| 研究生: |
羅翊文 Lo, Yi-Wen |
|---|---|
| 論文名稱: |
利用表面粗化及折射係數漸變之奈米結構提升氮化鎵發光二極體光輸出之研究 Enhanced Light Output of GaN-Based LEDs with Roughened Surface and Graded Refractive Index Nanostructures |
| 指導教授: |
王水進
Wang, Shui-Jinn |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 發光二極體 、氧化鋅 、表面粗化 、二氧化矽 、折射係數漸變 |
| 外文關鍵詞: | Light-Emitting Diodes, ZnO, Roughed surface, SiO2, Graded refractive index |
| 相關次數: | 點閱:96 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究旨在利用水熱法(Hydrothermal Growth, HTG)成長氧化鋅奈米結構-氧化鋅奈米管(ZnO nanotubes, ZnO NTs)於傳統氮化鎵發光二極體表面再利用PECVD沉積SiO2於氧化鋅奈米管結構表面,製備出具表面粗化及折射係數漸變結構,提升傳統氮化鎵發光二極體之發光效率。
本論文研究架構主要分為兩個部分,第一部分為理論模擬分析,係透過光學模擬軟體(TracePro)以分析不同氧化鋅奈米結構及包覆二氧化矽於氧化鋅奈米管之厚度對傳統氮化鎵發光二極體之光析出效率影響。由模擬結果顯示,具60 nm二氧化矽包覆氧化鋅奈米管結構之氮化鎵發光二極體,可獲得最佳之光析出效率改善;第二部分則集中於實驗研究,本論文採用水熱法製備氧化鋅奈米線於傳統氮化鎵發光二極體表面,再利用低溫之逆反應成長出奈米管結構。從實驗結果顯示,具60±10 nm二氧化矽包覆氧化鋅奈米管結構之氮化鎵發光二極體元件於注入電流350 mA時,與傳統氮化鎵發光二極體相較,其光析出效率增加30.13%。
此證實本研究結構如所預期,確實可藉由氧化鋅奈米結構之表面粗化及折射係數漸變提升光析出效率。並可將此包覆二氧化矽氧化鋅奈米管結構應用於發光二極體或太陽能電池表面提供表面粗化與折射系數漸變之抗反射層,以提升元件之效率。
The present thesis is devoted to further improve the light output of light emitting diodes (LEDs). The use of SiO2/ZnO nanotube arrays (NTAs) which provides an efficient surface roughening scheme with the graded refractive index to effectively maximize light extraction efficiency through releasing total internal reflection (TIR) and minimize Fresnel loss was proposed and demonstrated.
There are two parts comprised in this work. The first part focuses on the simulation and design of SiO2/ZnO NT As for LEDs. The optical simulation software, TracePro, was used to simulate the structures effects of SiO2/ZnO NT As (with different ZnO nanostructures and SiO2 coating thickness) on the light output efficiency of LEDs. An optimum design for SiO2/ZnO NT As with ZnO nanotube arrays and a deposited thickness of 60 nm has been obtained.
The second part of the present study aims at the preparation of LEDs with SiO2/ZnO NT As. The hydrothermal growth method (HTG) was conducted to the p-GaN surface with ZnO NT As. A 60-nm-thick SiO2 layer with a typical refractive index of around 1.5 was coated on the ZnO NTs using a plasma-enhanced CVD system. Material analysis including surface morphology, components, transmittance, and photoelectrical properties of the prepared LEDs are examined and results are presented and discussed.
A considerable improvement in Lop of proposed LEDs by 30.13% at 350 mA, as compared with that of the regular LEDs, has been achieved, which could be attributed to the SiO2/ZnO NT As structure can effectively release TIR and minimize the Fresnel loss. It is expected that the proposed SiO2/ZnO NTAs graded refractive index surface roughening could enhance the light output of GaN-based LEDs for application of solid state lighting.
[1] A. Zukauskas, Introduction to Solid-State Lighting, John Wiley & Sons, New York, 2002.
