| 研究生: |
陳志泓 Chen, Chin-Hung |
|---|---|
| 論文名稱: |
冷媒R-134a螺旋式雙段壓縮冰水機之性能分析 Performance Analysis For A Two-Stage Screw Compression System Using R-134a Refrigerant |
| 指導教授: |
邱政勳
Chiou, Jenq-Shing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系碩士在職專班 Department of Mechanical Engineering (on the job class) |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 臭氧層保護 、雙段壓縮 、具閃氣分離節流裝置 |
| 外文關鍵詞: | two-stage compression, throttling device with flash gas removal, Ozone layer protection |
| 相關次數: | 點閱:98 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為因應國內外對臭氧層保護及重視永續能源策略之趨勢,冷凍系統在設計上採用環保冷媒並儘可能的提高空調機組之性能已然勢在必行。在各種被接受的HFC新冷媒中,冷媒R-134a屬純冷媒且工作壓力較低(與R-22系統相比較)因而被廣為接受應用,目前各設備廠家大型空調機組(包含離心式與螺旋式)的開發設計大都是以R-134a冷媒機種為主要對象。
透過理想冷凍循環分析得知,R-134a冷媒系統採用雙段壓縮設計時之能源效率較單段壓縮約高10~15%左右。因此吾人可利用兩段壓縮技術進行系統之性能改善,不過在單機兩段壓縮系統中,中壓段冷媒閃氣分離狀態、節流系統設計之優劣及冷媒質量流率的控制都明顯地影響整個系統性能及效率。本論文建立雙段壓縮系統之模擬程式,並
進行實機測試,利用實驗量測數據來驗證系統模擬程式之可靠度,再利用已驗證之程式作系統計算,來預測系統經改造後之結果。
經本研究所實際開發以R-134a為冷媒的兩段壓縮螺旋主機之系統,機構簡單,製造成本低廉,而性能則較同條件單段壓縮約可提高6%,達到了兼顧經濟環保與耗能節省的雙重目的。
In order to comply with ozone-lager protection policy and the concern of energy sustaiuability, a new refrigeration system is usually designed to use HFC (hydrofloro carbon) refrigerant and posses a high energy efficiency rate (EER). Among a few HFC refrigerants, R-134a has a relatively low working pressure range (compare to the system using R-22) and has thus been accepted as the refrigerant for many large chillers (including centrifugal chillers and screw chillers).
From the thermodynamic cycle analysis for the refrigeration system using R-134a, a two-stage compression process may consume 10~15% less energy then that used by a single-stage compression under the same pressure range. An exiting screw type chiller is actually converted from the two-stage compression by adding a pressure reducing orifice and a flash tank. Since the flow rate and the intermediate pressure are closely related to the detailed designs of both orifice and flsh tank. Therefor a computer code is also developed and validated in this study to assist in the design and analysis processes.
The conversion from a single-stage compression to a two-stage compression was sucessfully completed at minimum alternation and relatively low cost, and about 6% improvement in performance was realized. From the environmental protection and energy conservation point of views, this conversion project is simple and meaningful.
[1] McMullan J.T.,”Refrigeration and the environment – issues and strategies for the future”, International Journal of Refrigeration, Vol. 25, PP.89-99, 2002.
[2] Steve Remington, “ Choosing the right refrigerant”, Plant Engineering Magazine, 7/1999
[3] http://www.moeaboe.gov.tw/16/ECW_16.asp
[4] Stoecker W.F. /Jerold W. jones,” Refrigeration & air
condition “, McGRAW-HILL book company, PP.311~319, 2nd , 1982.
[5] Yasuda H., Touber, S. and Machielsen, C.H.M., “Simulation model of a vapor compression refrigeration system.”, ASHRAE Transaction, Vol.89, Part2A, PP.408-425 , 1983.
[6] Chen Z.J. and Lin W.H., “Dynamic simulation andoptimal matching of a small-scale refrigeration system”, Int. J Refrig., Vol. 14, PP.329-335 , 1991.
[7] Farzad M. and O’Neal , D.L., ”System performance characteristics of an air conditioner over a range of charging conditions”, Int. J Refrig., Vol.14, PP.321-328, 1991.
