| 研究生: |
陳漢珍 Chen, Han-Jan |
|---|---|
| 論文名稱: |
應用於射頻前端模組之天線、濾波器與放大器
非線性效應之研究 Nonlinearity Improvement of Antennas, Filters and Amplifiers for a RF Front-End Module |
| 指導教授: |
洪茂峰
Houng, Mau-Phon |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 英文 |
| 論文頁數: | 199 |
| 中文關鍵詞: | 非正交 、雙模態 、封裝接地效應 、低雜訊放大器 、混附波壓抑 、濾波器 、天線 、通訊協定 、光子能隙 、十字型缺陷接地面結構 、品質因數 |
| 外文關鍵詞: | antenna, LNA, filter, dual-mode, non-orthogonal, spurious suppression, package, quality factor, photonic bandgap (PBG), nonlinear effect, communication protocols, cross-shape |
| 相關次數: | 點閱:169 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
無線通訊網路的快速發展,直接帶動了民生5C的產品發展與製造。而通訊產品的需求除了基本的輕、薄、短、小與低成本外,多功能與多頻的操作則為目前市場的主流。且通訊協定由IEEE 802.11演變至目前當紅之IEEE 802.16的UWB與WiMax,除了信號解調與傳輸速度的大演進外,與多媒體的結合亦帶動了現今手機一機多用的風潮。正因如此,使得生活更加豐富、通訊更便利,促成了隨時隨地的無線行動通訊。伴隨著市場需求與通訊技術的進步,所需之系統與元件的規格亦隨著演進與更加嚴格,因此多功能元件的研發與量產製造正是符合現今通訊要求的唯一途徑。系統與元件規格的改變,勢必將使得元件或是整體系統的特性產生變化,而非線性效應的影響將主導整體的實用性。因此,關鍵性元件的非線性效應將於論文中討論,且在不增加元件尺寸與維持通帶特性的前提下,降低或消除非線性效應,來獲得良好特性之通訊系統;品質因數對元件特性影響亦有討論與驗證。吾人於本研究中,將針對關鍵性元件如天線、濾波器與放大器等的組成與非線性效應作一探討,且各針對其屬性與特質來完成改善或壓抑其非線性效應。此外,吾人亦針對品質因數對元件的影響作一研究,以期獲得元件設計時的一重要依據,並以一放大器設計來說明與佐證之。
首先將針對通訊協定作一介紹,吾人以IEEE 802.11系列作為範例說明。在了解通訊協定後,對於整體系統與元件的需求將有更客觀的認知與能更具體的分析。此外,吾人亦於論文中將目前業界現況與學術研究一起溶入比較,以期開發出兼具實用性與理論性之研究。
光子能隙(photonic bandgap,PBG)的概念已在最近幾年應用至微波領域,主要衍生出有電子能隙(electromagnetic bandgap,EBG)與缺陷接地結構(defected ground structure,DGS),其主要功能為產生具有濾波效果的特性。由於週期性的排列與分佈,將使得特定頻率產生止帶或是通帶的頻率響應,且廣泛的被應用於元件與系統之中,如天線、濾波器、功率放大器、震盪器與混頻器等。但其設計理論複雜與結構參數太多而限制其實用性,幾乎僅止於學術研究之用。因此,吾人首先以傳輸線理論與模型來詮釋其物理特性,並以DGS結構來作為範例與實驗;輔以濾波器等效電路來作為定性之分析。討論中可發現不同週期將可分別獲得止帶衰減量高或是寬頻止帶之頻率特性。根據上述分析,吾人亦開發出一實用性高、具學術理論且亦於量產之十字型缺陷接地面結構(cross-shape DGS,CSDGS)。其具有平坦的通帶特性、結構簡易、理論完整、衰減率高與超寬頻之止帶特性。且成功的應用於設計低通、帶通濾波器與天線上;所設計之CSDGS亦同時具有易於積體化與封裝之特點,適用於3D多層設計與符合SIP(system in packaging)之技術。
濾波器一直是通訊系統中面積最大與變化最多之關鍵性元件。由於根據半波長或是四分之一波長設計準則,因此縮小面積一直是濾波器設計的重點。而雙模態濾波器正可符合面積小之設計,但其正交(orthogonal)輸出入與嚴重的混附波響應則大大的限制其應用。由傳輸線與網路理論分析,吾人發現一對傳輸零點的產生乃根據交錯式耦合效應,因此只要能提供產生交錯式耦合效應之設計,正交輸出入則不再需要。且吾人亦提出一簡易有效率之方法來壓抑混附波響應,所根據的理論乃破壞高次諧波的耦合來獲得良好的壓抑。於文中提出各兩種非正交輸出入與混附波壓抑之雙模態濾波器來佐證與說明吾人之理論與觀點。
通訊系統的線性度、增益與雜訊主要取決於放大器之特性。因此良好的放大器特性將決定通訊系統的優劣,其中低雜訊放大器(low noise amplifier,LNA)對於整體接收機影響甚鉅。此外,鏡像(image)與諧波(harmonics)信號的干擾對於系統之線性度與信號解調的判讀影響甚大。一般通訊架構皆以外加一濾波器來獲得改善,但此法卻會產生多餘的損失與過大的面積。有鑑於此,吾人以設計多功能元件為概念來設計LNA,亦即保有所需通帶之特性外,能同時壓抑鏡像與高次諧波之用。此外,吾人亦考量封裝時所衍生之整體封裝接地效應於設計中,並成功運用其所產生之package-induced cross-coupling effect於高次協波之壓抑,且有超過40dB之壓抑。對於元件與系統線性度有重大的改善。
在設計被動元件時,品質因數一直是重要設計參數之一。於主動元件或是系統設計時,卻鮮少有相關之研究。由雜訊與傳輸線匹配網路分析中可發現,品質因數對於雜訊指數有接近反比之定性趨勢;在匹配網路中則影響理想電感與電容的實現。因此,於論文則先探討品質因數對於雜訊與匹配電路之影響;其次對於所使用基板的微波介電特性,吾人提出一改善型雙傳輸線法來精準量測。精確獲得基板介電特性與品質因數將有助於元件與系統的良好設計。最後,吾人設計實做一放大器來說明與驗證品質因數對元件特性之影響。
最後,吾人會對於博士論文的研究做一總結。隨後,高品質因數之電容與電感設計於半導體基板上以及系統整合信號完整性分析的相關研究主題將會被討論。
With rapid growth of wireless local area network (WLAN), the trends of high video/sound/data transmission and internet everywhere are increased day by day. Thus, the requirements of compact size, light weight and high performance are necessary; in addition, the trends of multi-function and multi-band operations in a module are also more important in communication products design. It means that people can communicate everywhere and every time, and make our life rich, leading to portable and wearable personal communication services. With progresses of communication technologies the specifications of devices and systems are more and more strict so that easy to fabrication and multi-function components will become main streams. However, the stricter specifications of systems will lead the engineers difficult to design; besides, nonlinear effects will demonstrate the overall characteristics of communication systems. Therefore, nonlinear effects of components would be studied in this dissertation. For our purposes, these nonlinear effects would be cancelled or suppressed without increasing component size and changing passband characteristics. Moreover, effects of quality factors on components are also studied and demonstrated by design an amplifier.
