簡易檢索 / 詳目顯示

研究生: 許峻嘉
Hsu, Chun-Chia
論文名稱: 利用伴隨算子方法應用於無分流隔板超音速進氣道氣動力優化模擬分析
Aerodynamic Simulation Analysis of Diverterless Supersonic Inlet Optimization using Adjoint-Based Method
指導教授: 呂宗行
Leu, Tzong-Shyng
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 169
中文關鍵詞: 無分流隔板超音速進氣道等熵壓縮面計算流體力學空氣動力學Y型管道伴隨算子
外文關鍵詞: Diverterless Supersonic Inlet (DSI), Isentropic Compression Surface, Computational Fluid Dynamics (CFD), Aerodynamics, Y-Duct, Adjoint-Based Method
相關次數: 點閱:24下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統戰機進氣道具有分流隔板來排除低動能之邊界層氣流,然而此種設計將會導致進氣道結構複雜、重量增加、阻力上升及雷達散射截面(Radar Cross Section, RCS)提高等缺點,因此新型進氣道無分流隔板超音速進氣道(Diverterless Supersonic Inlet, DSI)移除分流隔板設計,利用三維壓縮面(Bump)設計將邊界層氣流排開,搭配前掠外罩管道及管道組成,大幅降低進氣道重量及雷達散射截面。
    本研究以F-35戰機前機身為幾何模型基礎,整合三維壓縮面、外罩與Y型管道,建立完整的進氣道模型,本研究提出全新外罩設計方法,根據三維壓縮面模擬結果將震波聚焦點連線並形成一陣波聚焦點曲面,並在參數化設計選擇出外罩角度。管道設計部份,為提升進氣道整體氣動性能,本研究運用計算流體力學(CFD)模擬搭配伴隨算子方法(Adjoint Method),並設計兩種不同的優化策略,對Y型管道進行多次外型優化,以提升總壓恢復係數為目標,並將管道優化結果安裝回具有前機身外型進行模擬,模擬結果顯示,經優化後的進氣道在設計點(M=2)模擬下,其總壓恢復係數明顯提升,總壓失真與速度不均勻度皆有效降低,有效提升進氣道整體性能。
    優化後的DSI進氣道在設計點外模擬結果皆顯示出,在不同馬赫數、俯仰角,側滑角及阻塞比下皆維持著良好性能,本研究證明伴隨方法可有效改善DSI性能,並為未來進氣道優化與隱身戰機設計提供新的設計方法。

    Conventional fighter aircraft inlets typically employ boundary layer diverters to remove low-momentum flow near the fuselage. While this design may be effective in its primary function, it can introduce negative consequences such as increased structural complexity, weight, drag, and Radar cross-section (RCS). To overcome these drawbacks, Diverterless supersonic inlet (DSI) design eliminates the diverter and utilizes a three-dimensional compression surface to redirect the boundary layer. Combined with a forward-swept cowl and internal duct, DSI configuration significantly reduces inlet weight and RCS, offering advantages in aerodynamic and stealth performance.
    This study adopts F-35 forebody to as the geometric foundation to construct a complete DSI model integrating a three-dimensional compression surface, cowl, and Y-duct. A novel cowl design methodology is proposed, in which shock focal points from compression surface simulations are connected to form a focal point surface, guiding the cowl angle through parametric design. For the Y-duct, computational fluid dynamics (CFD) and the adjoint method are applied for multiple shape optimizations targeting maximum total pressure recovery at the aerodynamic interface plane (AIP). The optimized duct is reintegrated into the inlet, and Mach 2 simulations show a clear improvement in total pressure recovery at the AIP. Furthermore, total pressure distortion is reduced and velocity uniformity is enhanced. Off-design simulations confirm robust performance across various Mach numbers, angles of attack, sideslip angles, and blockage ratios, validating the effectiveness of the proposed optimization approach for future DSI and stealth inlet design.

