簡易檢索 / 詳目顯示

研究生: 陳彥璋
Chen, Yan-Zhang
論文名稱: 紅光及綠光微發光二極體之老化測試研究
Investigated aging testing of red and green micro-LEDs
指導教授: 李欣縈
Lee, Hsin-Ying
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 91
中文關鍵詞: 微發光二極體量子點老化測試原子層沉積系統黑色矩陣光阻布拉格反射鏡氮化鎵藍光吸收材料
外文關鍵詞: Aging testing, atomic layer deposition system, micro-LEDs, QDs
相關次數: 點閱:48下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 I SUMMARY IV 誌謝 XI 目錄 XII 表目錄 XVI 圖目錄 XVII 第一章 緒論 1 1.1 發光二極體之演進史 1 1.2 研究目的與動機 3 1.3 論文架構 5 參考文獻 7 第二章 原理 12 2.1 發光二極體的原理 12 2.2 量子點材料之介紹 13 2.2.1 量子侷限效應 13 2.2.2 量子點材料之介紹 13 2.3 黑色矩陣光阻之介紹 14 2.4 布拉格反射鏡之介紹 15 2.4.1 分佈式布拉格反射鏡 17 2.4.2 混合式布拉格反射鏡 17 2.5 藍光吸收層材料之介紹 18 2.6 量測方法原理與儀器 19 2.6.1 紫外光-可見光-近紅外光分光光譜儀 19 2.6.2 光致發光光譜量測系統 20 2.6.3 電致發光光譜量測系統 20 參考文獻 21 第三章 實驗規劃與製程步驟 32 3.1 製程與量測設備 32 3.1.1 電子束蒸鍍系統 32 3.1.2 磁控式射頻濺鍍系統 32 3.1.3 原子層沉積系統 33 3.2 量子點老化測試 34 3.2.1 不同保護層之量子點於一般環境下之老化測試 35 3.2.2 不同保護層之量子點於泡水環境下之老化測試 35 3.2.3 量子點於不同激發強度下之老化測試 35 3.3 紅光及綠光微發光二極體之製作與老化測試 36 3.3.1 紅光及綠光微發光二極體之元件結構 36 3.3.2 基本微小化氮化鎵藍光發光二極體製程步驟 37 3.3.3 底部混合式布拉格反射鏡之製作 42 3.3.4 陣列式黑色矩陣光阻結構之製作 42 3.3.5 光色轉換層(量子點凝膠)之製作 43 3.3.6 頂部分佈式布拉格反射鏡之製作 43 3.3.7 頂部藍光吸收層之製作 44 3.3.8 紅光及綠光微發光二極體之老化測試 45 第四章 實驗量測結果分析與討論 53 4.1 聚甲基丙烯酸甲酯粉末材料分析 53 4.2 量子點粉末材料分析 54 4.3 量子點老化測試之分析 54 4.3.1 具不同保護層之量子點於一般環境之老化測試結果 55 4.3.2 具不同保護層之量子點於泡水環境之老化測試結果 56 4.3.3 有無保護層之量子點於不同激發強度下之老化測試 57 4.4 黑色隔光材料之分析 58 4.5 布拉格反射鏡之分析 59 4.5.1 二氧化鈦與二氧化矽之材料分析 59 4.5.2 頂部分佈式布拉格反射鏡之特性分析 59 4.5.3 底部混合式布拉格反射鏡之特性分析 60 4.6 藍光吸收層材料之特性分析 61 4.6.1 藍光吸收層材料之特性分析 61 4.7 微小化氮化鎵發光二極體之元件特性分析 62 4.7.1 基本元件之特性量測與分析 62 4.7.2 具光色轉換層之元件特性量測分析與探討 63 4.7.3 具外部結構之元件特性量測結果與分析 64 4.8 紅光及綠光微發光二極體上之老化測試結果之分析 65 第五章 結論與未來展望 90 5.1 結論 90 5.2 未來展望 91

    第一章
    [1] E. Fred Schubert, “Light-emitting diodes (2nd ed.),” Cambridge University Press, 2006.
    [2] Z. Nikolay, “The life and times of the LED- a 100-year history,” Nat. Photonics., vol. 1, pp. 189−192, 2007.
    [3] S. G. Muller, R. C. Glass, H. M. Hobgood, V. F. Tsvetkov, M. Brady, D. Henshall, D. Malta, R. Singh, J. Palmour, and C. H. Carter, “Progress in the industrial production of SiC substrates for semiconductor devices,” Mater. Sci. Eng. B-Soild State Mater. Adv. Technol., vol. 80, pp. 327−331, 2001.