At first, we introduce the communication protocols to study the requirements of components and systems, and to give an example of IEEE 802 series standards. In order to meet our purposes we also compare with trends of industry markets and scholarly researches to be our knowledge.
Suppressions of nonlinear effects have been proposed by using the concept of photonic bandgap (PBG), including electromagnetic bandgap (EBG) and defected ground structure (DGS). Their applications are widely in antennas, filters, power amplifiers, voltage-controlled oscillators, mixers etc. However, design of PBG structure is more difficult due to its complex theory and many structure parameters. Therefore, based on transmission-line model and lowpass filter prototype the DGS structures are used to study and qualitative analyze. In our study, different periods of DGS structures would cause different performances, such as wider stopband bandwidth and higher stopband attenuations. Moreover, a cross-shape DGS (CSDGS) structure is proposed and its physical model is also established. Good-in-band passband flatness, high attenuation rate and ultra-wide stopband bandwidth can be given in proposed CSDGS structure. To consider the package problem the proposed CSDGS structure can be integrated easily with multi-layer design and SIP (system in packaging) techniques.
Filters are important key components due to their high selectivity. However, large size and nonlinear effect of spurious response are their serious problems. One advantage of dual-mode filters is small size, however, orthogonal input/output (I/O) and spurious responses are limited its applications. Based on transmission-line model and network theory, a pair of transmission zeros are generated by cross-coupling effect, meaning that if we can provide a solution to generation of cross-coupling effect, then the orthogonal I/O should be not necessary. Moreover, high-order modes are also affected by I/O configurations. It means that the spurious responses can be controlled or suppressed by different I/O configurations. Therefore, we propose a simple approach of irregularly distributing high-order mode to suppress spurious responses. Finally, two types of non-orthogonal I/O and other two types of spurious suppression dual-mode filters are designed to demonstrate.
How to suppress image and harmonic signals has been an important issue in design of the superheterodyne architectures. Due to system linearity and IQ modulation, image and harmonic signals should be suppressed. Therefore, we propose the image-rejection low noise amplifier (LNA) without increasing element order by using a classical filter synthesis method to matching networks. Moreover, to consider packaging grounding problems the package-induced cross-coupling effect is studied to suppress harmonic signals. Finally, both image and harmonic signals can be suppressed in a LNA at the same time.
Quality factor is an essential design consideration on passive devices, such as antennas and filters. In this dissertation, quality factors of substrates are studied to analyze effects on active components, including noise figure and realization of ideal lumped-element. In order to provide a complete solution, the improved DLTL (different-length transmission-line) method is proposed to accurately measure dielectric characteristics of substrates for a wide band and both of electric properties and physical meanings have studied, as well. Moreover, a compound component of amplifier with high selectivity and wide stopband bandwidth is designed to demonstrate the effect of quality factor.
Finally, the proposed concept and design method can be widely applied to each component and fabrication technology, such as LTCC technique. Then, design and fabrication of high-Q capacitance and inductance on the substrates of semi-conductors will be future works. Moreover, signal integrity is also an important study.
[1] P.R. Gray and R.G. Meyer, “ Future Directions in Silicon ICs for RF Personal Communications “, Proc. IEEE Custom Integrated Circuits Conf. (CICC), pp. 83-90, 1995.
[2] 邱煥凱, “ GaAs Microwave Monolithic Integrated Circuit Chip Set Design for 2.4-2.5 GHz ISM Band Front End “, 國立台灣大學電機工程研究所博士論文,民國八十六年。
[3] IEEE Std 802.11a/D7.0-1999, “ Part11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specification: High-Speed Physical Layer in the 5GHz Band ”.
[4] ETSI, “ Broadband Radio Access Network (BRAN); HIPERLAN type 2 Technical Specification; Physical (PHY) Layer “, Aug. 1999.
[5] 鄧友清, “ 高速無線區域網路時代即將到來 “,新通訊第9期,2001年11月號。
[6] E.A. Wolff and R. Kaul, “ Microwave Engineering and Systems Applications “, 2nd Edition, New York J. Wiley, pp. 605-621, 1988.
[7] G. Gonzalez, “ Microwave Transistor Amplifiers “, Prentice-Hall PTR, 1997.
[8] D. Pozar, “ Microwave Engineering Second Edition “, John Wiley and Sons, INC., 1998.
[9] T.T. Ha, “ Solid State Microwave Amplifier Design “, John Wiley and Sons, 1981.