[2] 史光國,“半導體發光二極體及固體照明”,全華科技圖書股份有限公司,2005。
[3] S. Nakamura, T. Mukai, and M.Senoh, “High brightness InGaN/AlGaN double heterostructureblue green light emitting diodes,” J. Appl. Phys., vol. 76, pp. 8180-8191, 1994.
[4] Strategies Unilimited, 2009.
[5] M. G. Craford, presented at the Nanoscience and Solid State Lighting Department of Energy Nanosummit, June 2004, Washington, D.C.
[6] Industrial Materials Magazine, no. 236, pp. 150-154, 2006.
[7] http://www.itri.org.tw/chi/eol/
[8] A. Zukauskas, M. S. Shur and R. Caska, “Introduction to solid state lighting,” Wiley, New York, 2002.
[9] J. J. Wierer, D. A. Steigerwald, M. R. Krames, J. J. O’Shea, M. J. Ludowise, G. Christenson, Y.-C. Shen, C. Lowery, P. S. Martin, S. Subramanya, W. Götz, N. F. Gardner, R. S. Kern, and S. A. Stockman, “High-power AlGaInN flip-chip light-emitting diodes,” Applied Physics Letters, vol. 78, no. 22, pp. 3379-3381, 2001.
[10] 陳啟昌,“奈米電子與光電元件課程”,國立中央大學光電科學研究所。
[11] D. H. Kim, C. O. Cho, Y. G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q. H. Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” App. Phys. Lett., vol. 87, pp. 203508-203510, 2005.
[12] H. K. Cho, S. K. Kim, D. K. Bae, B. C. Kang, J. S. Lee, and Y. H. Lee, “Laser liftoff GaN thin-film photonic crystal GaN-based light-emitting diodes,” IEEE Photonics Technol. Lett., vol. 20, pp. 2096-2098, 2008.
[13] H. K. Cho, J. Jang, J. H. Choi, J. Choi, J. Kim, J. S. Lee, B. Lee, Y. H. Choe, K. D. Lee, S. H. Kim, K. Lee, S. K. Kim, and Y. H. Lee, “Light extraction enhancement from nano-imprinted photonic crystal GaN-based blue light-emitting diodes,” Opt. Express, vol. 14, no. 19, pp. 8654-8660, 2006.
[14] C. Huh, K. S. Lee, E. J. Kang, and S. J. Park, “Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface,” J. Appl. Phys., vol. 93, pp. 9383-9385, 2003.
[15] K. M. Uang, S. J. Wang, S. L. Chen, Y. C. Yang, T. M. Chen, and B. W. Liou, “Effect of Surface Treatment on the Performance of Vertical-Structure GaN-Based High-Power Light-Emitting Diodes with Electroplated Metallic Substrates,” Japanese Journal of Applied Physics, vol. 45, pp. 3436-3441, 2006.
[16] S. M. Pan, R. C. Tu, Y. M. Fan, R. C. Yeh and J. T. Hsu, “Improvement of InGaN–GaN light-emitting diodes with surface-textured indium–tin–oxide transparent ohmic contacts,” IEEE Photonics Technol. Lett., vol. 15, pp. 649-651, 2003.
[17] W. C. Lee, S. J. Wang, K. M. Uang, T. M. Chen, D. M. Kuo, P. R. Wang and P. H. Wang, “Enhanced Light Output of GaN-Based Vertical-Structured Light-Emitting Diodes With Two-Step Surface Roughening Using KrF Laser and Chemical Wet Etching,” IEEE Photonics Technol. Lett., vol. 22, pp. 1318-1320, 2010.
[18] M. Y. Hsieh, C. Y. Wang, L.Y. Chen, T. P. Lin, M. Y. Ke, Y. W. Cheng, Y. C. Yu, C. P. Chen, D. M. Yeh, C. F. Lu, C. F. Huang, C. C. Yang, and J. J. Huang, “Improvement of external extraction efficiency in GaN-based LEDs by SiO2 nanosphere lithography,” IEEE Photonics Technol. Lett., vol. 29, pp. 658-660, 2008.
