| 研究生: |
李嘉鑫 Li, Jia-Xin |
|---|---|
| 論文名稱: |
應變誘導之MoTe2可控1T'/2H相變工程於憶阻器元件之應用 Strain-Induced Tunable 1T'/2H Phase Engineering of Molybdenum Ditelluride toward Memristor Applications |
| 指導教授: |
陳雨澤
Chen, Yu-Ze |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 非揮發性記憶體 、MoTe2 、相控制 、應變 、憶阻器 、神經形態運算 |
| 外文關鍵詞: | non-volatile memory, MoTe2, phase engineering, strain, memristor, neuromorphic computing |
| 相關次數: | 點閱:24 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
MoTe2因其1T'/2H相變特性與優異的電學性質,在次世代非揮發性記憶體與神經形態運算元件中展現高度潛力。然而,目前多數相變控制技術存在不可控的混相生成與繁瑣的多段半導體製程流程,限制其實際應用與整合性。本研究提出一種新穎、簡單且具高度可控制性的1T'/2H相控制方法,透過對Mo薄膜施加機械刮痕引入局部應力場,成功實現2H相之選擇性控制,並進一步製作1T'/2H/1T' 結構之無金屬電極憶阻器元件。相較傳統依賴退火或外加電場的方式,本技術能有效控制異質相界面的位置與尺寸。結合DFT模擬,探討−6%至+9%應變與Mo原子密度下兩相的自由能變化,結果顯示受壓應變之1T'相具有較高的自由能,進而有利於2H相轉換,驗證應力誘導相變的可行性。元件測試顯示,該憶阻器元件具穩定的雙極性切換行為、超過120次的耐久性與10000秒以上的資料保持能力。此外,透過脈衝刺激觀察到突觸短期加強與衰退現象,顯示其具備突觸可塑性。整體而言,本研究提供一種高效可控之相變工程策略,並展現MoTe2於非揮發記憶體與神經形態元件中的潛力與應用價值。
MoTe2 with its inherent 1T'/2H phase transition capability and outstanding electrical properties, has emerged as a promising candidate for next-generation non-volatile memory and neuromorphic computing devices. However, current phase engineering strategies are often hindered by uncontrollable mixed-phase formation and complex multi-step semiconductor processing, which limit their practical applicability and scalability. In this study, we propose a novel, facile, and controllable method for phase control by introducing localized strain fields via mechanical scratching on Mo films, enabling selective stabilization of the 2H phase. A 1T'/2H/1T' heterostructure memristor was subsequently fabricated without the need for metal electrodes. Compared to conventional phase-control approaches based on thermal annealing or electric-field-driven transformation, this technique provides precise control over the location and size of phase boundaries. Density functional theory (DFT) calculations further support the experimental observations, revealing that under compressive strain (−6% to +9%) and varying Mo atomic densities, the 1T' phase exhibits higher free energy than the 2H phase, thus favoring a strain-induced 2H transformation pathway. Electrical measurements confirm the memristor exhibits robust bipolar switching behavior, endurance over 120 cycles, and data retention exceeding 10000 seconds. In addition, short-term potentiation and depression were demonstrated under pulsed stimuli, indicating synaptic plasticity. Overall, this work presents an efficient and scalable phase engineering strategy and highlights the potential of MoTe2-based heterostructures in future non-volatile memory and neuromorphic sytems.