[10] H. Samavati, H.R. Rategh and T.H. Lee, “ A 5-GHz CMOS Wireless LAN Receiver Front-End “, IEEE J. Solid-State Circuits, Vol. 35, pp. 765-772, May 2000.
[11] B. Foley, P. Murphy and A. Murphy, “ A Monolithic SiGe 5 GHz Low Noise Amplifier and Tunable Image-Reject Filter For Wireless LAN Applications “, High Frequency Postgraduate Student Colloquium, pp. 26-31, 2000.
[12] J.S. Goo, “ A Noise Optimization Technique For Integrated Low-Noise Amplifiers “, IEEE J. Solid-State Circuits, Vol. 37, pp. 994-1002, Aug. 2002.
[13] A.A.M. Youssef and K. Sharaf, “ VLSI Design of CMOS image-reject LNA For 950-MHz Wireless Receivers “, ICCSC’02. 1st IEEE International Conference on, Circuit and Systems for Communications, 2002. Proceedings, pp. 330-333.
[14] 彭光耀,” A Study of the Design Theory for Front-End CMOS Low-Noise Amplifiers “,國立中山大學電機工程學系碩士論文,
[15] C.K. Campbell, “ Surface Acoustic Wave Devices for Mobile and Wireless Communications “, Academic Press, San Diego, USA, 1998.
[16] K.Y. Hashimoto, “ Surface Acoustic Wave Devices in Telecommunications “, Springer, 2000.
[17] K. Hashimoto, G. Endoh and M. Yamaguchi, “ Coupling-of-Modes Modeling for Fast and Orecise Simulation of leaky Surface Acoustic Wave Devices “, IEEE Ultrasonic Symp., pp. 251-256, 1995.
[20] 吳宗和, “ Simulation, Implementation and Integration Test of an RF Module for 5.2GHz Wireless LANs “, 國立中正大學電機工程研究所碩士論文,民國九十一年。
[19] P. Vizmuller, “ RF Design Guide: Systems, Circuits, and Equations “, Artech House, 1995.
[20] HP, “ Wireless R&D Symposium “, 1997.
[21] 劉先祐, “ Design of 2.4 GHz Transceiver RF Modules for ISM-Band Digital Wireless Communications “, 國立成功大學電機工程研究所碩士論文,民國八十六年。
[22] G. Gonzalez, “ Microwave Transistor Amplifiers Analysis and Design Second Edition “, Prentice-Hall INC., 1997.
[22] R.M. Barrett, “ Microwave Printed Circuits --- the Early Years “, IEEE Trans. Microwave Theory and Techniques, Vol. MTT-32, pp. 983-990, Sept. 1984.
[23] R.M. Barrett and M.H. Barnes, “ Microwave Printed Circuits “, paper presented at the IRE National Conference on Airborne Electronics, Dayton, OH, May 23-25, 1951.
[24] NEC, “ Application of Microwave GaAs FETs “, general technical literature.
[25] C. Gentili, “ Microwave Amplifiers and Oscillators “, North Oxford Academic, 1986.
[26] R. Ludwig and P. Bretcgkp, “ RF Circuit Design, Theory and Application “, Prentice-Hall, INC., 2000.
[27] 陳科后,” The Design and Implementation of Power Amplifier, Low Noise Amplifier and Wideband Amplifier “,國立暨南國際大學電機工程研究所碩士論文,民國九十三年。
[28] S.C. Cripps, “ RF Power Amplifiers For Wireless Communications “, Artech House, INC., 1999.
[29] T.H. Lee, “ The Design of CMOS Radio-Frequency Integrated Circuits “, Cambridge University Express, 1998.
[30] S.C. Cripps, “ Advanced Techniques in RF Power Amplifier Design “, Artech House, INC., 1999.
[31] B. Razavi, “ RF Microelectronics “, Prentice-Hall PTR, 1998.
[32] F.H. Raab, et al., “ Power Amplifiers and Transmitters for RF and Microwave “, IEEE Trans. Microwave Theory and Techniques, Vol. 50, No. 3, pp. 814-826, March 2002.
[33] A. Katz, “ Linearization: Reducing Distortion in Power Amplifiers “, IEEE Microwave Magazine, Vol. 2, No. 4, pp. 37-49, Dec. 2001.
[34] P. Bouysse and L.M. Nebus, “ A Novel Accurate Load-Pull Setup Allowing the Characterization of Highly Mismatched Power Transistors “, IEEE Trans. Microwave Theory and Techniques, Vol. 42, No. 2, pp. 327-332, Feb. 1994.
[35] 蔣建勇,” ISM頻帶無線通訊之射頻功率放大器模組設計 “,國立成功大學電機工程研究所碩士論文,民國八十四年。
[36] John L.B. Walker, “ High-Power GaAs FET Amplifiers “, Artech House, 1993.
[37] V. Rizzoli, F. Mastri and C. Cecchfti, “ Computer-Aided Noise Analysis of Linear Multiport Networks of Arbitrary Topology “, IEEE Trans. Microwave Theory and Techniques, Vol. MTT-33, pp. 1507-1512, Dec. 1985.
[38] U.L. Rohde, C.R. Chang and J. Gerber, “ Design and Optimization of Low-Noise Oscillators Using Nonlinear CAD Tools “, 1994 IEEE International Frequency and Control Symposium, pp. 548-554.
[39] U.L. Rohde, “ Oscillator Design for Lowest Phase Noise “, Microwave Engineering Europe, pp. 31-40, May 1994.
[40] U.L. Rohde and D.P. Newkirk, “ RF/Microwave Circuit Design for Wireless Applications “, by John Wiley & Sons, April 2000, ISBN 0471298182.
[41] M. Prigent et alia, “ An Efficient Design Method of Microwave Oscillator Circuits for Minimum Phase Noise “, IEEE Trans. Microwave Theory and Techniques, Vol. MTT-47, No. 7, pp. 1123-1125, July 1999.
