
[10]Awad, M. M., et al. "Heat transfer enhancement in wave fins." Experimental Thermal and Fluid Science 83 (2017): 31-39.
[11]Bejan, A., et al. "Constructal theory of design in engineering and nature." Journal of Heat Transfer 123.4 (2001): 657-666.
[12]A. Bejan, E. Sciubba, The optimal spacing of parallel plates cooled by forced con-vection, Int. J. Heat Mass Transfer 35 (1992) 3259e3264.
[13]Tseng, H.-W. (2010). Evaluation of thermal performance of extruded aluminum fins applied to industrial computer enclosures. M.S. Thesis, National Taipei University of Technology.
[14]W. Fu, C. Li, W. Lin, and Y. Chen, "Roe scheme with preconditioning method for large eddy simulation of compressible turbulent channel flow," International Journal for Numerical Methods in Fluids, vol. 61, no. 8, pp. 888–910, 2009.
[15]W.-S. Fu, C.-G. Li, C.-P. Huang, and J.-C. Huang, "An investigation of high temperature difference natural convection in a finite length channel without Boussinesq assumption," International Journal of Heat and Mass Transfer, vol. 52, no. 11–12, pp. 2571–2580, 2009.
[16]C.-G. Li, M. Tsubokura, and K. Onishi, "Feasibility investigation of compressible direct numerical simulation with a preconditioning method at extremely low Mach numbers," International Journal of Computational Fluid Dynamics, vol. 28, no. 6–10, pp. 411–419, 2014.
[17]JD Anderson, Hypersonic and high temperature gas dynamics. 1989.
[18]K. Nakahashi and L. Kim, “Building-Cube Method for Large-Scale, High Resolu-tion Flow Computations,” in 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004.
[19]K. Komatsu et al., “Parallel processing of the Building-Cube Method on a GPU plat-form,” Comput Fluids, vol. 45, no. 1, pp. 122–128, 2011.
[20]Li, Chung-Gang, et al. "A sharp interface immersed boundary method for thin-walled geometries in viscous compressible flows." International Journal of Mechan-ical Sciences 253 (2023): 108401.
[21]Li, Chung-Gang, Makoto Tsubokura, and Rahul Bale. "Framework for simulation of natural convection in practical applications." International Communications in Heat and Mass Transfer 75 (2016): 52-58.
[22]P. L. Roe, “Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes,” J. Comput Phys, vol. 135, no. 2, pp. 250–258, 1997.
[23]J. M. Weiss, and W. A. Smith, “Preconditioning applied to variable and constant den-sity flows,” AIAA Journal, vol. 33, no. 11, pp. 2050–2057, 1995.
[24]C. G. Li, “A compressible solver for the laminar–turbulent transition in natural con-vec-tion with high temperature differences using implicit large eddy simulation,” In-terna-tional Communications in Heat and Mass Transfer, vol. 117, p. 104721, 2020.
[25]B. Ren, C. G. Li, and M. Tsubokura, “Direct numerical simulation of vertically heated natural convection over 3D irregular roughness,” J. Comput. Fluids, vol. 257, p. 105866, 2023.
[26]B. Ren, C. G. Li, and M. Tsubokura, “The effects of irregular roughness with different surface power spectrums on the heat transfer of natural convection in enclosures,” In-ternational Communications in Heat and Mass Transfer, vol. 141, p. 106581, 2023.
[27]J. M. Weiss and W. A. Smith, “Preconditioning applied to variable and constant den-sity flows,” AIAA Journal, vol. 33, no. 11, pp. 2050–2057, 1995.
[28]Webb, R. L., & Kim, N.-H. (2005). Principles of Enhanced Heat Transfer (2nd ed.). Taylor & Francis.
校內:2028-02-10公開