[8] Slaim, M. A., Sadasivam, M. and Balakrishnan, A. R., “Transient analysis of heat pump assisted distillation systems-1 The heat pump.”, Int. J. Energy Research, Vol. 15, PP.123-135, 1991.
[9] Ng KC, Bong TY, Chua HT. “Performance evaluation of centrifugal chillers in an air-conditioning plant with the building automation system (BAS).” Proc Inst Mech Engrs, Vol.209, PP.249-55, 1994
[10] Bourdouxhe JP, Grodent M, Lebrun J. “HVAC1KIT - A Toolkit for Primary HVAC System Energy Calculation.” Laboratoire de Thermodynamique, Universite de Liege, 1996.
[11] Bansal P.K., Purkayastha B. “An NTU-ε Model for alternative refrigerants.” International Journal of Refrigeration, Vol.21(5), PP.381-97, 1998.
[12] Browme M.W., Bansal P.K., “An elemental NTU-ε Model for vapour-compression liquid chillers.”, International Journal of Refrigeration, Vol.24, PP.612-627, 2001.
[13] Long Fu, Guoliang Ding, Zujian Su, Guoquan Zhao, “Steady-state simulation of screw liquid chillers”, Applied Thermal Engineering , Vol.22 , PP.1731-1748, 2002.
[14] Li W.L., Zhou R.Q., Zhao C.R., in: Rotary Refrigeration Compressor, Mechanical Industry Press, Beijing, PP. 67, 1992.
[15] Gnielinsk, V. , New equation for heat and mass transfer in turbulent pipe and channel flow , Int. Chem. Eng, Vol.16, PP.359-368, 1976.
[16] Petukhov B.S., Heat transfer and friction in turbulent pipe flow with variable physical properties, In Advance in Heat Transfer, J.P. Hartnett and T.V. Irvine (Eds.), Vol. 6, PP.504-564, 1970.
[17] Mills A.F. Heat Transfer, R ichard D. Irwin Inc., 1992
[18] Thome J.R., Thermal Performance of flooded evaporators,Part1: Review of boiling heat transfer studies ,ASHRAE Transactions, Vol. 107, AT-01-16-1(RP-
1089), 2001.
[19] Chen J.C. Correlation for boiling heat transfer to saturated fluids in convective flow. Industrial Engineering and Chemical Process Design and Development, Vol. 5(3): PP.322-329, 1966.
[20] Webb RL. , Principles of Enhanced Heat Transfer , New York: John Wiley and Sons, 1994.
[21] Webb RL, Gupte NS. , A critical review of correlations for convective vaporisation in tubes and tube banks, Heat Transfer Engineering, Vol. 13(3) , PP.58-81, 1992.
[22] Beatty K.O., Katz D.L., Condensation of vapours on the outside of finned tube. Chemical Engineering Progress, Vol. 44(1), PP.55-70, 1948.
[23] Browne M.W., Bansal P.K., Heat transfer characteristics of boiling phenomenon in flooded refrigerant evaporators, Applied Thermal Engineering, Vol.19, PP.595–624 , 1999.
[24] ASHRAE Handbook–Fundamentals, chapter 2. Atlanta: American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. , 2001.
[25] Xiande Fang , Flow calculations for fixed-Area expansion devices , ASHRAE Transaction, Vol. 107, Part 1, 4425 , 2001.
[26] Chwalowski M, Didion DA, Domanski PA., ”Verification of evaporator computer models and analysis of performance of an evaporator coil” ASHRAE Transaction, Vol. 23(1),
PP.1229-36, 1989
[27] Ramesh K. shah, Dusan P. Sekulic., ”Fundamentals of heat exchanger desigen”, Wiley.com, PP.315-326, 2003.
[28] Mark O. McLinden, Ph.D., “The history of NIST’s
refrigerants program : 2.Thermophysical properties research“, ASHRAE Transaction, 2001
[29] Mark O. McLinden, Sanford A. Klein, Eric W. Lemmon, Adele P. Peskin, ”NIST Database 23: NIST Refprop 7.0”, NIST, U.S.A Department of Commerce, 7/2003
[30] 中國國家標準,CNS127575容積式冰水機組標準;1989.08