[42] M. Prigent and J. Obregon, “ Phase Noise in FET Oscillators by Low Frequency Loading and Feedback Circuitry Optimization “, IEEE Trans. Microwave Theory and Techniques, Vol. MTT-35, pp. 127-129, March 1987.
[43] M.N. Suma, R.K. Raj, M. Joseph, P.C. Bybi and P. Mohanan, “ A Compact Dual Band Planar Branched Monopole Antenna for DCS/2.4GHz WLAN Applications “, IEEE Microwave and Wireless Components Letters, Vol.16, No.5, pp.275-278, May 2006.
[44] K.L. Wong, “ Planar Antennas for Woreless Communications “, Wiley, New York, 2003.
[45] S.C. Pan and K.L. Wong, “ Dual-Frequency Triangular Microstrip Antenna with A Shorting Pin “, IEEE Trans. Antennas Propagation, Vol.45, pp. 1889-1891, 1997.
[46] C.R. Rowell and R.D. Murch, “ A Compact PIFA Suitable for Dual-Frequency 900/1800MHz Operation “, IEEE Trans. Antennas Propagation, Vol.46, pp. 596-598, 1998.
[47] W.P. Dou and Y.W.M. Chia, “ Novel Meandered Planar Inverted-F Antenna for Triple-Frequency Operation “, Microwave and Optical Technology Letters, Vol.27, pp. 58-60, 2000.
[48] K.F. Lee and W. Chen, “ Advanced in Microstrip and Printed Antennas “, Wiley-InterScience, New York, 1997.
[49] D.M. Pozar, “ Microstrip Antenna Aperture-Coupling to A Microstripline “, Electron Letters, Vol. 21, pp. 49-50, 1985.
[50] C.A. Balanis, “ Antenna Theory Analysis and Design “, Wiley-InterScience, New York, 1997.
[51] A. Scherer, T. Doll, E. Yablonovitch, H.O. Everitt and J.A. Higgins, “ Introduction to Electromagnetic Crystal Structures, Design, Synthesis and Applications “, Journal of Lightwave Technology, Vol.17, pp. 1928-1929, Nov. 1999.
[52] E. Yablonovitch, “ Inhibited Spontaneous Emission in Sold-State Physics and Electronics “, Phys. Rev. Lett., Vol. 58, pp. 2059-2062, May 1987.
[53] V. Radisic, Y. Qian, R. Coccioli and T. Itoh, “ Novel 2-D Photonic Bandgap Structure for Microstrip Lines “, IEEE Microwave and Guided Wave Letters, Vol. 8, pp. 69-71, Feb. 1998.
[54] V. Radisic, Y. Qian and T. Itoh, “ Broad-Band Power Amplifier Using Dielectric Photonic Bandgap Structure “, IEEE Microwave and Guided Wave Letters, Vol. 8, pp. 13-14, Jan. 1998.
[55] Y. Qian and T. Itoh, “ Planar Periodic Structures for Microwave and Millimeter Wave Circuit Applications “, IEEE MTT-S, Digest, pp. 1533-1536, 1999.
[56] J.S. Hong and M.J. Lancaster, “ Microstrip Filters for RF/Microwave Applications “, John Wiley & Sons, INC., 2001.
[57] G.L. Matthaei, L. Young and E.M.T. Jones, “ Microwave Filters, Impedance-matcging Networks, and Coupling Structures “, Artech House, INC., 1980.
[58] J.T. Kuo, S.P. Chen and M. Jiang, “ Parallel-Coupled Microstrip Filters with Over-Coupled End Stages for Suppression of Spurious Responses “, IEEE Microwave and Wireless Components Letters, Vol. 13, No. 10, pp. 440-442, Oct. 2003.
[59] J.T. Kuo, M. Jiang and H.J. Chang, “ Design of Parallel-Coupled Microstrip Filters with Suppression of Spurious Resonances Using Substrate Suspension “, IEEE Trans. Microwave Theory and Techniques, Vol. 52, No. 1, pp. 83-89, Jan. 2004.
[60] J.T. Kuo and E. Shil, “Stepped Impedance Resonator Bandpass Filters with Tunable Transmission Zeros and its Application to Wide Stopband Design “, IEEE MTT-S, Digest TH2C-5, pp. 1613-1616, 2002.
[61] C.F. Chen, T.Y Huang and R.B. Wu, “ Design of Microstrip Bandpass Filters with Multiorder Spurious-Mode Suppression “, IEEE Trans. Microwave Theory and Techniques, Vol. 53, No. 12, pp. 3788-3793, Dec. 2005.
[62] Y.H. Jeng, S.F.R. Chang, H.K. Lin, “ A high stopband-rejection LTCC filter with multiple transmission zeros “, IEEE Trans. Microwave Theory and Techniques, Vol. 54, No. 2, pp. 633-638, Feb. 2006.
[63] C.M. Tsai, S.Y. Lee and C.C. Tsai, “ Performance of A Planar Filter Using A 0 Deg Feed Structure “, IEEE Trans. Microwave Theory and Techniques, Vol. 50, No. 10, pp. 2362-2367, Oct. 2002.
[64] S.Y. Lee and C.M. Tsai, “ New Cross-Coupled Filter Design Using Improved Hairpin Resonators “, IEEE Trans. Microwave Theory and Techniques, Vol. 48, No. 12, pp. 2482-2490, Dec. 2000.
[65] M. Makimoto and S. Yamashita, “ Microwave Resonators and Filters for Wireless Communication --- Theory, Design and Application “, Springer-Verlag Berlin Heidelberg, New York, 2000.