(1) Tomar, R.; Abdala, A. A.; Chaudhary, R. G.; Singh, N. B. Photocatalytic degradation of dyes by nanomaterials. Materials Today: Proceedings 2020, 29, 967-973
(2) Geoffrion, L. D.; Guisbiers, G. Quantum confinement: Size on the grill! J. Phys. Chem. Solids 2020, 140, 109320
(3) Tucker, J. R.; Wang, C.; Carney, P. S. Silicon field‐effect transistor based on quantum tunneling. Appl. Phys. Lett. 1994, 65 (5), 618-620
(4) Aleiner, I. L.; Brouwer, P. W.; Glazman, L. I. Quantum effects in Coulomb blockade. Phys. Rep. 2002, 358 (5), 309-440
(5) Mayer, K. M.; Hafner, J. H. Localized Surface Plasmon Resonance Sensors. Chem. Rev. 2011, 111 (6), 3828-3857
(6) Wang, Z.; Hu, T.; Liang, R.; Wei, M. Application of Zero-Dimensional Nanomaterials in Biosensing. Front. Chem. 2020, 8,
(7) Garnett, E.; Mai, L.; Yang, P. Introduction: 1D Nanomaterials/Nanowires. Chem. Rev. 2019, 119 (15), 8955-8957
(8) Li, Y.; Li, Z.; Chi, C.; Shan, H.; Zheng, L.; Fang, Z. Plasmonics of 2D Nanomaterials: Properties and Applications. Adv. Sci. 2017, 4 (8), 1600430
(9) Lembke, D.; Bertolazzi, S.; Kis, A. Single-Layer MoS2 Electronics. Acc. Chem. Res. 2015, 48 (1), 100-110
(10) Zhu, C.; Sun, X.; Liu, H.; Zheng, B.; Wang, X.; Liu, Y.; Zubair, M.; Wang, X.; Zhu, X.; Li, D.; et al. Nonvolatile MoTe2 p–n Diodes for Optoelectronic Logics. ACS Nano 2019, 13 (6), 7216-7222
(11) Choi, C.; Lee, Y.; Cho, K. W.; Koo, J. H.; Kim, D.-H. Wearable and Implantable Soft Bioelectronics Using Two-Dimensional Materials. Acc. Chem. Res. 2019, 52 (1), 73-81
(12) Wang, T.; Chen, S.; Pang, H.; Xue, H.; Yu, Y. MoS2-Based Nanocomposites for Electrochemical Energy Storage. Adv. Sci. 2017, 4 (2), 1600289
(13) Zhong, L. S.; Hu, J. S.; Liang, H. P.; Cao, A. M.; Song, W. G.; Wan, L. J. Self-Assembled 3D Flowerlike Iron Oxide Nanostructures and Their Application in Water Treatment. Adv. Mater. 2006, 18 (18), 2426-2431
(14) Zhang, H. Ultrathin Two-Dimensional Nanomaterials. ACS Nano 2015, 9 (10), 9451-9469
(15) Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6 (3), 183-191
(16) Chowdhury, T.; Sadler, E. C.; Kempa, T. J. Progress and Prospects in Transition-Metal Dichalcogenide Research Beyond 2D. Chem. Rev. 2020, 120 (22), 12563-12591
(17) Abbas, A. N.; Liu, B.; Chen, L.; Ma, Y.; Cong, S.; Aroonyadet, N.; Köpf, M.; Nilges, T.; Zhou, C. Black Phosphorus Gas Sensors. ACS Nano 2015, 9 (5), 5618-5624
(18) Chen, H.; Jiang, D.-e.; Yang, Z.; Dai, S. Engineering Nanostructured Interfaces of Hexagonal Boron Nitride-Based Materials for Enhanced Catalysis. Acc. Chem. Res. 2023, 56 (1), 52-65
(19) Zhu, J.; Xiao, P.; Li, H.; Carabineiro, S. A. C. Graphitic Carbon Nitride: Synthesis, Properties, and Applications in Catalysis. ACS Appl. Mater. Interfaces 2014, 6 (19), 16449-16465
(20) Jayakumar, A.; Surendranath, A.; Pv, M. 2D materials for next generation healthcare applications. Int. J. Pharm. 2018, 551 (1), 309-321
(21) Lee, J.; Novoselov, K. S.; Shin, H. S. Interaction between Metal and Graphene: Dependence on the Layer Number of Graphene. ACS Nano 2011, 5 (1), 608-612
(22) Kim, H.-C.; Kim, H.; Lee, J.-U.; Lee, H.-B.; Choi, D.-H.; Lee, J.-H.; Lee, W. H.; Jhang, S. H.; Park, B. H.; Cheong, H.; et al. Engineering Optical and Electronic Properties of WS2 by Varying the Number of Layers. ACS Nano 2015, 9 (7), 6854-6860
(23) Wang, Q.; O’Hare, D. Recent Advances in the Synthesis and Application of Layered Double Hydroxide (LDH) Nanosheets. Chem. Rev. 2012, 112 (7), 4124-4155