    摘要 ii Abstract iv 誌謝 xiv 目錄 xv 表目錄 xviii 圖目錄 xix 符號索引 xxvi 第一章 緒論 1 1.1 前言 1 1.2 文獻探討 3 1.2.1 進氣道發展 3 1.2.2 超音速進氣道種類 12 1.2.3 無分流隔板超音速進氣道 16 1.2.4 外部壓縮超音速進氣道性能 24 1.2.5 次音速管道外型優化 31 1.3 研究動機 34 第二章 研究方法 35 2.1 理論基礎 35 2.1.1 進氣道與渦輪發動機 35 2.1.2 震波(Shock wave) 37 2.1.3 錐形流與等熵壓縮 38 2.1.4 紊流模型 42 2.1.5 Adjoint Method 44 2.2 數值模擬軟體 44 2.3 網格類型 45 第三章 進氣道外型設計 47 3.1 DSI設計點及設計流程 47 3.2 三維壓縮面設計 50 3.3 三維壓縮面CFD模型與模擬條件設定 53 3.4 網格獨立性 54 3.5 三維壓縮面流場模擬結果 56 3.6 外罩設計 60 3.7 Y型管道設計 62 3.8 DSI模型與模擬條件設定 63 3.9 Adjoint Solver優化步驟設定 64 3.9.1 Method 1 65 3.9.2 Method 2 66 第四章 結果與討論 67 4.1 DSI初始模擬結果 67 4.2 三維Y型管道Adjoint結果 70 4.2.1 Method 1結果 71 4.2.2 Method 2結果 75 4.3 優化後安裝回前機首結果 79 4.3.1 Method 1結果 79 4.3.2 Method 2結果 89 4.3.3 不同優化方法DSI性能比較 99 4.4 設計點外模擬結果 101 4.4.1 不同馬赫數 101 4.4.2 不同俯仰角 105 4.4.3 不同側滑角 110 4.4.4 不同阻塞比 116 第五章 結論與未來工作建議 130 5.1 結論與未來工作建議 130 參考文獻 132 附錄 136