[66] Y. L. Low and R. C. Frye, “ The impact of miniaturization and passive component in emerging MCM applicaton ”, in IEEE Multi-Chip Module Conf., pp. 27-32, 1997
[67] K. L. Tai, “ System-in-package (SIP): Challenge and opportunities,” in Proc. Asia-South Pacific Design Automation Conf., pp.211-216, 2000
[68] A. Matsuzawa, “ RF-SoC—Expectations and required conditions ”, IEEE trans. Microwave Theory Tech., vol. 50, pp. 245-253, Jan. 2002
[69] C.Q.Scrantom and J. C. Lawson, “ LTCC technology: Where we are and where we’re goning—II ”, IEEE MTT-S Int. Microwave Symp. Dig., pp.193-200, 1999
[70] K. Saitou and K. Kageyama, “ Tunable duplexer having multilayer structure using LTCC ”, IEEE MTT-S Int. Microwave Symp. Dig., pp. 1763-1766, June 2003
[71] K. L. Wu and Y. Huang, “ LTCC technology and its applications in high frequency front end modules”, IEEE Antennas, Propagation and EM Theory Int., pp. 730-734, Nov. 2003
[72] E. Tsunashima and A. Okuno, ” A multilevel epoxy substrate for flip-clip hybrid multichip module applications ”, IEEE Trans. Components, Hybrids, and Manufacturing Tech., vol. 15, pp. 103-106, Feb. 1992
[73] T. Shimoto, K. Matsui, K. Kikuchi, Y. Shimada and K. Utsumi, “ New high-density multilayer technology on PCB ” , IEEE Trans. Advanced Pack., vol. 22, pp. 116-122, May 1999
[74] I-Tseng Tang, Han-Jan Chen, W.C. Hwang, Y.C. Wang, Mau-Phon Houng and Yeong-Her Wang, “ Applications of Piezoelectric ZnO Film Deposited on Diamond Like Carbon Coated onto Si Substrate under Fabricated Diamond SAW Filter ”, Journal of Crystal Growth, Vol.262, pp.461-466, 2004.
[75] I-Tseng Tang, Han-Jan Chen, Mau-Phon Houng and Yeong-Her Wang, “ A Novel Integrable Surface Acoustic Wave Notch Filter ”, Sold-State Electronics, vol.47, pp. 2063-2066, 2003.
[76] Lih-Shan Chen, Min-Hung Weng, Tsung-Hui Huang, Han-Jan Chen, Sheng-Fu Su and Mau-Phon Houng, “ Multilayer Stepped-Impedance Resonator Band-Pass Filter Implementing Using Low Temperature Cofired Ceramic Structure ”, Japanese Journal of Applied Physics, vol.43, No.10A, 2004.
[77] Lih-Shan Chen, Min-Hung Weng, Tsung-Hui Huang, Han-Jan Chen, Yi-Chang Hsi and Mau-Phon Houng, “ A Compact Hairpin Bandpass Filter on High-Permittivity Dielectrics using a Tape-Casting Technique “, Microwave and Optical Technology Letters, vol.43, No.2, 2004.
[78] V. Radisic, Y. Qian, and T. Itoh, “ Broadband power amplifier using dielectric photonic bandgap structure ”, IEEE Microwave Guide Wave Lett. Vol.8, No.1, pp.13-14, 1998.
[79] V. Radisic, Y. Qian, R, Coccioli, and T. Itoh, “ Novel 2-D photonic bandgap structure for microstrip lines ”, IEEE Microwave Guide Wave Lett. Vol.8, No.2, pp.69-71, 1998.
[80] J-S. Lim, H-S Kim, J.S. Park, D. Ahn, and S. Nam “ A power amplifier with efficiency improved using defected ground structure ”, IEEE Microwave and Wireless Components Lett., Vol.11, No.4, pp.170-172, 2001.
[81] C. S. Kim, J. S. Park, D. Ahn, and J-B. Lim “ A novel 1-dimensional periodic defected ground structure for planar circuits ”, IEEE Microwave Guide Wave Lett. Vol.10, No.4,pp.131-133, 2000.
[82] J. I. Park, C. S. Kim, J. S. Park, Y. Qian, D. Ahn, and T. Itoh, “ Modeling of photonic bandgap and its application for the low-pass filter design ”, in 99 APMC Dig., pp.331-334,1999.
[83] T.K. Gaylord and M.G. Moharam,“ Analysis and Applications of Optional Diffraction by Gratings ”, IEEE Proc, vol.73, pp.884-937,oct.1985
[84] D. Maystre,“ Electromagnetic Study of Photonic Band Gaps ”, Pure Appl. Opt., vol. 3, No.6, pp.975-993, Nov. 1994.
[85] IE3D Version 6.1 Zeland Software Inc., Fremont, CA, 1998.
[86] AnSoft HFSS Version 8.0, copyright 1984-2003 Ansoft Corporation.
[87] R. Coccioli, F.R. Yang, K.P. Ma, and T. Itoh, “Aperture-coupled patch antenna on UC-PBG substrate”, IEEE Trans. Microwave Theory Tech., Vol. 47,pp. 2123-2130,1999.
[88] Y.Horii and M. Tsutsumi, “Harmonic control by photonic bandgap on microstrip patch antenna”, IEEE Microwave Guided Wave Lett., Vol.9, pp.13-15, 1999.
[89] S.K. Sharma and L. Shafai“Enhanced Performance of An Aperture-Coupled Rectangular Microstrip Antenna on A Simplified Unipolar Compact Photonic Band Gap (UC-PBG) Structure”, Antennas and Propagation Society, IEEE International Sym , Vol 2 , pp. 498 –501, 2001.
[90] A. Scherer, T. Doll, E. Yablonovitch, H.O. Everitt and J.A. Higgins, “Introduction to electromagnetic crystal structure, design, synthesis, and applications”, Journal of Lightwave Technology, 1999.
[91] N.C. Karmakar and M.N. Mollah, “ Investigation Into Nonuniform Photonic-Bandgap Microstripline Low-Pass Filters ”, IEEE Trans. On MTT, vol. 51, No.2, Feb. 2003.