(24) Dong, R.; Kuljanishvili, I. Review Article: Progress in fabrication of transition metal dichalcogenides heterostructure systems. J Vac Sci Technol B Nanotechnol Microelectron 2017, 35 (3), 030803
(25) Lu, Q.; Yu, Y.; Ma, Q.; Chen, B.; Zhang, H. 2D Transition-Metal-Dichalcogenide-Nanosheet-Based Composites for Photocatalytic and Electrocatalytic Hydrogen Evolution Reactions. Adv Mater 2016, 28 (10), 1917-1933
(26) Wu, L.; Hofmann, J. P. Comparing the Intrinsic HER Activity of Transition Metal Dichalcogenides: Pitfalls and Suggestions. ACS Energy Lett. 2021, 6 (7), 2619-2625
(27) Islam, M. S.; Kim, M.; Jin, X.; Oh, S. M.; Lee, N.-S.; Kim, H.; Hwang, S.-J. Bifunctional 2D Superlattice Electrocatalysts of Layered Double Hydroxide–Transition Metal Dichalcogenide Active for Overall Water Splitting. ACS Energy Lett. 2018, 3 (4), 952-960
(28) Mattinen, M.; Leskelä, M.; Ritala, M. Atomic Layer Deposition of 2D Metal Dichalcogenides for Electronics, Catalysis, Energy Storage, and Beyond. Adv. Mater. Interfaces 2021, 8 (6), 2001677
(29) Deng, Y.; Zhao, X.; Zhu, C.; Li, P.; Duan, R.; Liu, G.; Liu, Z. MoTe(2): Semiconductor or Semimetal? ACS Nano 2021, 15 (8), 12465-12474
(30) Qu, D.; Liu, X.; Huang, M.; Lee, C.; Ahmed, F.; Kim, H.; Ruoff, R. S.; Hone, J.; Yoo, W. J. Carrier-Type Modulation and Mobility Improvement of Thin MoTe2. Adv. Mater. 2017, 29 (39), 1606433
(31) Tang, F.; Wang, P.; Wang, Q.; Gan, Y.; Lyu, J.; Mi, X.; He, M.; Zhang, L.; Smet, J. H. Ambipolar Superconductivity with Strong Pairing Interaction in Monolayer 1T′-MoTe2. Nano Lett. 2023, 23 (16), 7516-7523
(32) Huang, H. H.; Fan, X.; Singh, D. J.; Chen, H.; Jiang, Q.; Zheng, W. T. Controlling phase transition for single-layer MTe2 (M = Mo and W): modulation of the potential barrier under strain. Phys Chem Chem Phys 2016, 18 (5), 4086-4094
(33) Rano, B. R.; Syed, I. M.; Naqib, S. H. Ab initio approach to the elastic, electronic, and optical properties of MoTe2 topological Weyl semimetal. J. Alloys Compd. 2020, 829,
(34) DiCamillo, K.; Krylyuk, S.; Shi, W.; Davydov, A.; Paranjape, M. Automated Mechanical Exfoliation of MoS2 and MoTe2 Layers for Two-Dimensional Materials Applications. IEEE Trans. Nanotechnol. 2019, 18, 144-148
(35) Yu, W.; Dong, Z.; Abdelwahab, I.; Zhao, X.; Shi, J.; Shao, Y.; Li, J.; Hu, X.; Li, R.; Ma, T.; et al. High-Yield Exfoliation of Monolayer 1T’-MoTe2 as Saturable Absorber for Ultrafast Photonics. ACS Nano 2021, 15 (11), 18448-18457
(36) Zhou, L.; Xu, K.; Zubair, A.; Zhang, X.; Ouyang, F.; Palacios, T.; Dresselhaus, M. S.; Li, Y.; Kong, J. Role of Molecular Sieves in the CVD Synthesis of Large-Area 2D MoTe2. Adv. Funct. Mater. 2017, 27 (3), 1603491
(37) Eshete, Y. A.; Ling, N.; Kim, S.; Kim, D.; Hwang, G.; Cho, S.; Yang, H. Vertical Heterophase for Electrical, Electrochemical, and Mechanical Manipulations of Layered MoTe2. Adv. Funct. Mater. 2019, 29 (40), 1904504
(38) Zhou, L.; Xu, K.; Zubair, A.; Liao, A. D.; Fang, W.; Ouyang, F.; Lee, Y.-H.; Ueno, K.; Saito, R.; Palacios, T.; et al. Large-Area Synthesis of High-Quality Uniform Few-Layer MoTe2. Journal of the American Chemical Society 2015, 137 (37), 11892-11895
(39) Duerloo, K. A.; Li, Y.; Reed, E. J. Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers. Nat Commun 2014, 5, 4214
(40) Song, S.; Keum, D. H.; Cho, S.; Perello, D.; Kim, Y.; Lee, Y. H. Room Temperature Semiconductor–Metal Transition of MoTe2 Thin Films Engineered by Strain. Nano Lett. 2016, 16 (1), 188-193
(41) Lee, Y.; Lee, S. H.; Han, S. K.; Park, J.; Lee, D.; Preston, D. J.; Kim, I. S.; Hersam, M. C.; Kwon, Y.; Shong, B.; et al. Strain-Enabled Local Phase Control in Layered MoTe2 for Enhanced Electrocatalytic Hydrogen Evolution. ACS Energy Lett. 2023, 8 (11), 4716-4725
(42) Wang, Y.; Xiao, J.; Zhu, H.; Li, Y.; Alsaid, Y.; Fong, K. Y.; Zhou, Y.; Wang, S.; Shi, W.; Wang, Y.; et al. Structural phase transition in monolayer MoTe2 driven by electrostatic doping. Nature 2017, 550 (7677), 487-491
(43) Cho, S.; Kim, S.; Kim, J. H.; Zhao, J.; Seok, J.; Keum, D. H.; Baik, J.; Choe, D.-H.; Chang, K. J.; Suenaga, K.; et al. Phase patterning for ohmic homojunction contact in MoTe2. Science 2015, 349 (6248), 625-628
(44) Yoo, Y.; DeGregorio, Z. P.; Su, Y.; Koester, S. J.; Johns, J. E. In-Plane 2H-1T' MoTe(2) Homojunctions Synthesized by Flux-Controlled Phase Engineering. Adv Mater 2017, 29 (16),
(45) Yang, L.; Zhang, W.; Li, J.; Cheng, S.; Xie, Z.; Chang, H. Tellurization Velocity-Dependent Metallic-Semiconducting-Metallic Phase Evolution in Chemical Vapor Deposition Growth of Large-Area, Few-Layer MoTe(2). ACS Nano 2017, 11 (2), 1964-1972
(46) Wang, Y.; Zhang, M.; Xue, Z.; Chen, X.; Mei, Y.; Chu, P. K.; Tian, Z.; Wu, X.; Di, Z. Atomistic Observation of the Local Phase Transition in MoTe(2) for Application in Homojunction Photodetectors. Small 2022, 18 (19), e2200913
(47) DeBenedicits, E. P. Multiprocessor architectures are converging. In Proceedings of the third conference on Hypercube concurrent computers and applications: Architecture, software, computer systems, and general issues - Volume 1, Pasadena, California, USA; 1988.
(48) Petrenko, S. Limitations of Von Neumann Architecture. In Big Data Technologies for Monitoring of Computer Security: A Case Study of the Russian Federation, Petrenko, S. Ed.; Springer International Publishing, 2018; pp 115-173.
(49) Sun, Z.; Kvatinsky, S.; Si, X.; Mehonic, A.; Cai, Y.; Huang, R. A full spectrum of computing-in-memory technologies. Nat. Electron. 2023, 6 (11), 823-835
(50) Kim, K.; Chung, U. I.; Park, Y.; Lee, J.-y.; Yeo, J.-h.; Kim, D. C. Extending the DRAM and FLASH memory technologies to 10nm and beyond. SPIE Proceedings 2012, 8326, 832605
(51) Song, Z.; Song, S.; Zhu, M.; Wu, L.; Ren, K.; Song, W.; Feng, S. From octahedral structure motif to sub-nanosecond phase transitions in phase change materials for data storage. Sci. China Inf. Sci. 2018, 61 (8), 081302
(52) Ahn, M.; Oh, J.-S.; Park, D.; Jung, H.; Park, S.; Jeong, K.; Kim, D.; Sung, N.-E.; Lee, K.-S.; Yang, C.-W.; et al. Phase Change via Intermediary Metastable Local Structure of Ge Atoms in Ge2Sb2Te5 Nanowires during Electrical Switching. ACS Appl. Electron. Mater. 2020, 2 (8), 2418-2428
(53) Kumar, A.; Kumar, A.; Kandasami, A.; Singh, V. R. A Comprehensive Review on Synthesis, Phase Transition, and Applications of VO2. J. Supercond. Novel Magn. 2024, 37 (3), 475-498
(54) Yang, Z.; Zhang, D.; Cai, J.; Gong, C.; He, Q.; Xu, M.; Tong, H.; Miao, X. Joule heating induced non-melting phase transition and multi-level conductance in MoTe2 based phase change memory. Appl. Phys. Lett. 2022, 121 (20), 203508
(55) Dutta, M.; Senapati, A.; Ginnaram, S.; Maikap, S. Resistive switching memory and artificial synapse by using Ti/MoS2 based conductive bridging cross-points. Vacuum 2020, 176, 109326
(56) Endoh, T.; Honjo, H. A Recent Progress of Spintronics Devices for Integrated Circuit Applications. In Journal of Low Power Electronics and Applications, 2018; Vol. 8.