[19] M. K. Lee, C. L. Ho, P. C. Chen, “Light extraction efficiency enhancement of GaN blue LED by liquid-phase-deposited ZnO rods,” IEEE Photonics Technol. Lett., vol. 20, pp. 252-254, 2008.
[20] C. Y. Cho, N. Y. Kim, J. W. Kang, Y. C. Leem, S. H. Hong, W. Lim, S. T. Kim , S. J. Park, “Improved Extraction Efficiency in Blue Light-Emitting Diodes by SiO2-Coated ZnO Nanorod Arrays,” Appl. Phys. Express., vol. 6, no. 4, pp. 042102, 2013.
[21] D. M. Kuo, S. J. Wang, K. M. Uang, T. M. Chen, H. Y. Kuo, W. C. Lee, and P. R. Wang, “Enhanced performance of vertical GaN-based LEDs with highly reflective p-ohmic contact and periodic indium-zinc oxide nano-wells,” IEEE Photonics Technol. Lett., vol. 22, pp. 338-340, 2010.
[22] W. C. Lee, K. M. Uang, D. M. Kuo, J. C. Chou, T. M. Chen, H. Y. Kuo, and S. J. Wang, “Use of highly reflective ohmic contact and surface KrF laser roughening to improve light output of vertical GaN-based light-emitting diodes,” IEEE Photonics Technol. Lett., pp. 141-142, 2008.
[23] D. M. Kuo, S. J. Wang, K. M. Uang, T. M. Chen, W. C. Tsai, W. I Hsu, W. C. Lee, P. R. Wang and C. R. Tseng, “The preparation of SiO2 nanotubes with controllable inner/outer diameter and length using hydrothermally grown ZnO nanowires as templates,” Jpn. J. Appl. Phys., vol. 49, pp. 04DN10, 2010.
[24] C. H. Kuo, H. C. Feng, C. W. Kuo, C. M. Chen, L. W. Wu, and G. C. Chi, “Nitride-based near-ultraviolet light emitting diodes with meshed p-GaN,” IEEE Photonics Technol. Lett., vol. 90, pp. 142115-142118, 2007.
[25] M. A. Tsai, P. Yu, C. L. Chao, C. H. Chiu, H.C. Kuo, S. H. Lin, J. J. Huang, T. C. Lu, and S. C. Wang, “Efficiency enhancement and beam shaping of GaN-InGaN vertical-injection light-emitting diodes via high-aspect-ratio nanorod arrays,” IEEE Photonics Technol. Lett., vol. 21, pp. 257-259, 2009.
[26] R. Windish, C. Rooman, S. Meinlschmidt, P. Kiesel, D. Zipperer, G. H. Döhler, B. Dutta, M. Kuijk, G. Borghs, and P. Heremans, “Impact of texture-enhanced transmission of high-efficiency surface-textured light-emitting diodes,” App. Phys. Lett., vol. 79, pp. 2315-2317, 2001.
[27] H. W. Hunag, C. H. Lin, C. C. Yu, B. D. Lee, C. H. Chiu, C. F. Lai, H. C. Kuo, K. M. Leung, T. C. Lu, and S. C. Wang, “Enhanced light output from a nitride-based power chip of green light-emitting diodes with nano-rough surface using nanoimprint lithography,” Nanotechnology, vol. 19, pp. 185301-185305, 2008.
[28] S. J. Chang, C. F. Shen, W. S. Chen, C. T. Kuo, T. K. Ko, S. C. Shei, and J. K. Sheu, “Nitride-based light emitting diodes with indium tin oxide electrode patterned by imprint lithography,” App. Phys. Lett., vol. 91, pp. 013504-013506, 2007.
[29] H. W. Hunag, J. T. Chu, C. C. Kao, T. H. Hseuh, T. C. Lu, H. C. Kuo, S. C. Wang, and C. C. Yu, “Enhanced light output of an InGaN/GaN light emitting diode with a nano-roughened p-GaN surface,” Nanotechnology, vol. 16, pp. 1844-1849, 2005.
[30] C. H. Hou, S. Z. Tseng, C. H. Chan, T. J. Chen, H. T. Chien, F. L. Hsiao, H. K. Chiu, C. C. Lee, Y. L. Tsai, and C. C. Chen, “Output power enhancement of light-emitting diodes via two-dimensional hole arrays generated by a monolayer of microspheres,” App. Phys. Lett., vol. 95, pp. 133105-133108, 2009.
[31] J. J. Chen, Y. K. Su, C. L. Lin, S. M. Chen, W. L. Li, and C. C. Kao, “Enhanced output power of GaN-based LEDs with nano-patterned sapphire substrates,” IEEE Photonics Technol. Lett., vol. 20, pp. 1193-1195, 2008.
[32] Y. K. Su, J. J. Chen, C. L. Lin, S. M. Chen, W. L. Li, and C. C. Kao, “GaN-based light-emitting diodes grown on photonic crystal-patterned sapphire substrates by nanosphere lithography,” Jpn. J. Appl. Phys., vol. 47, no. 8, pp. 6706-6708, 2008.
[33] C. H. Chan, C. H. Hou, S. Z. Tseng, T. J. Chen, H. T. Chien, F. L. Hsiao, C. C. Lee, Y. L. Tsai, and C. C. Chen, “Improved output power of GaN-based light-emitting diodes grown on a nanopatterned sapphire substrate,” Appl. Phys. Lett., vol. 95, pp. 011110-011112, 2009.
[34] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” App. Phys. Lett., vol. 84, pp. 855-857, 2004.
[35] http://www.tf.uni-kiel.de/matwis/amat/semitech_en/kap_2/backbone/r2_3_3.html
[36] 史光國,“現代半導體發光及雷射二極體材料技術”,全華科技圖書股份有限公司。
[37] 莊賦祥,藍綠光發光二極體,科學發展,349期,pp. 52-54,2002。
[38] http://www.fpd.edu.tw/entry/content!newsView.htm?id=1004
[39] B. E. Yoldas, “Investigations of porous oxides as an antireflective coating for glass surfaces,” Applied Optics, vol. 19, no. 9, pp. 1425-1429, 1980.
[40] E. Fred Schubert, Light-Emitting Diodes, Cambridge University Press, 2/e, 2006.
[41] Dr. Volker Harle, Opto Semiconductor, OSRAM, Sep. 2005.
[42] S. M. Sze, “Semiconductor Devices,” 2nd edition, John Wiley & Sons, Ch. 6, pp. 188-193.
[43] Jamil Elias, and Ramon Tena-Zaera, “Conversion of ZnO Nanowires into Nanotubes with Tailored Dimensions,” Chem. Mater., vol. 20, pp. 6633-6637, 2008.
[44] K. J. Kima, and Y. R. Park, “Large and abrupt optical band gap variation in In-doped ZnO,” Appl. Phys. Lett., vol. 78, no. 4, pp. 475-478, 2000.
[45] H. Sato, T. Minami, Y. Tamura, S. Sakata, T. Mori, and N. Ogawa, Thin Solid Films, vol. 246, pp. 86, 1994.
[46] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, “Recent progress in processing and properties of ZnO,” Progress in Materials Science, vol. 50, pp. 293-340, 2005.
[47] Y. M. Lu, H. W. Liang, D. Z. Shen, Z. Z. Zhang, D. X. Zhao, Y. C. Liu, X. W. Fan, and T. Steiner, “Excitonic properties of vertically aligned ZnO nanotubes under high-density excitation,” Journal of Luminescence, pp. 228-232, 2006.
[48] S. J. Pearton, C. R. Abernathy, D. P. Norton, A. F. Hebard, Y. D. Park, L. A. Boatner, and J. D. Budai, “Advances in wide bandgap materials for semiconductor spintronics,” Materials Science and Engineering, R 40, pp. 137-168, 2003.
[49] Y. Y. Xi, Y. F. Hsu, A. B. Djurisic, A. M. C. Ng, W. K. Chan, H. L. Tam, and K. W. Cheah, “NiO/ZnO light emitting diodes by solution based growth,” Appl. Phsy. Lett., vol. 92, pp. 113505-113507, 2008.