[92] R. Gonzalo, P.D. Maagt and M. Sorolla, “ Enchanced Patch-Antenna Performance by Suppressing Surface Wave Using Photonic-Bandgap Substrate “, IEEE Trans. On MTT, vol. 47, No. 11, pp. 2131-2138, 1999.
[93] R.Y. Yang, M.H. Weng, H.W. Wu, T.H. Huang and M.P. Houng, “ Characteristic Impedance of A Microstrip Line Using A DGS Cell “, Microwave and Optical Technology Letters, vol. 43, No. 1, October 2005.
[94] V. Radisic, Y. Qian, R. Coccioli, and T. Itoh, “Novel 2-D photonic bandgap Structure for microstrip lines,” IEEE Microwave Guided Wave Lett., vol. 8, No. 2, pp. 69–71, 1998.
[95] Y. Qian, V. Radisic, and T. Itoh, “Simulation and experiment of photonic bandgap structures for microstrip circuits,” Proc. APMC’97, pp.585–588, Dec. 1997.
[96] C.S. Kim, J.S. Park, D. Ahn and J.B. Lim, “A novel 1-D periodic defected ground structure for planar circuits”, IEEE Microwave Guided Wave Lett., vol. 10, No. 4, pp. 131-133, 2000.
[97] H.W. Liu, Z.F. Li and X.W. Sun, “A Novel Fractal Defected Ground Structure and Its Application to the Low-Pass Filter”, Microwave and Optical Technology Letters, vol.39, No.6, pp.453-456, 2003.
[98] J.Z. Gu, W.Y. Yin, R. Qian, C. Wang and X.W. Sun, “A Wideband EBG Structure with 1D Compact Microstrip Resonator Cell”, Microwave and Optical Technology Letters, vol.45, No.5, pp.386-387, 2005.
[99] S.Y. Huang and Y.H. Lee, “A Tapered Small-Size EBG Microstrip Bandstop Filter Design with Triple EBG Structure”, Microwave and Optical Technology Letters, vol.46, No.2, pp.154-158, 2005.
[100] L.H. Hsieh and Kai Chang, “Compact Elliptic-Function Low-Pass Filters Using Microstrip Sepped-Impedance Hairpin Resonators”, IEEE MTT, vol.51, No.1, 2003.
[101] J.H. Cho and J.C. Lee, “Compact Microstrip Stepped-Impedance Hairpin Resonator Low-Pass Filter with Aperture”, Microwave and Optical Technology Letters, vol.46, No.6, pp.517-520, 2005.
[102] T. Lopetegi, M.A.G. Laso, M.J. Erro, M. Sorolla and M. Thumm, “Analysis and Design of Periodic Structures for Microstrip Lines by Using the Coupled Mode Theory”, IEEE Microwave Guided Wave Lett., vol. 12, No. 11, pp. 441-443, 2002.
[103] D. Ahn, J.S. Park, C.S. Kim, J. Kim, Y. Qian and T. Itoh, “A design of the low-pass filter using the novel microstrip defected ground structure”, IEEE Transactions on Microwave Theory and Techniques, vol.49, No.1, pp.86-93, 2001.
[104] S.B. Cohn, “Dissipation Loss in Multiple-Coupled Resonator Filters”, Proc. IRE, Vol.47, pp.1342-1348, 1959.
[105] D.J. Woo and T.K. Lee, “Suppression of Harmonics in Wilkinson Power Divider Using Dual-Band Rejection by Asymmetric DGS”, IEEE MTT, Vol. 53, No. 6, pp. 2139-2144, 2005.
[106] J.S. Hong and B. M. Karyamapudi, “A General Model for Defected Ground Structures in Planar Transmission Lines”, IEEE Microwave Guided Wave Letters, Vol. 15, No. 10, pp. 706-708, 2005.
[107] C.W. Tang and S.F. You, “ Design Methodologies of LTCC Bandpass Filters, Diplexer, and Triplexer With Transmission Zeros”, IEEE Transactions on Microwave Theory and Techniques, Vol.54, No.2, pp.717-723, February 2006.
[108] S. T. Chew and T. Itoh, “ PBG-excited Split-Mode Resonator Bandpass Filter “, IEEE Microwave and Wireless Components Letters, Vol. 11, No. 9, Step. 2001.
[109] J. Helszajn and D.S. James, “ Planar Triangular Resonators with Magnetic Walls ”, IEEE MTT, Vol. MTT-26, No.2, pp.95-100, Feb. 1978.
[110] E. G. Lim, S. Scott, E. Korolkiewicz, A. Sambell and B. Aljibouri, “ An efficient formula for the input impedance of a microstrip right-angled isosceles triangular patch antenna ”, IEEE Antennas and Wireless Propagation Letters, Vol.1, No.1, pp.18-21, 2002.
[111] N. Kumprasert and W. Kiranon, “ Simple and accurate formula for the resonant frequency of the equilateral triangular microstrip patch antenna ”, IEEE Antennas and Wireless Propagation Letters, Vol.42, No.8, pp.1178-1179, 1994.
[112] J.S. Hong and M.J. Lancaster, “ Microstrip Triangular Patch Resonator Filters ”, 2000 IEEE MTT-S Digest, pp. 331-334.
[113] J.S. Hong and M.J. Lancaster, “ Dual-Mode Microstrip Triangular Patch Resonator and Filters ”, 2003 IEEE MTT-S Digest, pp.1901-1904.
[114] IE3D Version 6.1 Zeland Software Inc., Fremont, CA, 1998.
[115] Lung-Hwa Hsieh, Kai Chang, “ Dual-mode Eelliptic-Function Bandpass filter using Single Patch Resonator without Coupling Gaps ”, IEE electronics letters, Vol. 36, No. 24, pp.2022-2023, Nov. 2000.
[116] J.S. Hong and M.J. Lancaster, “ Couplings of Microstrip Square Open-Loop Resonators for Cross-Coupled Planar Microwave Filters ”, IEEE Trans. Microwave Theory and Technology, Vol.44, No.11, pp.2099-2109, Nov. 1996.
[117] C.M. Tsai, S.Y. Lee and C.C. Tsai, “ Performance of a Planar Filter using a 0° Feed Structure ”, IEEE Trans. Microwave Theory and Technology, Vol.50, No.10, pp.2362-2367, October 2002.
[118] A. Gorur, “ Realization of a Dual-Mode Bandpass Filter Exhibiting Either a Chebyshev or an Elliptic Characteristic by Changing Perturbation’s Size ”, IEEE Microwave and Wireless Component Letters, Vol.14, No.3, pp.118-120, March 2004.
[119] L. Zhu and K. Wu, “ A Joint Field/Circuit Model of Line-to-Ring Coupling Structure and Its Application to the Design of Microstrip Dual-mode Filters and Ring Resonator Circuits ”, IEEE Trans. Microwave Theory and Technology, Vol.47, No.10, pp.1938-1948, October 1999.
[120] L.H. Hsieh and K. Chang, “ Compact, Low Insertion-Loss, Sharp-Rejection, and Wide-Band Microstrip Bandpass Filters ”, IEEE Trans. Microwave Theory and Technology, Vol.51, No.4, pp.1241-1246, April 2003.
[121] Han-Jan Chen, Min-Hung Weng, Jui-Hong Horng, Mau-Phon Houng and Yeong-Her Wang, “ Wideband and Low-Loss Triangular Patch Dual-mode Bandpass Filter using Quasi-Fork Recessed Tapped I/O “, Microwave and Optical Technology Letters, Vol.43, No.2, pp.99-101, October 2004.
[122] Han-Jan Chen, Tsung-Hui Huang, Lih-Shan Chen, Jui-Hong Horng and Mau-Phou Houng, “ New Design Concept of Dual-Mode Bandpass Filter by Using Non-Orthogonal Input and Output Ports for Wireless Application “, Microwave and Optical Technology Letters, Vol.48, No.4, pp.639-641, 2006.
[123] J.M. Carroll and K. Chang, “ Microstrip Mode Suppression Ring Resonator ”, Electronics Letters, Vol.30, No.22, pp.1861-1862, October 1994.
[124] U. Karacaoglu, D.S. Hernandez, I.D. Robertson and M. Guglielmi, “ Harmonic Suppression in Microstrip Dual-Mode Ring-Resonator Bandpass Filters ”, IEEE MTT-S Digest TH3F-9, pp.1635-1638, June 1996.
[125] K.K.M. Cheng, “ Design of Dual-Mode Ring Resonators with Transmission Zeros ”, Electron Letters, Vol. 33, No.16, pp. 1392–1393, July 1997.
[126] L.H. Hsieh and K. Chang, “ Dual-mode Quasi-Elliptic-Function Bandpass Filters Using Ring Resonators with Enhanced-Coupling Tuning Stubs ”, IEEE Trans. Microwave Theory and Technology, Vol.50, No.5, pp.1340-1345, May 2002.
[127] J.S. Hong and M.J. Lancaster, “ Microstrip Filter for RF/Microwave Applications ”, New York: Wiley, 2001, ch.8.
[128] H. Elwan, H. Alzaher and M. Ismail, “ A New Generation of Global Wireless Compatibility “, IEEE Circuits & Devices Magazine, Vol.17, No.1, pp. 7-19, January 2001.
[129] A. Matsuzawa, “ RF-Soc-Expectations and Required Conditions “, IEEE Trans. Microwave Theory and Tech., Vol.50, No.1, pp. 245-253, January 2002.
[130] K.S. Shanmugan, “ Digital and Analog Communication Systems “, New York: Wiley, pp. 277-297, 1979.
[131] J. Crols and M. Steyaert, “ A single-chip 900 MHz CMOS receiver front-end with a high performance low-IF topology “, IEEE J. Sold-State Circuits, Vol. 30, No. 12, pp. 1483-1492, December 1995.
[132] B. Razavi, “ Challenges in portable RF transceiver design “, IEEE Circuits & Devices Magazine, Vol. 12, pp. 12-25, December 1996.
[133] T.H. Lee, “ 5-GHz CMOS wireless LANs “, IEEE Trans. Theory and Tech., Vol. 50, No. 1, pp. 268-280, January 2002.
[134] N. Kim et al., “ An image rejection down conversion mixer architecture “, in TENCON 2000, pp. 415-418.
[135] R. Levy, “ Filters with single transmission zeros at real or imaginary frequencies “, IEEE Trans. Theory and Tech., Vol.24, No.4, pp. 172-181, 1976.
[136] L.H. Hsieh and K. Chang, “ Compact dual-mode elliptic-function bandpass filter using a single ring resonator with one coupling gap “, Electron Letters, Vol.36, No.19, pp. 1626-1627, 2000.
[137] H.J. Chen, M.H. Weng, J.H. Horng, M.P. Houng and Y.H. Wang, “ Wideband and Low-loss Triangular Patch Dual-mode Bandpass Filter Using Quasi-Fork Recessed Tapped I/O “, Microwave and Optical Technology Letters, Vol.43, No.2, pp. 99-101, October 2004.
[138] M. Reppel and H. Chaloupka, “ Novel approach for narrowband super conducting filters “, IEEE MTT-S Int. Microwave Symp. Dig 4, pp. 1563-1566, 1999.
[139] K.L. Chan, M.A. Do, K.S. Yeo and J.G. Ma, “ 1.5V 1.8GHz bandpass amplifier “, IEE Proc-Circuits Devices Syst., Vol.147, No.6, pp. 331-333, December 2000.
[140] A. Thanachayanont, “ A 1.5-V CMOS Fully Differential Inductorless RF Bandpass Amplifier “, IEEE International Symposium on Circuits and Systems, Vol.4, pp. 29-32, 2001.