    [1]D. R. K. Scharnhorst, “An Overview of Military Aircraft Supersonic Inlet Aerodynamics,” AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, 2012.
    [2] A.H.Sacks ,J.R.Spreiter, “Theoretical Investigation of Submerged Inlets at Low Speed”, NACA TN 2323, National Advisory Committee for Aeronautics, 1951.
    [3] M.C.Gridley, S.H.Walker, “Inlet and Nozzle Technology for 21st Century Fighter Aircraft, ” International Gas Turbine and Aexoengine Congress at Exhibition, 1996.
    [4] P. Y. Ufimtsev, “Elementary edge waves and the physical theory of diffraction”, Electromagnetics, vol. 11, no. 2, pp. 125-160, 1991.
    [5] H.Ling, R.C.Chou, S.W.Lee,“Shooting and bouncing rays: Calculating the RCS of an arbitrarily shaped cavity”, IEEE Transactions on Antennas and propagation, vol. 37, no. 2, 1989.
    [6] J. W. Hamstra, B.N. McCallum, “ Tactical aircraft aerodynamic integration”, Encyclopedia of aerospace engineering, 2010.
    [7] Rasoul Askari and Mohammad Reza Soltani, “Symmetric and Asymmetric Performance Investigation of a Diverterless Supersonic Inlet,” AIAA JOURNAL, vol. 60, no. 5, pp. 2850–2859, May 2022.
    [8] G.C. Oates, Aircraft propulsion systems technology and design, AIAA EDUCATION SERIES, 1989.
    [9] J. Seddon, E. L. Goldsmith,'' Intake Aerodynamics'', AIAA Education Series, 1999.
    [10] J. E. Hawkins, “YF-16 Inlet Design and Performance”, Journal of Aircraft, vol. 13, no. 6, pp. 436-441, 1976.
    [11] W.Brown, R.G.Huff, P.C.Simon, “ Performance of external compression bump inlet at Mach numbers of 1.5 and 2.0”, NACA RM E56L19, National Advisory Committee for Aeronautics, 1957.
    [12] J.W. Hamstra ,T.G. Sylvester, “System and Method for Diverting Boundary Air”, United States 專利, 1998.
    [13] E. Hehs, “JSF Diverterless Supersonic Inlet ” , 2000. [ 線上]. Available: http://www.codeonemagazine.com/article.html?item_id=58.
    [14] J.W. Hamstra ,T.G. Sylvester, “System and Method for Diverting Boundary Air”, United States 專利, 1998.
    [15] C. Wiegand, “F-35 air vehicle technology overview”, Aviation Technology, Integration, and Operations Conference, 2018.
    [16] 黃偉聖, “錐形流推導之凸起物外型暨超音速進氣口,” 成功大學碩士論文, 2021.
    [17] 林傑脩, “側向布局超音速進氣口空氣動力特性研究,” 成功大學碩 士論文, 2022.
    [18] 蕭又升, “機首側向佈局蚌式超音速進氣道之氣動力與匿蹤性能,” 成功大學碩士論文, 2023.
    [19] R. Askari and M. R. Soltani, “Numerical Simulation of a Y-Shaped Diverterless Supersonic Inlet,” J Aircr, vol. 60, no. 4, pp. 1007–1016, Jul. 2023.
    [20] 蔡鎮壕, “機腹布局之無分流隔板超音速進氣道設計暨氣動與匿蹤特性模擬分析,” 成功大學碩士 學位論文, 2022.
    [21] 陳震宇, “匿蹤戰機外型設計對雷達散射截面分析,” 2020.
    [22] 謝雪明, 郭榮偉, “無隔道進氣道 RCS 特性實驗研究”, 航空學 報, vol. 27, no. 2, pp. 193-197, 2006.
    [23] J.Slater, “ Design and analysis tool for external-compression supersonic inlets”, 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, p. 16, 2012.
    [24] M. R. Soltani, J. Sepahi Younsi, and A. Daliri, “Performance investigation of a supersonic air intake in the presence of the boundary layer suction,” Proc Inst Mech Eng G J Aerosp Eng, vol. 229, no. 8, pp. 1495–1509, Jun. 2015.
    [25] M. Abedi, R. Askari, and M. R. Soltani, “Numerical simulation of inlet buzz,” Aerospace Science and Technology, vol. 97, Feb. 2020.
    [26] Z. Zhang and K.-Y. Lum, “S-Shaped Inlet Design Optimization Using the Adjoint Equation Method,” 2006.
    [27] Z. Altaf, M. I. Babar, and S. Salamat, “Multi-objective shape optimization of doubly offset serpentine diffuser using Adjoint method,” Int J Heat Fluid Flow, vol. 102, Aug. 2023.
    [28] A. Sóbester, “Tradeoffs in jet inlet design: A historical perspective”, Journal of aircraft, vol. 44, no. 3, pp. 705-717, 2007.
    [29] J. D. Mattingly, "Elements of Gas Turbine Propulsion", McGraw-Hill, 1995.
    [30] J. D. Anderson, “Fundamentals of Aerodynamics Fifth Edition,” 2009.
    [31] K. Oswatitsch, “Pressure Recovery for Missiles with Reaction Propulsion at High Supersonic Speeds (The Efficiency of Shock Diffusers),” 1980.
    [32] O. Özcan, F. O. Edis, A. R. Asian, İ Pinar," Inverse Solutions of the Prandtl-Meyer Function", J. Aircraft, Vol. 31, No. 6: Engineering Notes, 1994.
    [33] J.F.Connors, R.C.Meyers, "Design Criteria for Axisymmetric and Two Dimensional Supersonic Inlets and Exits", NACA, 1956.
    [34] F. R. Menter, “Two-equation eddy-viscosity turbulence models for engineering applications,” AIAA Journal, vol. 32, no. 8, pp. 1598–1605, Aug. 1994.
    [35] H. Mendis, “"Better meshing using ANSYS Fluent Meshing https://www.linkedin.com/pulse/better-meshing-using-ansys-fluent 212 hashan-mendis,” 2018.
    [36] H. G. Tao, H. X. Chen, J. L. Xie, and Y. P. Hu, “An alternative approach to quantifying fluid flow uniformity based on area-weighted average velocity and mass-weighted average velocity,” Energy Build, vol. 45, pp. 116–123, Feb. 2012.
    [37] A.Ferri, L.M.Nucci, “ The origin of aerodynamic instability of supersonic inlets at subcritical conditions ” , National Advisory Commitee for Aeronautics, vol. NACA-RM-L50K30, 1951.
    [38] C. C. Lee and C. Boedicker, “Subsonic Diffuser Design and Performance for Advanced Fighter Aircraft,” Oct. 1985.

    無法下載圖示 校內:2030-08-11公開
    校外:2030-08-11公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE