| 研究生: |
陳登純 Tran, Dang-Thuan |
|---|---|
| 論文名稱: |
以微藻為料源進行生質柴油之酵素法合成 - 從固定化生物觸媒之開發至生物製程之設計與模擬 Enzymatic biodiesel synthesis from microalgae feedstock using immobilized lipase - from biocatalyst development to bioprocess design and modelling |
| 指導教授: |
張嘉修
Chang, Jo-Shu |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 185 |
| 中文關鍵詞: | Burkholderia sp. 、稼接烷基之Fe3O4-SiO2 、稼接烷基之矽藻土 、固定化脂解酵素 、乒乓反應動力學 、三酸甘油脂 、甲醇 、轉酯化 、填充床反應器 、生質柴油 、熱失活 |
| 外文關鍵詞: | Burkholderia sp., alkyl-grafted Fe3O4-SiO2, alkyl-grafted celite, immobilized lipase, Ping Pong Bi Bi kinetics, triglyceride, methanol, transesterification, packed-bed reactor, biodiesel, thermal deactivation |
| 相關次數: | 點閱:165 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究將產自Burkholderia sp.之脂解酵素固定在以長鏈烷基修飾過的Fe3O4-SiO2奈米複合材料與微尺寸的矽藻土上。當以Langmuir等溫吸附式進行嫁接烷基的Fe3O4-SiO2與矽藻土上的酵素蛋白吸附量計算時,最大吸附量分別為29.45與21.64 mg (g adsorbent)−1,對應之蛋白鍵節效率則分別為98與87%。此外,固定於Fe3O4-SiO2與矽藻土之固定化脂解酵素之比活性則分別為1281與1154 U g−1。當以固定化脂解酵素進行三酸甘油脂與甲醇的轉酯化反應時,發現兩固定化脂解酵素之行為皆遵守乒乓機制(Ping Pong Bi Bi mechanism),同時固定於Fe3O4-SiO2與矽藻土之固定化脂解酵素之最大反應速率(Vmax)分別為1.86與0.61 mol m−3 s−1。此外,三酸甘油脂(Km,TG)、甲醇(Km,M)與固定化脂解酵素之鍵結常數則分別為119, 93與134, 101 mol m−3,同時甲醇對兩固定化脂解酵素之抑制常數則分別為16.23104 與13.13104 mol m−3。再者,固定於Fe3O4-SiO2與矽藻土之固定化脂解酵素之活化能則為分別為12.27 kJ mol−1與15.51 kJ mol−1。
本研究使用固定於Fe3O4-SiO2之脂解酵素進行小球藻ESP-31(油脂含量為63%)之藻油與甲醇轉酯化反應以合成生質柴油。研究中以兩種途徑進行了藻油轉酯化以合成生質柴油,分別為以萃取出之藻油為原料進行轉酯化程序(M-I approach)與直接以破壁後之微藻生物質為原料進行直接轉酯化程序(M-II process)。研究結果顯示,M-II途徑之生質柴油轉化率(97.3 wt% oil)較M-I途徑(72.1 wt% oil)高。而當以濕藻體為原料時,即使水分含量高達71%,固定化脂解酵素亦能運作良好。此外,當使用M-II途徑進行微藻生質柴油合成時,在甲醇對藻油之莫耳比大於67.93的情形下固定化脂解酵素依然可以正常運作,顯示固定化脂解酵素具有極高的甲醇耐受度。另外在重複使用測試方面,固定化脂解酵素在使用至第6次(或288小時)後,其催化活性並無明顯的減少。當以不同油脂含量(14-63%) 之微藻進行測試時發現,共同溶劑的種類與充足的溶劑量是必要的。在進行經濕式超音波前處理之微藻生質體的直接轉酯化程序中最佳的共同溶劑為正己烷,同時在正己烷對甲醇之質量比為1.65時能獲得最佳的生質柴油轉化率。此外,本研究亦發現直接轉酯化所需的甲醇與正己烷總量與微藻中的油脂含量之間的關係密切,微藻生質物的油脂含量愈高時生質柴油合成的程序會愈有效率且愈經濟。因此,使用高油脂含量之微藻為生質柴油之料源是較符合期望與經濟效益的。
使用固定於Fe3O4-SiO2之固定化脂解酵素進行橄欖油與甲醇之轉酯化反應會產生出多種的中間產物,包含了1-單酸甘油脂、2-單酸甘油脂、1,2-二酸甘油脂與1,3-二酸甘油脂,因此,此固定化脂解酵素應屬1,3 位置專一性之脂解酵素(1,3 specific lipase)。因此,本研究進行了於25‒65 oC下脂肪酸官能基的轉移動力學(Acyl migration kinetics)探討,以及於25、40與65oC、含有水分且牽涉到醯基轉移之情形下橄欖油與甲醇之轉酯化反應動力學之研究。研究結果顯示,反應溫度之增加會提高醯基轉移速率,且當反應溫度由25 oC提升到40 oC與65 oC時生質柴油之轉化率會分別由73.4%增加至90.0與92.4%。此外,本研究亦進行了固定化脂解酵素催化轉酯化反應達平衡狀態時之熱力學探討。
本研究接著進行以矽藻土固定化脂解酵素催化油脂甲醇分解(methanolysis)以合成生質柴油之反應器設計與操作。此連續式生質柴油生產程序是以一內徑為1.5 cm、高為167 cm之填充床反應器進行。在考慮基質至固定化脂解酵素之無孔洞表面的外部質傳與酵素的反應動力學,本研究亦進行了數學模式之模擬。基於此模式之預測,以葵花油與甲醇為反應物之酵素催化轉酯化的反應動力學反應遵守著乒乓機制(Ping Pong Bi Bi mechanism),然而外部之質量輸送並無法應用在此反應系統中。當生物觸媒反應床高度60 cm (約29 g) 時可獲得完全的三酸甘油脂轉化率,然而因為甘油累積在反應床中以致此時生質柴油之產率僅能達到67%。當採用三組填充反床應器串聯進行轉酯化且於各填充床之間進行甘油的移除時,生質柴油轉化率可增加至85%。第一組管柱(高為67 cm、內徑為1.5 cm) 主要是將三酸甘油脂轉化成生質柴油、甘油與其他中間產物,第二組(高為67 cm、內徑為2.0 cm)與第三組管柱(高為67 cm、內徑為2.5 cm)則是持續將中間產物與甲醇轉化成生質柴油。而這套串聯式填充床系統在啟用後的840小時皆運作良好,同時生質柴油產率為4413 kg (kg-immobilized lipase)−1。
與未固定的Burkholderia sp.脂解酵素相比較,固定於Fe3O4-SiO2與矽藻土之固定化脂解酵素具有較高的熱穩定性,其熱失活能分別為63, 97與83 kJ mol−1,同時在55oC下的半衰期分別為454, 2158, and 1117 min。此外,未固定脂解酵素、固定於Fe3O4-SiO2與矽藻土之固定化脂解酵素這三者的焓、Gibbs自由能與熵則分別為60.02至60.35 kJ mol−1、 86.76至88.96 kJ mol−1、–83.01 to –80.81 J (mol.K)−1, 94.02至94.35 kJ mol−1、 90.93至91.06 kJ mol−1、8.26 to 10.76 (mol.K)−1,以及80.02至80.35 kJ mol−1、88.35至90.13 kJ mol−1、–28.22 to –25.11 J (mol.K)−1。
Lipase produced by an isolated Burkholderia sp. was immobilized on nanocomposite Fe3O4-SiO2 and microsize celite materials functionally modified with long alkyl groups. The maximum adsorption capacity of protein on alkyl-grafted Fe3O4-SiO2 and alkyl-grafted celite was estimated as 29.45 and 21.64 mg (g adsorbent)−1 based on Langmuir isotherms, corresponding to maximum protein binding efficiency of 98 and 87%, respectively. The specific activity of Fe3O4-SiO2-alkyl-lipase and celite-alkyl-lipase was determined as 1281 and 1154 U g−1, respectively. The transesterification of triglyceride with methanol catalyzed by Burkholderia sp. was found to obey Ping Pong Bi Bi mechanism. The maximum reaction rates (Vmax) for Fe3O4-SiO2-alkyl-lipase and celite-alkyl-lipase were determined as 1.86 and 0.61 mol m−3 s−1, respectively. The binding constant of triglyceride (Km,TG), methanol (Km,M) to the two immobilized lipases were evaluated as 119, 93 and 134, 101 mol m−3, respectively, whereas the inhibition constant of methanol (Ki,M) was estimated as 16.23104 and 13.13104 mol m−3, respectively. The activation energies estimated for Fe3O4-SiO2-alkyl-lipase and celite-alkyl-lipase in methanolysis of sunflower oil were 12.27 kJ mol−1 and 15.51 kJ mol−1, respectively
The Fe3O4-SiO2-alkyl-lipase was used to convert microalgae oil derived from Chlorella vulgaris ESP-31 (63% lipid content) with methanol into biodiesel. The conversion of the microalgae oil to biodiesel was conducted either by transesterification of the extracted microalgal oil (M-I) or by transesterification directly using disrupted microalgal biomass (M-II). The results show that M-II achieved higher biodiesel conversion (97.3 wt% oil) than M-I (72.1 wt% oil). The immobilized lipase worked well when using wet microalgal biomass (up to 71% water content) as the oil substrate. The immobilized lipase also tolerated a high methanol-to-oil molar ratio (> 67.93) when using the M-II approach, and can be repeatedly used for 6 cycles (or 288 hours) without significant loss of its original activity. With microalgal biomass containing 14–63%, the addition of a sufficient amount of solvent (hexane is most preferable) is required for the direct transesterification of wet sonication-pretreated microalgal biomass, as a hexane-to-methanol mass ratio of 1.65 was found optimal for the biodiesel conversion. The amount of methanol and hexane required for the direct transesterification process was also found to correlate with the lipid content of the microalgal. The biodiesel synthesis process was more efficient and economic when the lipid content of the microalgal biomass was higher. Therefore, it is desirable to use lipid-enriched microalgae as feedstock for the production of microalgae-based biodiesel