[141] C.Y. Wu, S.Y. Hsiao and R.Y. Liu, “ A 3-V 1 GHz Low-Noise Bandpass Amplifier “, IEEE International Symposium on Circuits and Systems, Vol.3, pp. 1964-1967, 1995.
[142] C. Guo, N.L. Alan and H.C. Luong, “ A Monolithic 2-V 950-MHz CMOS Bandpass Amplifier with A Notch Filter for Wireless Receivers “, IEEE RF Integrated Circuits Symposium, pp. 79-82, 2001.
[143] S.F. Chang, J.L. Chen and C.C. Liu, “ A Novel Image-Rejection Amplifier for Wireless Communications “, IEEE Proc. of APMC2001, pp.996-999.
[144] J.L. Chen, S.F. Chang, C.C. Liu and H.W. Kuo, “ Design of a 20-to-40 GHz Bandpass MMIC Amplifier “, IEEE MTT-S Digest, pp. 1275-1278, 2003.
[145] J. Gaubert, M. Egels, P. Pannier and S. Bourdel, “ Design method for broadband CMOS RF LNA “, Electron Letters, Vol.41, No.7, March 2005.
[146] C.M. Tsai, S.Y. Lee and C.C. Tsai, “ Hairpin Filters with Tunable Transmission Zeros “, IEEE MTT-S Digest, pp. 2175-2178, 2001.
[147] S.F. Chang, J.L. Chen and C.C. Liu, “ A Novel Image-Rejection Amplifier for Wireless Communications “, IEEE Proc. of APMC2001, pp.996-999.
[148] J. Gaubert, M. Egels, P. Pannier and S. Bourdel, “ Design method for broadband CMOS RF LNA “, Electron Letters, Vol.41, No.7, March 2005.
[149] T.K. Nguyen, N.J. Oh, C.Y. Cha, Y.H. Oh, G.J. Ihm and S.G. Lee, “ Image-Rejection CMOS Low-Noise Amplifier Design Optimization Techniques “, IEEE MTT, vVol.53, No.2, pp.538-547, 2005.
[150] A. Griol and J. Marti, “ Microstrip Multistage Coupled Ring Active Bandpass Filters with Harmonic Suppression “, Electronics Letters, Vol.35, No.7, pp.575-577, 1999.
[151] Min-Hung Weng, Ru-Yung Yuan, Tsung-Hui Huang, Han-Jan Chen, Wu-Nan Chen and Mau-Phon Houng, “ Spurious suppression of a microstrip filter using three types of rectangular PBG loops ”, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol.52, No.3, pp. 487-490, March 2005.
[152] M-H Weng, R-Y Yang, C-Y Hung, H-W Wu and M-P Houng, “A dual-mode bandpass filter with a wide stopband”, Microwave and Optical Technology Letters, Vol. 43, No. 2, pp. 177-179, 2004.
[153] R.Y. Yang, M.H. Weng, H.W. Wu, T.H. Huang and M.P. Houng, “Dual-Mode Ring Bandpass Filter Using Defected Ground Structure with a Wider Stopband”, IEICE Transactions, Vol.E87-C, No.12, , pp.2150-2157, 2004.
[154] T.H. Lee, “ The Design of CMOS Radio-Frequency Integrated Circuit “, Cambridge University Press, 1998.
[155] B.C. Wadell, “ Transmission Line Design Handbook ”, Artech House, Boston, 1991.
[156] M.R. Tofighi and A.S. Daryoush, “ A 2.5-GHz InGaP-GaAs Differential Cross-Coupled Self-Oscillating Mixer (SOM) IC “, IEEE Microwave and Wireless Components Letters, Vol.15, No.4, pp.211-213, April 2005.
[157] A.T. Abbas, K. Sarabandi and G.M. Reneiz, “ Antenna-Filter-Antenna Arrays As A Class of Bandpass Frequency-Selective Surfaces “, IEEE Microwave Theory and Techniques, Vol.52, No.8, pp.1781-1789, August 2004.
[158] C.Y. Wu and S.Y. Hsiao, “ The design of a 3-V 900-MHz CMOS Bandpass Amplifier “, IEEE Journal of Solid-State Circuits, Vol.32, No.2, pp.159-168, February 1997.
[159] T.C. Edwards and M.B. Steer, “ Foundations of Interconnect and Microstrip Design Third-Edition “, John Wiley & Sons, LTD, 2000.
[160] N.K. Das, S.M.Voda and D.M.Pozar, “ Two Methods for the Measurement of Substrate Dielectric Constant ”, IEEE Transactions on Microwave Theory and Techniques, Vol.35, No.7, pp.636 – 642, July 1987.
[161] K. J. Yang and C. Hu, “ MOS capacitance measurements for high-leakage thin dielectrics ”, IEEE Trans. Electron Devices, Vol. 46, No.7, pp.1500-1501, July 1999.
[162] H.T. Lue, C.Y. Liu and T.Y. Tseng, “ An Improved Two-Frequency Method of Capacitance Measurement for SrTiO3 as High-K Gate Dielectric “, IEEE Electron Device Letters, Vol.23, No.9, pp.553-555, September 2002.
[163] C.Y. Chang and T. Itoh, “ Microwave Active Filters Based on Coupled Negative Resistance Method “, IEEE Trans., MTT-S, pp. 1879-1884, December 1990.
[164] A. Romano and P.R. Mansour, “ Enhanced-Q Microstrip Bandpass Filter with Coupled Negative Resistors “, IEEE Trans., MTT-S, pp. 709-712, 1997.
[165] P. Katzin, B. Bedard and Y. Ayasli, “ Narrow-Band MMIC Filters with Automatic Tuning and Q-Factor Control “, IEEE Trans., MTT-S, pp. 403-406, 1993.