(57) Böscke, T. S.; Müller, J.; Bräuhaus, D.; Schröder, U.; Böttger, U. Ferroelectricity in hafnium oxide thin films. Appl. Phys. Lett. 2011, 99 (10), 102903
(58) Song, C.-M.; Kwon, H.-J. Ferroelectrics Based on HfO2 Film. In Electronics, 2021; Vol. 10.
(59) Zahoor, F.; Azni Zulkifli, T. Z.; Khanday, F. A. Resistive Random Access Memory (RRAM): an Overview of Materials, Switching Mechanism, Performance, Multilevel Cell (mlc) Storage, Modeling, and Applications. Nanoscale Res. Lett. 2020, 15 (1), 90
(60) Durrant, T. R.; Gao, D. Z.; Shluger, A. A Mechanism of Resistance Switching in CNT Based Memory Devices. ECS Meeting Abstracts 2024, MA2024-01 (9), 918
(61) Loy, D. J. J.; Dananjaya, P. A.; Hong, X. L.; Shum, D. P.; Lew, W. S. Conduction Mechanisms on High Retention Annealed MgO-based Resistive Switching Memory Devices. Sci. Rep. 2018, 8 (1), 14774
(62) Ambrogio, S.; Magyari-Köpe, B.; Onofrio, N.; Mahbubul Islam, M.; Duncan, D.; Nishi, Y.; Strachan, A. Modeling resistive switching materials and devices across scales. J. Electroceram. 2017, 39 (1), 39-60
(63) Li, M.; Liu, H.; Zhao, R.; Yang, F.-S.; Chen, M.; Zhuo, Y.; Zhou, C.; Wang, H.; Lin, Y.-F.; Yang, J. J. Imperfection-enabled memristive switching in van der Waals materials. Nat. Electron. 2023, 6 (7), 491-505
(64) Shen, Z.; Zhao, C.; Qi, Y.; Xu, W.; Liu, Y.; Mitrovic, I. Z.; Yang, L.; Zhao, C. Advances of RRAM Devices: Resistive Switching Mechanisms, Materials and Bionic Synaptic Application. In Nanomaterials, 2020; Vol. 10.
(65) Seok, H.; Son, S.; Jathar, S. B.; Lee, J.; Kim, T. Synapse-Mimetic Hardware-Implemented Resistive Random-Access Memory for Artificial Neural Network. In Sensors, 2023; Vol. 23.
(66) Zhou, L.; Zubair, A.; Wang, Z.; Zhang, X.; Ouyang, F.; Xu, K.; Fang, W.; Ueno, K.; Li, J.; Palacios, T.; et al. Synthesis of High-Quality Large-Area Homogenous 1T′ MoTe2 from Chemical Vapor Deposition. Adv. Mater. 2016, 28 (43), 9526-9531
(67) Zhang, S.; Wu, Y.; Gao, F.; Shang, H.; Zhang, J.; Li, Z.; Fu, Y.; Hu, P. Field Effect Transistor Sensors Based on In‐Plane 1T'/2H/1T' MoTe2 Heterophases with Superior Sensitivity and Output Signals. Adv. Funct. Mater. 2022, 32 (41),
校內:2030-07-30公開