Transesterification of olive oil with methanol catalyzed by the Fe3O4-SiO2-alkyl-lipase produces various intermediates, including 1-monoglyceride, 2-monoglyceride, 1,2-diglyceride, and 1,3-diglyceride. This suggest that the immobilized Burkholderia lipase is 1,3 specific. Therefore, acyl migration kinetics of fatty acid groups from sn-2 of 2-monoglyceride and 1,2-diglyceride to 1-monoglyceride and 1,3-diglyceride were investigated for the temperature range of 25‒65 oC. The kinetics of transesterification of olive oil with methanol involving acyl migration in the presence of water was also systematically studied at 25, 40, and 65 oC. Increasing temperature could increase the acyl migration rate. The overall biodiesel conversion was improved from 73.4% (at 25 oC) to 90.0 and 92.4% when conducting at 40 and 65 oC, respectively. Thermodynamics aspects of equilibrium state of the immobilized lipase-catalyzed transesterification were also discussed.
Methanolysis of sunflower oil catalyzed by the synthesized celite-alkyl-lipase was carried out in a packed-bed reactor (H = 167 cm, I.D = 1.5 cm) producing biodiesel. The process was mathematically modeled by considering both external mass transfer of substrate to non-porous surface of the immobilized lipase and enzymatic kinetics. Based on the prediction of the model, the enzymatic transesterification of sunflower oil with methanol was controlled by kinetics obeying Ping Pong Bi Bi mechanism. The completed conversion of triglyceride was observed at a biocatalyst bed height of 60 cm (ca. 29 g), while the biodiesel yield reached a plateau at 67% at this point due to glycerol accumulation. The biodiesel conversion was enhanced to 85% by carrying out the tranesterification in a series of three packed-bed reactors integrated with subsequently removal of glycerol. The first column (H = 67 cm, I.D = 1.5 cm) mainly converted triglyceride to FAME, glycerol and intermediate products, while the second (H = 67 cm, I.D = 2.0 cm) and the third (H = 67 cm, I.D = 2.5 cm) columns continuously converted intermediate products with supplied methanol to FAME. The designed PBR series system operated well in 840 h with a biodiesel yield of 4413 kg kg−1 celite-alkyl-lipase.
The Fe3O4-SiO2-alkyl-lipase and celite-alkyl-lipase exhibits higher thermal stability compared to free Burkholderia lipase with thermal deactivation energy of 97 and 83 kJ mol−1, respectively, compared to 63 kJ mol−1 for the free lipase. The immobilized lipases also have long half-lives of 454, 2158, respectively, at 55 oC, when compared with a half life of 1117 min for the free lipase. The enthalpy, Gibb's free energy, and entropy of the free lipase, Fe3O4-SiO2-alkyl-lipase and celite-alkyl-lipase were in the range of 60.02 to 60.35 kJ mol−1, 86.76 to 88.96 kJ mol−1, and –83.01 to –80.81 J (mol•K) −1; 94.02 to 94.35 kJ mol−1, 90.93 to 91.06 kJ mol−1, and 8.26 to 10.76 (mol•K)−1; 80.02 to 80.35 kJ mol−1, 88.35 to 90.13 kJ mol−1, and –28.22 to –25.11 J (mol•K)−1, respectively.
Adams D.M., Brawley T.G. (1981). Factors influencing the heat resistance of a heat-resistant lipase of Pseudomonas. Journal of Food Science, 46: 673–676.
Ahmad A.L., Yasin N.H.M., Derek C.J.C., Lim J.K. (2011). Microalgae as a sustainable energy source for biodiesel production: A review. Renewable and Sustainable Energy Reviews, 15: 584–593.
Akoh C.C., Chang S.W., Lee G.C., Shaw J.F. (2007). Enzymatic approach to biodiesel production. Journal of Agricultural and Food Chemistry, 55: 8995–9005.
Al-Zuhair S., Hasan M., Ramachandran K.B. (2003). Kinetics of the enzymatic hydrolysis of palm oil by lipase. Process Biochemistry, 38: 1155–1163.
Al-Zuhair S. (2005). Production of biodiesel by lipase-catalyzed transesterification of vegetable oils: A kinetics study. Biotechnology Progress, 21: 1442–1448.
Al-Zuhair S. (2007). Production of biodiesel: possibilities and challenges. Biofuels, Bioproducts and Biorefining, 1: 57–66.
Al-Zuhair S., Dowaidar A., Kamal H. (2009). Dynamic modeling of biodiesel production from simulated waste cooking oil using immobilized lipase. Biochemical Engineering Journal, 44: 256–262.
Amaro H.M., Guedes A.C., Malcata F.X. (2011). Advances and perspectives in using microalgae to produce biodiesel. Applied Energy, 88: 3402–3410.
Amin S. (2009). Review on biofuel oil and gas production processes from microalgae. Energy Conversion and Management, 50: 1834–1840.
Ariahu C.C., Ogunsua A.O. (2000). Thermal degradation kinetics of thiamine in periwinkle based formulated low acidity foods. International Journal of Food Science & Technology, 35: 315–321.
Atabani A.E., Silitonga A.S., Badruddin I.A., Mahlia T.M.I., Masjuki H.H., Mekhilef S. (2012). A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renewable and Sustainable Energy Reviews, 16: 2070–2093.
Atadashi I.M., Aroua M.K., Aziz A.A. (2011). Biodiesel separation and purification: A review. Renewable Energy, 36: 437–443.
Badwal S.P.S., Giddey S., Munnings C. (2012). Hydrogen production via solid electrolytic routes. Wiley Interdisciplinary Reviews: Energy and Environment. doi: 10.1002/wene.50.
Bajaj A., Lohan P., Jha P.N., Mehrotra R. (2010). Biodiesel production through lipase catalyzed transesterification: An overview. Enzyme and Microbial Technology, 62: 9–14.
Balat M. (2005). Current alternative engine fuels. Energy Sources, 27: 569–577.
Balat M., Balat H. (2010). Progress in biodiesel processing. Applied Energy, 87: 1815–1835.
Becker E.W. (1994). Microalgae for aquaculture: The nutritional value of microalgae for aquaculture. Biotechnology and Applied Phycology, (ed A. Richmond), Blackwell Publishing Ltd, Oxford, UK, doi: 10.1002/9780470995280.ch21, 1–566.
Bélafi-Bakó K., Kovács F., Gubicza L., Hancsók J. (2002). Enzymatic biodiesel production from sunflower oil by Candida antarctica lipase in a solvent-free system. Biocatalysis and Biotransformation, 20: 437–439.
Belarbi E.H., Molina G., Chisti Y. (2000). A process for high yield and scaleable recovery of high purity eicosapentaenoic acid esters from microalgae and fish oil. Enzyme and Microbial Technology, 26: 516‒529.
Bernard P., Barth D. (1995). Internal mass transfer limitation during enzymatic esterification in supercritical carbon dioxide and hexane. Biocatalysis and Biotransformation, 12: 299‒308.
Biselli M., Kragl U., Wandrey C. (2008). Reaction engineering for enzyme-catalyzed biotransformations. Enzyme catalysis in organic synthesis. K. Drauz, H. Waldmann. Germany, Wiley-VCH Verlag GmbH: 185–257.
Boswinkel G., Derksen J.T.P., van’t Riet K., Cuperus F.P. (1996). Kinetics of acyl migration in monoglycerides and dependence on acyl chain length. Journal of the American Oil Chemists' Society, 73: 707–711.
Brennan L., Owende P. (2010). Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14: 557–577.
Brown E.D., Yada R.Y. (1991). A kinetic and equilibrium study of the denaturation of aspartic proteinases from the fungi, Endothia parasitica and Mucor miehei. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 1076: 406–415.
Brun N., Babeau-Garcia A., Achard M.-F., Sanchez C., Durand F., Laurent G., Birot M., Deleuze H., Backov R. (2011). Enzyme-based biohybrid foams designed for continuous flow heterogeneous catalysis and biodiesel production. Energy & Environmental Science, 4: 2840–2844.
Busto M.D., Ortega N., Perez-Mateos M. (1995). Studies of microbial β-d-glucosidase immobilized in alginate gel beads. Process Biochemistry, 30: 421–426.
Caballero V., Bautista F.M., Campelo J.M., Luna D., Marinas J.M, Romero A.A., Hidalgo J.M., Luque R., Macario A., Giordano G. (2009). Sustainable preparation of a novel glycerol-free biofuel by using pig pancreatic lipase: partial 1,3-regiospecific alcoholysis of sunflower oil. Process Biochemistry, 44: 334–42.
Cao L. (2005). Immobilised enzymes: science or art? Current Opinion in Chemical Biology, 9: 217–226.
Chen C.L., Huang C.C., Tran D.T., Chang J.S. (2012). Biodiesel synthesis via heterogeneous catalysis using modified strontium oxides as the catalysts. Bioresource Technology, 113: 8–13.
Chen C.Y. Innovative photobioreactor design and fermentation strategies for enhanced phototrophic H2 production. Chemical Engineering, National Cheng Kung University. Doctor dissertation: 227.
Chen C.Y., Yeh K.L., Aisyah R., Lee D.J., Chang J.S. (2011). Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresource Technology, 102: 71–81.
Chen H., Qiu W. (2010). Key technologies for bioethanol production from lignocellulose. Biotechnology Advances, 28: 556–562.
Chen J.W., Wu W.T. (2003). Regeneration of immobilized Candida antarctica lipase for transesterification. Journal of Bioscience and Bioengineering, 95: 466–469.
Chiou S.H., Wu W.T. (2004). Immobilization of Candida rugosa lipase on chitosan with activation of the hydroxyl groups. Biomaterials, 25: 197–204.
Chisti Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25: 294–306.
Co C.E.T., Tan M.C., Diamante J.A.R., Yan L.R.C., Tan R.R., Razon L.F. (2011). Internal mass-transfer limitations on the transesterification of coconut oil using an anionic ion exchange resin in a packed bed reactor. Catalysis Today, 174: 54–58.
Compton D.L., Vermillion K.E., Laszlo J.A. (2007). Acyl migration kinetics of 2-monoacylglycerols from soybean oil via 1H NMR. Journal of the American Oil Chemists' Society, 84: 343–348.
Contesini F.J., Lopes D.B., Macedo G.A., Nascimento M.d.G., Carvalho P.d.O. (2010). Aspergillus sp. lipase: Potential biocatalyst for industrial use. Journal of Molecular Catalysis B: Enzymatic, 67: 163–171.
Creighton T.E. (1984). Proteins: Structures and molecular properties W.H. Freeman and Co.
Cutlip M.B., Shacham M. (2008). Problem solving in chemical and biochemical engineering with POLYMATH, Excel, and MATLAB. 2nd Ed. Prentice Hall.
da Cunha M.E., Krause L.C., Moraes M.S.A., Faccini C.S., Jacques R.A., Almeida S.R., Rodrigues M.R.A., Caramão E.B. (2009). Beef tallow biodiesel produced in a pilot scale. Fuel Processing Technology, 90: 570–575.
Dąbkowska K., Szewczyk K.W. (2009). Influence of temperature on the activity and enantioselectivity of Burkholderia cepacia lipase in the kinetic resolution of mandelic acid enantiomers. Biochemical Engineering Journal, 46: 147–153.
Danckwerts P.V. (1953). Continuous flow systems: Distribution of residence times. Chemical Engineering Science, 2: 1–13.
Dannenberg F., Kessler H.G. (1988). Reaction kinetics of the denaturation of whey proteins in milk. Journal of Food Science, 53: 258–263.
Demirbas A. (2003). Current advances in alternative motor fuels. Energy, Exploration & Exploitation, 21: 475–487.
Demirbas A. (2007). Progress and recent trends in biofuels. Progress in Energy and Combustion Science, 33: 1–18.
Demirbas A. (2009). Progress and recent trends in biodiesel fuels. Energy Conversion and Management, 50: 14–34.
Deng L., Xu X., Haraldsson G., Tan T., Wang F. (2005). Enzymatic production of alkyl esters through alcoholysis: A critical evaluation of lipases and alcohols. Journal of the American Oil Chemists' Society, 82: 341–347.
Deshmane V.G., Gogate P.R., Pandit A.B. (2009). Ultrasound assisted synthesis of isopropyl esters from palm fatty acid distillate. Ultrasonics Sonochemistry, 16: 345–350.
Dien B.S., Cotta M.A., Jeffries T.W. (2003). Bacteria engineered for fuel ethanol production: current status. Applied Microbiology and Biotechnology, 63: 258–266.
Dismukes G.C., Carrieri D., Bennette N., Ananyev G.M., Posewitz M.C. (2008). Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Current Opinion in Biotechnology, 19: 235–240.
Dizge N., Aydiner C., Imer D.Y., Bayramoglu M., Tanriseven A., Keskinler B. (2009a). Biodiesel production from sunflower, soybean, and waste cooking oils by transesterification using lipase immobilized onto a novel microporous polymer. Bioresource Technology, 100: 1983–1991.
Dizge N., Keskinler B., Tanriseven A. (2009b). Biodiesel production from canola oil by using lipase immobilized onto hydrophobic microporous styrene–divinylbenzene copolymer. Biochemical Engineering Journal, 44: 220–225.
Dossat V., Combes D., Marty A. (1999). Continuous enzymatic transesterification of high oleic sunflower oil in a packed bed reactor: influence of the glycerol production. Enzyme and Microbial Technology, 25: 194–200.
Dossat V., Combes D., Marty A. (2002). Lipase-catalysed transesterification of high oleic sunflower oil. Enzyme and Microbial Technology, 30: 90–94.
Dragone G., Fernandes B., Vicente A.A., Teixeira J.A. (2010). Third generation biofuels from microalgae. Current research, technology and education topics. Applied Microbiology and Microbial Biotechnology, A. Mesndez-Vilas (ed), 1355–1366.
Dring R., Fox P.F. (1983). Purification and characterization of a heat-stable lipase from Pseudomonas fluorescens AFT 29. Irish Journal of Food Science and Technology, 7: 157–171.
Du W., Xu Y., Liu D., Zeng J. (2004). Comparative study on lipase-catalyzed transformation of soybean oil for biodiesel production with different acyl acceptors. Journal of Molecular Catalysis B: Enzymatic, 30: 125–129.
Du W., Xu Y.Y., Liu D.H., Li Z.B. (2005). Study on acyl migration in immobilized lipozyme TL-catalyzed transesterification of soybean oil for biodiesel production. Journal of Molecular Catalysis B: Enzymatic, 37: 68–71.
El-Zanati, Fetouh E.A., Ritchie S.M., Heba Mohamed Abdallah e.a. (2011). Esterification catalysis through functionalized membranes. International Journal of Chemical Reactor Engineering, 9: 1–20.