[50] M. K. Lee, C. L. Ho, and C. H. Fan, “Enhancement of light extraction efficiency of gallium nitride flip-chip light-emitting diode with silion oxide hemispherical microlens on its back,” IEEE Photonics Technol. Lett., vol. 20, pp. 1293-1295, 2008.
[51] K. Tsukuma, and T. Akiyama and Imai, “Liquid phase deposition film of tin oxide, ” J. Non-Cryst. Solids, vol. 210, pp. 48-54, 1997.
[52] Y. X. Zhang, G. H. Li , Y. X. Jin, Y. Zhang, J. Zhang, and L. D. Zhang, “Hydrothermal synthesis and photoluminescence of TiO2 nanowires,” Chem. Phys. Lett., vol. 365, pp. 300-304, 2002.
[53] S. Li, H. Zhang, and Y. Ji, D. Yang, “CuO nanodendrites synthesized by a novel hydrothermal route,” Nanotechnology, vol. 15, pp. 1428-1432, 2004.
[54] Kurtis S. Leschkies, Alan G. Jacobs, David J. Norris, and Eray S. Aydil, “Nanowire-quantum-dot solar cells and the influence of nanowire length on the collection efficiency,” Appl. Phys. Lett., vol. 95, pp. 193103, 2009.
[55] W. Guo, L. Fu, Y. Zhang, K. Zhang, L. Y. Liang, Z. M. Liu, H. T. Cao, and X. Q. Pan, “Microstructure, optical, and electrical properties of p-type SnO thin films,” Appl. Phys. Lett., vol. 96, pp. 856-857, 2010.
[56] Qi Qi, Tong Zhang, Qingjiang Yu, RuiWang, Yi Zeng, Li Liu, and Haibin Yang, “Properties of humidity sensing ZnO nanorods-base sensor fabricated by screen-printing,” Sensors and Actuators B, vol. 133, pp. 638-643, 2008.
[57] L. Vayssieres, K. Keis, S. E. Lindquist, and A. Hagfeldt, “Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO,” J. Phys. Chem. B., vol. 105, pp. 3350-3352, 2001.
[58] Z. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, and M. J. Mcdermott, “Biomimetic arrays of oriented helical ZnO nanorods and columns,” J. Am. Chem. Soc., vol. 124, pp. 12954-12955, 2002.
[59] L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, and P. Yang, “Low-temperature wafer-scale production of ZnO nanowire arrays,” Angew. Chem., vol. 115, pp. 3139-3142, 2003.
[60] Q. Li, V. Kumar, Y. Li, H. Zhang, T. J. Marks, and R. P. H. Chang, “Fabrication of ZnO nanorods and nanotubes in aqueous solution,” Chem. Mater., vol. 17, pp. 1001-1004, 2005.
[61] K. Govender, David S. Boyle, P. B. Kenway, and P. O’Brien, “Understanding the factors that govern deposition and morphology of thin film of ZnO from aqueous solution,” J. Mater. Chem., vol. 14, pp. 2575-2591, 2004.
[62] W. Z. Zhong, and G. Z. Liu, “Growth units and formation mechanisms of the crystals under hydrothermal conditions,” Sci. China (B), vol. 24, pp. 394, 1994.
[63] R. A. Laudise, and A. A. Ballman, “Hydrothermal synthesis of zinc oxide and zinc sulfide,” J. Phys. Chem., vol. 64, pp. 688, 1960.
[64] W. J. Li, E. W. Shi, W. Z. Zhong, and Z. W. Yin, “Growth mechanism and growth habit of oxide crystals,” J. Cryst. Growth, 203, pp. 186, 1999.
[65] K. Govender, D. S. Boyle, P. B. Kenway, and P. O’Brien, “Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution,” J. Mater. Chem., vol. 14, pp. 2575-2591, 2004.
[66] A. Wei, W. Sun, C. X. Xu, Z. L. Dong, Y. Yang, S. T. Tan, and W. Hung, “Growth mechanism of tubular ZnO formed in aqueous solution,” Nanotechnology, vol. 17, pp. 1740, 2006.
[67] http://www.lambdares.com/