簡易檢索 / 詳目顯示

研究生: 洪雪榕
Hung, Hsueh-Jung
論文名稱: 高度壓縮影像去方塊效應演算法之比較研究
A Comparative Study on DeBlocking Algorithms for Highly Compressed Image
指導教授: 陳進興
Chen, Chin-Hsing
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 49
中文關鍵詞: 小波方塊效應
外文關鍵詞: blocking effect, wavelet
相關次數: 點閱:79下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來由於網路和多媒體的盛行,影像的需求量越趨盛大,為了便於傳輸和儲存,許多影像壓縮規格被發展出。目前最受歡迎的影像壓縮國際標準JPEG有兩種壓縮模式,一種是無失真,另一是失真。為了達到高壓縮率,我們通常使用失真模式來壓縮一般照片和多媒體。然而,壓縮率愈高愈會產生像馬賽克的方塊,這種失真被稱為方塊效應。本論文主要探討如何消除JPEG壓縮影像的方塊效應。
    消除方塊效應的方法有兩類:一類是以濾波消除雜訊的方式來消除方塊效應,另一類是在小波域進行消除方塊效應。Kuo方法是針對可見方塊進行濾波處理,Ramamurthi方法是把方塊進行分類再使用一維和二維的濾波器來處理,Shi方法是在小波域弱化水平與垂直的方塊邊緣。
    本論文結合以上三種方法的優點,設計出一消除方塊效應的演算法。我們先以Shi的一階小波分解法消除方塊邊界,接著我們使用一維的濾波器來對影像進行輕度模糊,再利用Kuo方法將可見方塊的邊界濾除,最後使用Ramamurthi方法對剩餘方塊進行分類濾波。融合以上三種方法的優點,我們有效的消除方塊效應並能同時保留真正邊緣。未來我們可以在影像的銳化上做進一步的改善。

    In recent years, the demand of images has been increasing because the Internet and multimedia prevails all over around. In order to transmit and store data, there are many compression standards. JPEG image compression standard is very popular nowadays which has two kinds of compression modes. One is lossless, the other is lossy. In order to get high compression rate, we often use the lossy mode to compress images and multimedia. However, the higher the compression rate, the more serious the blocks appear blocky. Degradation caused by this mosaic like artifact is called the blocking effect. We will focus on improving images with blocking effect after JPEG compression in this thesis.
    There are two classes of deblocking methods: one is removing blocking effect as noises by filtering the compressed image, the other is removing blocking effect in the wavelet transform domain. The Kuo’s method only deals with visible blocks by filtering and the Ramamurthi’s method filters pixels of different classes by one-dimensional and two-dimensional filters. The Shi’s method weakens edge features in the wavelet domain.
    We design a deblocking algorithm by combining the merits of the above three algorithms. At first we remove the block boundary by the one level Shi’s wavelet-based deblocking algorithm. Then we blur lightly the image by a lowpass filter in order to blur the block boundary. Then we filter the pixel at visible block boundaries but not inside blocks. Finally we filter pixels in the remaining blocks by the Ramamurthi’s method. By combining the merits of the three well known algorithms, we design an algorithm which eliminates the blocking edge and meanwhile maintains the edge information of images. In the future, we will focus on further improving the sharpness of the image.

    摘要 i Abstract iii 致謝 v Contents vi Figure Captions viii Table Captions xi Chapter 1 Introduction 1 1.1 Overview 1 1.2 Motive 1 1.3 Background 2 1.4 Organization chart 2 1.5 Summary 4 Chapter 2 Image compression by JPEG 5 2.1 Overview of JPEG 5 2.2 The algorithm of lossy JPEG 5 2.2.1 Color translation 6 2.2.2 Sampling of lossy JPEG 6 2.3 The basic line compression 8 2.4 Decoding for baseline JPEG 10 Chapter 3 Deblocking algorithms 12 3.1 The Kuo’s algorithm for block encoded images 12 3.2 The Ramamurthi’s algorithm for block coded images 16 3.3 Wavelet Transforms 20 3.3.1 CWT 20 3.3.2 DWT 21 3.4 The Shi’s algorithm for block encoded images 23 3.4.1 The wavelet coefficients thresholding 23 3.4.2 A wavelet-based deblocking algorithm 23 Chapter 4 The proposed deblocking algorithm 30 4.1 Comparison of the three deblocking algorithms 30 4.2 Designing a deblocking algorithm 31 4.2.1 Removing blocking artifacts by using the Shi’s method 32 4.2.2 Blurring the blocking effect image 35 4.2.3 Linear filtering for visible blocky boundary 37 4.2.4 Nonlinear space-variant postprocessing 39 4.3 Experiment results 41 Chapter 5 Conclusion and future work 46 References 47

    [1] A. Rosenfeld and A. C. Kak, Digital picture processing, New York: Academic, Vol. 1, 1982.
    [2] W. C. Alan and L. H. Yan, “Blocking artifacts reduction in JPEG compressed images using overcomplete wavelet representation,” Intelligent Multimedia, Video and Speech Processing, Pages: 129 – 132, May 2001.
    [3] A. J. Ahumada, Jr. and R. Horng, “Deblocking DCT compressed images,” SPIE, Vol. 2179, Pages: 109 – 116, May 1994.
    [4] A. S. Al-Fahoum and A. M. Reza, “Combined edge crispiness and statistical differencing for deblocking JPEG compressed images,” IEEE Transactions: Image Processing, Vol. 10, No. 9, Pages: 1288-1298, Sep. 2001.
    [5] A. Zakhor, “Iterative procedures for reduction of blocking effects in transform image coding,” IEEE Transactions Circuits Systems for Video Technology, Vol. 2, Pages: 91-95, Mar. 1992.
    [6] C. Avril and T. Nguyen-Trong, “Linear filtering for reducing blocking effects in orthogonal transform image coding,” Journal of Electronic Imaging, Vol. 1, No. 2, Pages:183-191, Apr. 1992.
    [7] D. L. Donoho, “De-noising by soft-thresholding,” Information Theory, IEEE Transactions, Vol. 41, No. 3, Pages: 613-627, May 1995.
    [8] F. Gao, X. Li and W. G. Wee, “A new wavelet based deblocking algorithm for compressed images,” IEEE Conference Record of the Thirty-Sixth Asilomar Conference: Signals, Systems and Computers, Vol. 2, Pages: 1745 – 1748, Nov. 2002.
    [9] G. Spampinato, A. Castorina, A. Bruna and A. Capra, “JPEG adaptive chromatic post-processing,” Image Analysis and Processing Workshops, ICIAPW 2007. 14th International Conference, Pages: 202-205, Sep. 2007.
    [10] H. Song, S. Yu, C. Wang, L. Song and H. Xiong, “A new deblocking algorithm based on adjusted contourlet transform,” Multimedia and Expo, IEEE International Conference: Multimedia and Expo, Pages: 449 – 452, Jul. 2006.
    [11] J. Lu, “Image deblocking via multiscale edge processing,” SPIE: Wavelet Applications in Signal and Image Processing, Vol. 2825, Pages: 742 – 751, Oct. 1996.
    [12] C. J. Kuo and R. J. Hsieh, “Adaptive postprocessor for block encoded images,” IEEE Transactions: Circuits and Systems for Video Technology, Vol. 5, No. 4, Pages: 298 – 304, Aug. 1995.
    [13] G. Lakhani, “DCT coefficient prediction for JPEG image coding,” Image Processing, IEEE International Conference, Vol. 4, Pages: IV-189 - IV–192, 2007.
    [14] M. Shi, “A new deblocking algorithm based on feature analysis in wavelet domain,” Proceeding of the Fourth International Conference on Machine Learning and Cybernetics, Guangzhou, Pages: 5210 - 5215, Aug. 2005.
    [15] M. Y. Shen and C. C. J. Kuo, ”Review of postprocessing techniques for compression artifact removal,” JOURNAL of Visual Communication and Image Representation, Vol. 9, No. 1, Pages: 2–14, Mar. 1998.
    [16] R. C. Gonzalez, R. E. Woods and S. L. Eddins, “Digital image using MATLAB Processing,” 2005.
    [17] R. C. Gonzalez, R. E. Woods and S. L. Eddins, “Digital image processing 2/e,” Aug. 2003.
    [18] B. Ramamurthi and A. Gersho, “Nonlinear space-variant postprocessing of block coded images,” IEEE Transactions on Signal Processing. Vol. 34, No. 5, Pages: 1258 – 1268, Oct. 1986.
    [19] S. Wu, H. Yan and Z. Tan, “An efficient wavelet-based deblocking algorithm for highly compressed images,” IEEE Transactions on Circuits and Systems: Vedio Technology, Vol. 11, No. 8, Pages: 1193 - 1198, Nov. 2001.
    [20] S. Mallat, “A wavelet tour of signal processing,” Academic Press, 1999.
    [21] T. C. Hung, D. P. K. Lun and W. C. Siu, “A deblocking technique for block-transform compressed image using wavelet transform modulus maxima,” IEEE Transactions On Image Processing, Vol. 7, Pages: 1488 - 1496, Oct. 1998.
    [22] W. B. Pennebaker and J. L. Mitchell, “JPEG still image data compression standard,” New York: Van Nostrand Reihold, 1992.
    [23] G. K. Wallace, “The JPEG still picture compression standard,” Consumer Electronics, IEEE Transactions, Vol. 38, No. 1, Pages: xviii – xxxiv, Feb. 1992.
    [24] W. Gao, C. Mermer and Y. Kim, “A de-blocking algorithm and a blockiness metric for highly compressed image,” IEEE Transactions On Circuits And Systems For Video Technology, Vol. 12, No. 12, Pages: 1150 - 1159, Dec. 2002.
    [25] Z. Xiong, M. T. Orchard and Y. Q. Zhang, “A deblocking algorithm for JPEG compressed images using overcomplete wavelet representations,” IEEE Circuits and Systems for Video Technology, Vol. 7, No. 2, Pages: 433-437, Apr. 1997.

    下載圖示 校內:2013-08-27公開
    校外:2018-08-27公開
    QR CODE