Fjerbaek L., Christensen K.V., Norddahl B. (2009). A review of the current state of biodiesel production using enzymatic transesterification. Biotechnology and Bioengineering, 102: 1298–1315.
Foresti M.L., Errazu A., Ferreira M.L. (2005). Effect of several reaction parameters in the solvent-free ethyl oleate synthesis using Candida rugosa lipase immobilised on polypropylene. Biochemical Engineering Journal, 25: 69–77.
Fox P.F., Stepaniak L. (1983). Isolation and some properties of extracellular heat-stable lipases from Pseudomonas fluorescens strain AFT 26. Journal of Dairy Research, 50: 77–89.
Freitas L., Da Rós P.C.M., Santos J.C., de Castro H.F. (2009). An integrated approach to produce biodiesel and monoglycerides by enzymatic interestification of babassu oil (Orbinya sp). Process Biochemistry, 44: 1068–1074.
Fukuda H., Kondo A., Noda H. (2001). Biodiesel fuel production by transesterification of oils. Journal of Bioscience and Bioengineering, 92: 405–416.
Fureby A.M., Virto C., Adlercreutz P., Mattiasson B. (1996). Acyl group migrations in 2-monoolein. Biocatalysis and Biotransformation, 14: 89‒111.
Galadima A., Garba Z.N. (2009). Catalytic synthesis of ethyl ester from some common oils. Science World Journal, 4: 1–5.
Garcia C.M., Teixeira S., Marciniuk L.L., Schuchardt U. (2008). Transesterification of soybean oil catalyzed by sulfated zirconia. Bioresource Technology, 99: 6608–6613.
Gheshlaghi R., Scharer J.M., Moo-Young M., Chou C.P. (2009). Metabolic pathways of Clostridia for producing butanol. Biotechnology Advances, 27: 764–781.
Giselrød H.R., Patil V., Tran K. (2008). Towards sustainable production of biofuels from microalgae. International Journal of Molecular Sciences, 9: 1188–1195.
Granados M.L., Poves M.D.Z., Alonso D.M., Mariscal R., Galisteo F.C., Moreno-Tost R., Santamaría J., Fierro J.L.G. (2007). Biodiesel from sunflower oil by using activated calcium oxide. Applied Catalysis B: Environmental, 73: 317–326.
Greer D. (2005). Creating cellulosic ethanol. Spinning straw into fuel. Biocycle, 46: 61–65.
Griffiths M.J., Harrison S.T.L. (2009). Lipid productivity as a key characteristic for choosing algal species for biodiesel production. Journal of Applied Phycology, 21: 493–507.
Gupta R., Gupta N., Rathi P. (2004). Bacterial lipases: an overview of production, purification and biochemical properties. Applied Microbiology and Biotechnology, 64: 763–781.
Halim S.F.A., Kamaruddin A.H., Fernando W.J.N. (2009). Continuous biosynthesis of biodiesel from waste cooking palm oil in a packed bed reactor: Optimization using response surface methodology (RSM) and mass transfer studies. Bioresource Technology, 100: 710–716.
Hallenbeck P.C., Ghosh D. (2009). Advances in fermentative biohydrogen production: the way forward? Trends in Biotechnology, 27: 287–297.
Hama S., Tamalampudi S., Yoshida A., Tamadani N., Kuratani N., Noda H., Fukuda H., Kondo A. (2011a). Enzymatic packed-bed reactor integrated with glycerol-separating system for solvent-free production of biodiesel fuel. Biochemical Engineering Journal, 55: 66–71.
Hama S., Tamalampudi S., Yoshida A., Tamadani N., Kuratani N., Noda H., Fukuda H., Kondo A. (2011b). Process engineering and optimization of glycerol separation in a packed-bed reactor for enzymatic biodiesel production. Bioresource Technology, 102: 10419–10424.
Hasan F., Shah A.A., Hameed A. (2006). Industrial applications of microbial lipases. Enzyme and Microbial Technology, 39: 235–251.
Hasunuma T., Kondo A. (2012). Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering. Biotechnology Advances, 30: 1207–1218.
Hathurusingha S., Ashwath N., Midmore D. (2011). Provenance variations in seed-related characters and oil content of Calophyllum inophyllum L. in northern Australia and Sri Lanka. New Forests, 41: 89–94.
Häussinger P., Lohmüller R., Watson A.M. (2000). Hydrogen, 1. Properties and occurence. Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA.
Hawkes F.R., Dinsdale R., Hawkes D.L., Hussy I. (2002). Sustainable fermentative hydrogen production: challenges for process optimisation. International Journal of Hydrogen Energy, 27: 1339–1347.
Helwani Z., Othman M.R., Aziz N., Fernando W.J.N., Kim J. (2009). Technologies for production of biodiesel focusing on green catalytic techniques: A review. Fuel Processing Technology, 90: 1502–1514.
Henley J.P., Sadana A. (1986). Deactivation theory. Biotechnology and Bioengineering, 28: 1277–1285.
Hernández-Martín E., Otero C. (2008). Different enzyme requirements for the synthesis of biodiesel: Novozym® 435 and Lipozyme® TL IM. Bioresource Technology, 99: 277–286.
Houde A., Kademi A., Leblanc D. (2004). Lipases and their industrial applications. Applied Biochemistry and Biotechnology, 118: 155–170.
Hsu A.F., Jones K., Foglia T., Marmer W. (2004). Continuous production of ethyl esters of grease using an immobilized lipase. Journal of the American Oil Chemists' Society, 81: 749–752.
Huang G., Chen F., Wei D., Zhang X., Chen G. (2010a). Biodiesel production by microalgal biotechnology. Applied Energy, 87: 38–46.
Huang H., Liu H., Gan Y.R. (2010b). Genetic modification of critical enzymes and involved genes in butanol biosynthesis from biomass. Biotechnology Advances, 28: 651–657.
Illman A.M., Scragg A.H., Shales S.W. (2000). Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme and Microbial Technology, 27: 631–635.
Iso M., Chen B., Eguchi M., Kudo T., Shrestha S. (2001). Production of biodiesel fuel from triglycerides and alcohol using immobilized lipase. Journal of Molecular Catalysis B: Enzymatic, 16: 53–58.
Jaeger K.E., Eggert T. (2002). Lipases for biotechnology. Current Opinion in Biotechnology, 13: 390–397.
Janaun J., Ellis N. (2010). Perspectives on biodiesel as a sustainable fuel. Renewable and Sustainable Energy Reviews, 14: 1312–1320.
Jang Y.S., Park J.M., Choi S., Choi Y.J., Seung D.Y., Cho J.H., Lee S.Y. (2012). Engineering of microorganisms for the production of biofuels and perspectives based on systems metabolic engineering approaches. Biotechnology Advances, 30: 989–1000.
Jegannathan K.R., Abang S., Poncelet D., Chan E.S., Ravindra P. (2008). Production of Biodiesel Using Immobilized Lipase–A Critical Review. Critical Reviews in Biotechnology, 28: 253–264.
Jitputti J., Kitiyanan B., Rangsunvigit P., Bunyakiat K., Attanatho L., Jenvanitpanjakul P. (2006). Transesterification of crude palm kernel oil and crude coconut oil by different solid catalysts. Chemical Engineering Journal, 116: 61–66.
Jothiramalingam R., Wang M.K. (2009). Review of recent developments in solid acid, base, and enzyme catalysts (heterogeneous) for biodiesel production via transesterification. Industrial & Engineering Chemistry Research, 48: 6162–6172.
Kaieda M., Samukawa T., Kondo A., Fukuda H. (2001). Effect of methanol and water contents on production of biodiesel fuel from plant oil catalyzed by various lipases in a solvent-free system. Journal of Bioscience and Bioengineering, 91: 12–15.
Karmakar A., Karmakar S., Mukherjee S. (2010). Properties of various plants and animals feedstocks for biodiesel production. Bioresource Technology, 101: 7201–7210.
Kawakami K., Oda Y., Takahashi R. (2011). Application of a Burkholderia cepacia lipase-immobilized silica monolith to batch and continuous biodiesel production with a stoichiometric mixture of methanol and crude Jatropha oil. Biotechnol Biofuels, 4: 42.
Kibazohi O., Sangwan R.S. (2011). Vegetable oil production potential from Jatropha curcas, Croton megalocarpus, Aleurites moluccana, Moringa oleifera and Pachira glabra: Assessment of renewable energy resources for bio-energy production in Africa. Biomass and Bioenergy, 35: 1352–1356.
Kim H.K., Sung M.H., Kim H.M., Oh T.K. (1994). Occurrence of thermostable lipase in thermophilic Bacillus sp. strain 398. Bioscience, Biotechnology, and Biochemistry, 58: 961–962.
Kim S., Dale B.E. (2004). Global potential bioethanol production from wasted crops and crop residues. Biomass and Bioenergy, 26: 361–375.
Klofutar B., Golob J., Likozar B., Klofutar C., Žagar E., Poljanšek I. (2010).The transesterification of rapeseed and waste sunflower oils: Mass-transfer and kinetics in a laboratory batch reactor and in an industrial-scale reactor/separator setup. Bioresource Technology, 101: 3333–3344.
Kodali D.R., Tercyak A., Fahey D.A., Small D.M. (1990). Acyl migration in 1,2-dipalmitoyl-sn-glycerol. Chemistry and Physics of Lipids, 52: 163–170.
Kojima S., Du D., Sato M., Park E.Y. (2004). Efficient production of fatty acid methyl ester from waste activated bleaching earth using diesel oil as organic solvent. Journal of Bioscience and Bioengineering, 98: 420–424.
Kristjánsson M.M., Kinsella J.E. (1991). Protein and enzyme stability: Structural, thermodynamic, and experimental aspects. Advances in Food and Nutrition Research. E.K. John, Academic Press. 35: 237–316.
Kulkarni M.G., Dalai A.K. (2006). Waste cooking oil–An economical source for biodiesel: A Review. Industrial & Engineering Chemistry Research, 45: 2901–2913.
Kumar A., Sharma S. (2011). Potential non-edible oil resources as biodiesel feedstock: An Indian perspective. Renewable and Sustainable Energy Reviews, 15: 1791–1800.
Kumar Biswas P., Pohit S., Kumar R. (2010). Biodiesel from jatropha: Can India meet the 20% blending target? Energy Policy, 38: 1477–1484.
Kumari A., Mahapatra P., Garlapati V.K., Banerjee R. (2009). Enzymatic transesterification of Jatropha oil. Biotechnol Biofuels, 2: 1.
Kumari V., Shah S., Gupta M.N. (2006). Preparation of biodiesel by lipase–catalyzed transesterification of high free fatty acid containing oil from Madhuca indica. Energy & Fuels, 21: 368–372.
Kuwajima K., Sugai S. (1978). Equilibrium and kinetics of the thermal unfolding of α-lactalbumin. The relation to its folding mechanism. Biophysical Chemistry, 8: 247–254.
Lam M.K., Lee K.T., Mohamed A.R. (2009). Sulfated tin oxide as solid superacid catalyst for transesterification of waste cooking oil: An optimization study. Applied Catalysis B: Environmental, 93: 134–139.
Lara Pizarro A.V., Park E.Y. (2003). Lipase-catalyzed production of biodiesel fuel from vegetable oils contained in waste activated bleaching earth. Process Biochemistry, 38: 1077–1082.
Laszlo J.A., Compton D.L., Vermillion K.E. (2008). Acyl migration kinetics of vegetable oil 1,2-diacylglycerols. Journal of the American Oil Chemists' Society, 85: 307–312.
Lee J.H., Kim S.B., Park C., Tae B., Han S.O., Kim S.W. (2010). Development of batch and continuous processes on biodiesel production in a packed-bed reactor by a mixture of immobilized Candida rugosa and Rhizopus oryzae lipases. Applied Biochemistry and Biotechnology, 161: 365–371.
Lee J.S., Saka S. (2010). Biodiesel production by heterogeneous catalysts and supercritical technologies. Bioresource Technology, 101: 7191–7200.
Leung D.Y.C., Wu X., Leung M.K.H. (2010). A review on biodiesel production using catalyzed transesterification. Applied Energy, 87: 1083–1095.
Li L., Du W., Liu D., Wang L., Li Z. (2006). Lipase-catalyzed transesterification of rapeseed oils for biodiesel production with a novel organic solvent as the reaction medium. Journal of Molecular Catalysis B: Enzymatic, 43: 58–62.
Li W., Du W., Li Q., Li R.W., Liu D. (2010c). Dependence on the properties of organic solvent: Study on acyl migration kinetics of partial glycerides. Bioresource Technology, 101: 5737–5742.
Li W., Du W., Li Q., Sun T., Liu D. (2010a). Study on acyl migration kinetics of partial glycerides: Dependence on temperature and water activity. Journal of Molecular Catalysis B: Enzymatic, 63, 17–22.
Li W., Du W.,Liu D.H. (2007a). Rhizopus oryzae IFO 4697 whole cell-catalyzed methanolysis of crude and acidified rapeseed oils for biodiesel production in tert-butanol system. Process Biochemistry, 42: 1481–1485.
Li W., Li R.W., Li Q., Du W., Liu D. (2010b). Acyl migration and kinetics study of 1(3)-positional specific lipase of Rhizopus oryzae-catalyzed methanolysis of triglyceride for biodiesel production. Process Biochemistry, 45: 1888–1893.
Li X., Xu H., Wu Q. (2007b). Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnology and Bioengineering, 98: 764‒771.
Liu C.H., Chen W.M., Chang J.S. (2007). Methods for rapid screening and isolation of bacteria producing acidic lipase: Feasibility studies and novel activity assay protocols. World Journal of Microbiology and Biotechnology, 23: 633–640.
Liu C.H., Chang J.S. (2008). Lipolytic activity of suspended and membrane immobilized lipase originating from indigenous Burkholderia sp. C20. Bioresource Technology, 99: 1616–1622.
Liu C.H., Lin Y.H., Chen C.Y., Chang J.S. (2009). Characterization of Burkholderia lipase immobilized on celite carriers. Journal of the Taiwan Institute of Chemical Engineers, 40: 359–363.
Liu C.H., Huang C.C., Wang Y.W., Lee D.J., Chang J.S. (2012a). Biodiesel production by enzymatic transesterification catalyzed by Burkholderia lipase immobilized on hydrophobic magnetic particles. Applied Energy, 100: 41–46.
Liu C.H., Huang C.C., Wang Y.W., Chang J.S. (2012b). Optimizing lipase production from isolated Burkholderia sp. Journal of the Taiwan Institute of Chemical Engineers, 43: 511–516.
Lortie R., Pelletier D. (1992). Comparison between dispersion and plug-flow models for fixed-bed enzyme reactors. AIChE Journal, 38: 1477–1480.
Lortie R. (1994). Evaluation of the performance of immobilized enzyme reactors with michaelis–Menten kinetics. Journal of Chemical Technology & Biotechnology, 60: 189–193.
Lu J., Nie K., Wang F., Tan T. (2008). Immobilized lipase Candida sp. 99-125 catalyzed methanolysis of glycerol trioleate: Solvent effect. Bioresource Technology, 99: 6070–6074.
Lu J., Nie K., Xie F., Wang F., Tan T. (2007). Enzymatic synthesis of fatty acid methyl esters from lard with immobilized Candida sp. 99-125. Process Biochemistry, 42: 1367–1370.
Lv P., Wang X., Yuan Z., Tan T. (2008). Conversion of soybean oil to biodiesel fuel with immobilized Candida lipase on textile cloth. Energy Sources, Part A: Recovery, utilization, and environmental effects, 30: 872–879.
Lynd L.R., Zyl W.H.v., McBride J.E., Laser M. (2005). Consolidated bioprocessing of cellulosic biomass: an update. Current Opinion in Biotechnology, 16: 577–583.
Lyubachevskaya G., Boyle-Roden E. (2000). Kinetics of 2-monoacylglycerol acyl migration in model chylomicra. Lipids, 35: 1353–1358.
Mammarella E.J., Rubiolo A.C. (2006). Predicting the packed-bed reactor performance with immobilized microbial lactase. Process Biochemistry, 41: 1627–1636.
Marangoni A.G. (2003). Two-substrate reactions. Enzyme Kinetics, John Wiley & Sons, Inc.: 90–101.
Marchetti J.M., Miguel V.U., Errazu A.F. (2007). Possible methods for biodiesel production. Renewable and Sustainable Energy Reviews, 11: 1300–1311.
Mata T. M., Martins A.A., Caetano N.S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable Sustainable Energy Reviews, 14: 217–232.
McKendry P. (2002). Energy production from biomass (part 1): overview of biomass. Bioresource Technology, 83: 37–46.
Meher L.C., Vidya Sagar D., Naik S.N. (2006). Technical aspects of biodiesel production by transesterification—a review. Renewable and Sustainable Energy Reviews, 10: 248–268.
Meunier S.M., Legge R.L. (2010). Evaluation of diatomaceous earth as a support for sol–gel immobilized lipase for transesterification. Journal of Molecular Catalysis B: Enzymatic, 62: 53–57.
Miller C., Austin H., Posorske L., Gonzlez J. (1988). Characteristics of an immobilized lipase for the commercial synthesis of esters. Journal of the American Oil Chemists’ Society, 65: 927–931.
Millqvist Fureby A., Vitro C., Adlercreutz P., Mattiasson B. (1996). Acyl group migrations in 2-monoolein. Biocatalysis and Biotransformation, 14: 89–111.
Mittelbach M. (1990). Lipase catalyzed alcoholysis of sunflower oil. Journal of the American Oil Chemists' Society, 67: 168–170.
Momirlan M., Veziroǧlu T. (1999). Recent directions of world hydrogen production. Renewable and Sustainable Energy Reviews, 3: 219–231.
Momirlan M., Veziroglu T.N. (2002). Current status of hydrogen energy. Renewable and Sustainable Energy Reviews, 6: 141–179.
Naik S.N., Goud V.V., Rout P.K., Dalai A.K. (2009). Production of first and second generation biofuels: A comprehensive review. Renewable and Sustainable Energy Reviews, 14: 578–597.
Naik S.N., Goud V.V., Rout P.K., Dalai A.K. (2010). Production of first and second generation biofuels: A comprehensive review. Renewable and Sustainable Energy Reviews, 14: 578–597.
Ngo H.L., Zafiropoulos N.A., Foglia T.A., Samulski E.T., Lin W. (2007). Efficient two-step synthesis of biodiesel from greases. Energy & Fuels, 22: 626–634.
Nie K., Xie F., Wang F., Tan T. (2006). Lipase catalyzed methanolysis to produce biodiesel: Optimization of the biodiesel production. Journal of Molecular Catalysis B: Enzymatic, 43: 142–147.
Nijhuis T.A., Beers A.E.W., Kapteijn F., Moulijn J.A. (2002). Water removal by reactive stripping for a solid-acid catalyzed esterification in a monolithic reactor. Chemical Engineering Science, 57: 1627–1632.
Noel M., Combes D. (2003). Effects of temperature and pressure on Rhizomucor miehei lipase stability. Journal of Biotechnology, 102: 23–32.
Noureddini H., Gao X., Philkana R.S. (2005). Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Bioresource Technology, 96: 769–777.
Oda M., Kaieda M., Hama S., Yamaji H., Kondo A., Izumoto E., Fukuda H. (2005). Facilitatory effect of immobilized lipase-producing Rhizopus oryzae cells on acyl migration in biodiesel–fuel production. Biochemical Engineering Journal, 23: 45–51.
Olusesan A.T., Azura L.K., Forghani B., Bakar F.A., Mohamed A.K.S., Radu S., Manap M.Y.A., Saari N. (2011). Purification, characterization and thermal inactivation kinetics of a non-regioselective thermostable lipase from a genotypically identified extremophilic Bacillus subtilis NS 8. New Biotechnology, 28: 738–745.
Ortega N., de Diego S., Perez-Mateos M., Busto M.D. (2004). Kinetic properties and thermal behaviour of polygalacturonase used in fruit juice clarification. Food chemistry, 88: 209–217.
Owusu R.K., Berthalon N. (1993). A test for the two stage thermo inactivation model for chymotrypsin. Food Chemistry, 48: 231–235.
Owusu R.K., Makhzoum A., Knapp J.S. (1992). Heat inactivation of lipase from psychrotrophic Pseudomonas fluorescens P38: activation parameters and enzyme stability at low or ultra-high temperatures. Food chemistry, 44: 261–268.
Paiva A.L., Balcão V.M., Malcata F.X. (2000). Kinetics and mechanisms of reactions catalyzed by immobilized lipases. Enzyme and Microbial Technology, 27: 187–204.
Park E.Y., Sato M., Kojima S. (2006). Fatty acid methyl ester production using lipase-immobilizing silica particles with different particle sizes and different specific surface areas. Enzyme and Microbial Technology, 39: 889–896.
Park E.Y., Sato M., Kojima S. (2008). Lipase-catalyzed biodiesel production from waste activated bleaching earth as raw material in a pilot plant. Bioresource Technology, 99: 3130–3135.
Persson M., Costes D., Wehtje E., Adlercreutz P. (2002). Effects of solvent, water activity and temperature on lipase and hydroxynitrile lyase enantioselectivity. Enzyme and Microbial Technology, 30: 916–923.
Pogaku R. (2012). Evaluation of activation energy and thermodynamic properties of enzyme-catalysed transesterification reactions. Advances in Chemical Engineering and Science, 02: 150–154.
Přenosil J.E., Kut Ö.M., Dunn I.J., Heinzle E. (2009). Biocatalysis, 2. Immobilized biocatalysts. Ullmann's Encyclopedia of Industrial Chemistry.
Prommuak C., Pavasant P., Quitain A.T., Goto M., Shotipruk A. (2012). Microalgal lipid extraction and evaluation of single-step biodiesel production. Engineering Journal, 16: 157–166.
Radovich J.M. (1985). Mass transfer effects in fermentations using immobilized whole cells. Enzyme and Microbial Technology, 7: 2–10.
Raita M., Champreda V., Laosiripojana N. (2010). Biocatalytic ethanolysis of palm oil for biodiesel production using microcrystalline lipase in tert-butanol system. Process Biochemistry, 45: 829–834.
Rajvanshi S., Sharma M.P. (2012). Micro algae: A potential source of biodiesel. Journal of Sustainable Bioenergy Systems, 2: 49–59.
Ranganathan S.V., Narasimhan S.L., Muthukumar K. (2008). An overview of enzymatic production of biodiesel. Bioresource Technology, 99: 3975–3981.
Reddy K.A., Doraiswamy L.K. (1967). Estimating liquid diffusivity. National Chemical Laboratory, Poona, India.
Refaat A.A. (2011). Biodiesel production using solid metal oxide catalysts. Journal of Environmental Science and Technology, 8: 203–221.
Reis P., Holmberg K., Watzke H., Leser M.E., Miller R. (2009). Lipases at interfaces: A review. Advances in Colloid and Interface Science, 147–148: 237–250.
Ribeiro B.D., de Castro A.M., Coelho M.A., Freire D.M. (2011). Production and use of lipases in bioenergy: a review from the feedstocks to biodiesel production. Enzyme Research, 2011: 615803. doi:10.4061/2011/615803.
Royon D., Daz M., Ellenrieder G., Locatelli S. (2007). Enzymatic production of biodiesel from cotton seed oil using t-butanol as a solvent. Bioresource Technology, 98: 648–653.
Salis A., Pinna M., Monduzzi M., Solinas V. (2005). Biodiesel production from triolein and short chain alcohols through biocatalysis. Journal of Biotechnology, 119: 291–299.
Salis A., Pinna M., Monduzzi M., Solinas V. (2008). Comparison among immobilised lipases on macroporous polypropylene toward biodiesel synthesis. Journal of Molecular Catalysis B: Enzymatic, 54: 19–26.
Salum T.F.C., Villeneuve P., Barea B., Yamamoto C.I., Côcco L.C., Mitchell D.A., Krieger N. (2010). Synthesis of biodiesel in column fixed-bed bioreactor using the fermented solid produced by Burkholderia cepacia LTEB11. Process Biochemistry, 45: 1348–1354.
Samukawa T., Kaieda M., Matsumoto T., Ban K., Kondo A., Shimada Y., Noda H., Fukuda H. (2000). Pretreatment of immobilized Candida antarctica lipase for biodiesel fuel production from plant oil. Journal of Bioscience and Bioengineering, 90: 180–183.
Sanchez F., Vasudevan P. (2006). Enzyme catalyzed production of biodiesel from olive oil. Applied Biochemistry and Biotechnology, 135: 1–14.
Santos A.M.P., Oliveira M.G., Maugeri F. (2007). Modelling thermal stability and activity of free and immobilized enzymes as a novel tool for enzyme reactor design. Bioresource Technology, 98: 3142–3148.
Sawangkeaw R., Bunyakiat K., Ngamprasertsith S. (2011). Continuous production of biodiesel with supercritical methanol: Optimization of a scale-up plug flow reactor by response surface methodology. Fuel Processing Technology, 92: 2285–2292.
Saxena R.K., Sheoran A., Giri B., Davidson W.S. (2003). Purification strategies for microbial lipases. Journal of Microbiological Methods, 52: 1–18.
Schenk P., Thomas-Hall S., Stephens E., Marx U., Mussgnug J., Posten C., Kruse O., Hankamer B. (2008). Second generation biofuels: Highefficiency microalgae for biodiesel production. Bioenergy Research, 1: 20–43.
Searchinger T., Heimlich R., Houghton R.A., Dong F., Elobeid A., Fabiosa J. (2008). Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science, 319: 1238–1240.
Segel I.H. (1976). Biochemical calculations: How to solve mathematical problems in general biochemistry. New York, John Wiley and Sons.
Sen T., Bruce I.J. (2009). Mesoporous silica–magnetite nanocomposites: Fabrication, characterisation and applications in biosciences. Microporous and Mesoporous Materials, 120: 246–251.
Serdarevich B. (1967). Glyceride isomerizations in lipid chemistry. Journal of the American Oil Chemists' Society, 44: 381–393.
Séverac E., Galy O., Turon F., Monsan P., Marty A. (2011). Continuous lipase-catalyzed production of esters from crude high-oleic sunflower oil. Bioresource Technology, 102: 4954–4961.
Shah S., Gupta M.N. (2007). Lipase catalyzed preparation of biodiesel from Jatropha oil in a solvent free system. Process Biochemistry, 42: 409–414.
Shah S., Sharma S., Gupta M.N. (2004). Biodiesel preparation by lipase-catalyzed transesterification of Jatropha oil. Energy & Fuels, 18: 154–159.
Shariff F.M., Rahman R.N., Basri M., Salleh A.B. (2011). A newly isolated thermostable lipase from Bacillus sp. International Journal of Molecular Science, 12: 2917–2934.
Sharma Y.C., Singh B. (2009). Development of biodiesel: Current scenario. Bioresource Technology, 13: 1646–1651.
Sharma Y.C., Singh B., Upadhyay S.N. (2008). Advancements in development and characterization of biodiesel: A review. Fuel, 87: 2355–2373.
Shaw J.F., Chang S.W., Lin S.C., Wu T.T., Ju H.Y., Akoh C.C., Chang R.H., Shieh C.J. (2008). Continuous enzymatic synthesis of biodiesel with Novozym 435. Energy & Fuels, 22: 840–844.
Sheehan J., Dunahay T., Benemann J., Roessler P. (1998). A look back at the US department of energy’s aquatic species program–Biodiesel from algae. National Renewable Energy Laboratory (NREL) Report.
Shieh C.J., Liao H.F., Lee C.C. (2003). Optimization of lipase-catalyzed biodiesel by response surface methodology. Bioresource Technology, 88: 103–106.
Shimada Y., Watanabe Y., Samukawa T., Sugihara A., Noda H., Fukuda H., Tominaga Y. (1999). Conversion of vegetable oil to biodiesel using immobilized Candida antarctica lipase. Journal of the American Oil Chemists' Society, 76: 789–793.
Shimada Y., Watanabe Y., Sugihara A., Tominaga Y. (2002). Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing. Journal of Molecular Catalysis B: Enzymatic, 17: 133–142.
Shimada Y., Watanabe Y., Sugihara A., Tominaga Y. (2002). Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing. Journal of Molecular Catalysis B: Enzymatic, 17: 133–142.
Shuler M.L., Kargi F. (2002). Bioprocess Engineering: Basic Concepts. Prentice Hall.
Sim J.H., Harun @ Kamaruddin A., Bhatia S. (2009). Effect of mass transfer and enzyme loading on the biodiesel yield and reaction rate in the enzymatic transesterification of crude Palm oil. Energy & Fuels, 23: 4651–4658.
Sims R., Taylor M., Saddler J., Mabee W. (2008). From 1st to 2nd generation biofuel technologies. IEA Bioenergy, 111–119.
Sims R.E.H., Mabee W., Saddler J.N., Taylor M. (2010). An overview of second generation biofuel technologies. Bioresource Technology, 101: 1570–1580.
Sivasamy A., Cheah K.Y., Fornasiero P., Kemausuor F., Zinoviev S., Miertus S. (2009). Catalytic applications in the production of biodiesel from vegetable Oils. ChemSusChem, 2: 278–300.
Socrates G. Infrared and Raman characteristic group frequencies: Tables and charts. New Jersey, John Wiley & Sons., Ltd.
Soumanou M.M., Bornscheuer U.T. (2003). Improvement in lipase-catalyzed synthesis of fatty acid methyl esters from sunflower oil. Enzyme and Microbial Technology, 33: 97–103.
Spolaore P., Joannis-Cassan C., Duran E., Isambert A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101: 87–96.
Stamenkovic O.S., Todorovic Z.B., Lazic M.L., Veljkovic V.B., Skala D.U. (2008). Kinetics of sunflower oil methanolysis at low temperatures. Bioresource Technology, 99: 1131–1140.
Stamenkovic O.S., Veljkovic V.B., Todorovic Z.B., Lazic M.L., Bankovic-Ilic I.B., Skala D.U. (2010). Modeling the kinetics of calcium hydroxide catalyzed methanolysis of sunflower oil. Bioresource Technology, 101: 4423–4430.
Stevenson D.E., Stanley R.A., Furneaux R.H. (1994). Near-quantitative production of fatty acid alkyl esters by lipase-catalyzed alcoholysis of fats and oils with adsorption of glycerol by silica gel. Enzyme and Microbial Technology, 16: 478–484.
Strik D.P.B.T.B., Hamelers H.V.M., Snel J.F.H., Buisman C.J.N. (2008). Green electricity production with living plants and bacteria in a fuel cell. International Journal of Energy Research, 32: 870–876.
Suali E., Sarbatly R. (2012). Conversion of microalgae to biofuel. Renewable and Sustainable Energy Reviews, 16: 4316–4342.
Taher H., Al-Zuhair S., Al-Marzouqi A.H., Haik Y., Farid M.M. (2011). A review of enzymatic transesterification of microalgal oil-based biodiesel using supercritical technology. Enzyme Res, 2011: 468292.
Tamalampudi S., Talukde M.R., Hama S., Numata T., Kondo A., Fukuda H., 2008. Enzymatic production of biodiesel from Jatropha oil: A comparative study of immobilized-whole cell and commercial lipases as a biocatalyst. Biochemical Engineering Journal, 39: 185–189.
Tan T., Lu J., Nie K., Deng L., Wang F. (2010). Biodiesel production with immobilized lipase: A review. Biotechnology Advances, 28: 628–634.
Tan T., Nie K., Wang F. (2006). Production of biodiesel by immobilized Candida sp. lipase at high water content. Applied Biochemistry and Biotechnology, 128: 109–116.
Tran D.T., Chen C.L., Chang J.S. (2012a). Immobilization of Burkholderia sp. lipase on a ferric silica nanocomposite for biodiesel production. Journal of Biotechnology, 158: 112–119.
Tran D.T., Chen C.L., Chang J.S. (2013a). Effect of solvents and oil content on direct transesterification of wet oil-bearing microalgal biomass of Chlorella vulgaris ESP-31 for biodiesel synthesis using immobilized lipase as the biocatalyst. Bioresource Technology, 135: 213–221.
Tran D.T., Lin Y.J., Chen C.L., Chang J.S. (2013b). Kinetics of transesterification of olive oil with methanol catalyzed by immobilized lipase derived from an isolated Burkholderia sp. strain. Bioresour. Technol. In Press.
Tran D.T., Yeh K.L., Chen C.L., Chang J.S. (2012b). Enzymatic transesterification of microalgal oil from Chlorella vulgaris ESP-31 for biodiesel synthesis using immobilized Burkholderia lipase. Bioresource Technology, 108: 119–127.
Turner N.A., Duchateau D.B., Vulfson E.N. (1995). Effect of hydration on thermostability. Biotechnology Letters, 17: 371–376.
Ueki Y. (2011). Rapid biodiesel fuel production using novel fibrous catalyst synthesized by radiation-induced graft polymerization. International Journal of Organic Chemistry, 1: 20–25.
Véras I.C., Silva F.A.L., Ferrão-Gonzales A.D., Moreau V.H. (2011). One-step enzymatic production of fatty acid ethyl ester from high-acidity waste feedstocks in solvent-free media. Bioresource Technology, 102: 9653–9658.
Vyas A.P., Verma J.L., Subrahmanyam N. (2010). A review on FAME production processes. Fuel, 89: 1–9.
Wang B., Li Y., Wu N., Lan C. (2008). CO2 bio-mitigation using microalgae. Applied Microbiology and Biotechnology, 79: 707–718.
Wang J.X., Huang Q.D., Huang F.H., Wang J.W., Huang Q.J. (2007). Lipase-catalyzed production of biodiesel from high acid value waste oil using ultrasonic assistant. Chinese Journal of Biotechnology, 23: 1121–1128.
Wang X., Dou P., Zhao P., Zhao C., Ding Y., Xu P. (2009). Immobilization of lipases onto magnetic Fe3O4 nanoparticles for application in biodiesel production. ChemSusChem, 2: 947–950.
Wang Y., Wu H., Zong M.H. (2008). Improvement of biodiesel production by lipozyme TL IM-catalyzed methanolysis using response surface methodology and acyl migration enhancer. Bioresource Technology, 99: 7232–7237.
Wang Y.W. (2010). Burkholderia lipase production, immobilization and applications in biodiesel synthesis, Master Thesis, Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan, R. O. C.
Warabi Y., Kusdiana D., Saka S. (2004). Biodiesel fuel from vegetable oil by various supercritical alcohols. Applied Biochemistry and Biotechnology, 115: 793–801.
Watanabe Y., Pinsirodom P., Nagao T., Kobayashi T., Nishida Y., Takagi Y., Shimada Y. (2005). Production of FAME from acid oil model using immobilized Candida antarctica lipase. Journal of the American Oil Chemists' Society, 82: 825–831.
Watanabe Y., Pinsirodom P., Nagao T., Yamauchi A., Kobayashi T., Nishida Y., Takagi Y., Shimada Y. (2007). Conversion of acid oil by-produced in vegetable oil refining to biodiesel fuel by immobilized Candida antarctica lipase. Journal of Molecular Catalysis B: Enzymatic, 44: 99–105.
Watanabe Y., Shimada Y., Sugihara A., Noda H., Fukuda H., Tominaga Y. (2000). Continuous production of biodiesel fuel from vegetable oil using immobilized Candida antarctica lipase. Journal of the American Oil Chemists' Society, 77: 355–360.
Watanabe Y., Shimada Y., Sugihara A., Tominaga Y. (2001). Enzymatic conversion of waste edible oil to biodiesel fuel in a fixed-bed bioreactor. Journal of the American Oil Chemists' Society, 78: 703–707.
Welty J.R., Wicks C.E., Wilson R.E., Rorrer G. (2001). Fundamentals of momentum, heat and mass transfer, fourth ed., John Wiley & Sons, New York.
Whitaker J.R. (1994). Principles of enzymology for the food sciences. 270 Madison Ave., New York, NY 10016, Marcel Dekker, Inc.
Williams P.J.B., Laurens L.M.L. (2010). Microalgae as biodiesel & biomass feedstocks: Review & analysis of the biochemistry, energetics & economics. Energy & Environmental Science, 3: 554–590.
Xin J.Y., Chen L.l., Zhang Y.x., Zhang S., Xia C.G. (2011). Lipase-catalyzed transesterification of ethyl ferulate with triolein in solvent-free medium. Food and Bioproducts Processing, 89: 457–462.
Xing M.N., Zhang X.Z., Huang H. (2012). Application of metagenomic techniques in mining enzymes from microbial communities for biofuel synthesis. Biotechnology Advances, 30: 920–929.
Xiu G.H., Jiang L., Li P. (2001). Mass-transfer limitations for immobilized enzyme-catalyzed kinetic resolution of racemate in a fixed-bed reactor. Biotechnology and Bioengineering, 74: 29–39.
Xu X. (2005). Modification of oils and fats by lipase-catalyzed interesterification: Aspects of process engineering. Enzymes in lipid modification. Bornscheuer U.T. Germany, Wiley-VCH Verlag GmbH & Co. KGaA: 190–215.
Xu Y., Du W., Liu D. (2005). Study on the kinetics of enzymatic interesterification of triglycerides for biodiesel production with methyl acetate as the acyl acceptor. Journal of Molecular Catalysis B: Enzymatic, 32: 241–245.
Yamane T. (1987). Enzyme technology for the lipids industry: An engineering overview. Journal of the American Oil Chemists' Society, 64: 1657–1662.
Ye X., Wang Y., Hopkins R.C., Adams M.W.W., Evans B.R., Mielenz J.R., Zhang Y.H.P. (2009). Spontaneous high-yield production of hydrogen from cellulosic materials and water catalyzed by enzyme cocktails. ChemSusChem, 2: 149–152.
Yeh K.L., Chang J.S. (2011). Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: Implications for biofuels. Biotechnology Journal, 6: 1358–1366.
Yeh K.L., Chang J.S., Chen W.M. (2010). Effect of light supply and carbon source on cell growth and cellular composition of a newly isolated microalga Chlorella vulgaris ESP-31. Engineering in Life Sciences, 10: 201–208.
Yesiloglu Y. (2004). Immobilized lipase-catalyzed ethanolysis of sunflower oil. Journal of the American Oil Chemists' Society, 81: 157–160.
Yong Y.P., Al-Duri B. (1996). Kinetic studies on immobilised lipase esterification of oleic acid and octanol. Journal of Chemical Technology & Biotechnology, 65: 239–248.
Yoshida A., Hama S., Tamadani N., Noda H., Fukuda H., Kondo A. (2012). Continuous production of biodiesel using whole-cell biocatalysts: Sequential conversion of an aqueous oil emulsion into anhydrous product. Biochemical Engineering Journal, 68: 7–11.
Yu J., Zhang T., Zhong J., Zhang X., Tan T. (2012). Biorefinery of sweet sorghum stem. Biotechnology Advances, 30: 811–816.
Zhang S., Zu Y.G., Fu Y.J., Luo M., Zhang D.Y., Efferth T. (2010). Rapid microwave-assisted transesterification of yellow horn oil to biodiesel using a heteropolyacid solid catalyst. Bioresource Technology, 101: 931–936.
Zhang T., Yang L., Zhu Z. (2005). Determination of internal diffusion limitation and its macroscopic kinetics of the transesterification of CPB alcohol catalyzed by immobilized lipase in organic media. Enzyme and Microbial Technology, 36: 203–209.
Zhang T., Yang L., Zhu Z., Wu J. (2002). The kinetic study on lipase-catalyzed transesterification of α-cyano-3-phenoxybenzyl alcohol in organic media. Journal of Molecular Catalysis B: Enzymatic, 18: 315–323.
Zhang Y.H.P. (2009). A sweet out-of-the-box solution to the hydrogen economy: is the sugar-powered car science fiction? Energy & Environmental Science, 2: 272–282.
Zhang Y.H.P. (2010). Production of biocommodities and bioelectricity by cell-free synthetic enzymatic pathway biotransformations: Challenges and opportunities. Biotechnology and Bioengineering, 105: 663–677.
Zhang Y.H.P., Barbara R.E., Jonathan R.M., Robert C.H., Michael W.W.A. (2007). High-yield hydrogen production from starch and water by a synthetic enzymatic pathway. PLoS ONE, 2
Zhang Y.H.P., Sun J., Zhong J.J. (2010). Biofuel production by in vitro synthetic enzymatic pathway biotransformation. Current Opinion in Biotechnology, 21: 663–669.
Zhou Q.Z.K., Chen X.D. (2001). Effects of temperature and pH on the catalytic activity of the immobilized β-galactosidase from Kluyveromyces lactis. Biochemical Engineering Journal, 9: 33–40.