    [4] A. Van Dormael, “Heinrich Welker,” IEEE. Ann. Hist. Comput., vol. 32, pp. 72−79, 2010.
    [5] N. Holonyak, and S. F. Bevacqua, “Coherent (visible) light emission from Ga(As1-xPx) junctions,” Appl. Phys. Lett., vol. 1, pp. 82−83, 1962.
    [6] H. Kressel, C. J. Nuese, and I. Landany, “Luminescence from In0.5Ga0.5P prepared by vapor-phase epitaxy,” J. Appl. Phys., vol. 44, pp. 3266−3272, 1973.
    [7] T. S. Perry, “Craford, M. George,” IEEE. Spectr., vol. 32, pp. 52−55, 1995.
    [8] M. S. Kim, H. K. Lee, and J. S. Yu, “Device characteristics and thermal analysis of AlGaInP-based red monolithic light-emitting diode arrays,” Semicond. Sci. Technol., vol. 28, pp. 025005-1−025005-9, 2013.
    [9] K. Ota, “Review-Toyoda Gosei’s history of R&D on blue LEDs with professor Isamu Akasaki,” Ecs. J. Solid State Sci. Technol., vol. 9, pp. 015020-1−015020-3, 2019.
    [10] I. Akasaki, and H. Amano, “Crystal growth and conductivity control of group III nitride semiconductors and their application to short wavelength light emitters,” Jpn. J. Appl. Phys., vol. 36, pp. 5393−5408, 1997.
    [11] S. Nakamura, “InGaN/AlGaN blue-light-emitting diodes,” J. Vac. Sci. Technol. A, vol. 13, pp. 705-1−705-6, 1995.
    [12] S. Nakamura, “Biography of Nobel laureate Shuji Nakamura,” Ann. Phys.-Berlin, vol. 527, pp. 350−357, 2015.
    [13] K. Ding, V. Avrutin, N. Izyumskaya, U. Ozgur, and H. Morkoc, “Micro-LEDs, a manufacturability perspective,” Appl. Sci., vol. 9, pp. 1206-1−1206-15, 2019.
    [14] H. E. Lee, J. H. Shin, J. H. Park, S. K. Hong, S. H. Park, S. H. Lee, J. H. Lee, I. S. Kang, and K. J. Lee, “Micro light-emitting diodes for display and flexible biomedical applications,” Adv. Funct. Mater., vol. 29, pp. 1808075-1−1808075-14, 2019.
    [15] H. E. Lee, J. H. Choi, S. H. Lee, M. J. Jeong, J. H. Shin, D. J. Joe, D.H. Kim, C. W. Kim, J. H. Park, J. H. Lee, D. S. Kim, C. S. Shin, and K. J. Lee, “Monolithic flexible vertical GaN light-emitting diodes for a transparent wireless brain optical stimulator,” Adv. Funct. Mater., vol. 30, pp. 1800649-1−1800649-10, 2018.
    [16] W. Yang, S. L. Zhang, J. J. D. McKendry, J. Herrnsdorf, P. F. Tian, Z. Gong, Q. B. Ji, I. M. Watson, E. D. Gu, M. D. Dawson, L. F. Feng, C. D. Wang, and X. D. Hu, “Size-dependent capacitance study on InGaN-based micro-light-emitting diodes,” J. Appl. Phys., vol. 116, pp. 044512-1−044512-7, 2014.
    [17] P. F. Tian, J. J. D. McKendry, Z. Gong, S. L. Zhang, S. Watson, D. D. Zhu, I. M. Watson, E. D. Gu, A. E. Kelly, C. J. Humphreys, and M. D. Dawson, “Characteristics and applications of micro-pixelated GaN-based light emitting diodes on Si substrates,” J. Appl. Phys., vol. 115, pp. 033112-1−033112-6, 2014.
    [18] C. T. Lee, U. Z. Yang, C. S. Lee, and P. S. Chen, “White light emission of monolithic carbon-implanted InGaN–GaN light-emitting diodes,” IEEE Photon. Technol. Lett., vol. 18, pp. 2029−2031, 2006.
    [19] O. B. Shchekin, J. E. Epler, T. A. Trottier, T. Margalith, D. A. Steigerwald, M. O. Holcomb, P. S. Martin, and M. R. Krames, “High performance thin-film flip-chip InGaN–GaN light-emitting diodes,” Appl. Phys. Lett., vol. 89, pp. 071109-1−071109-3, 2006.
    [20] H. Y. Lee, Y. C. Lin, I. H. Chen, and C. H. Chao, “Effective color conversion of GaN-based LEDs via coated phosphor layers,” IEEE Photon. Technol. Lett., vol. 25, pp. 764−767, 2013.
    [21] K. J. Chen, H. C. Chen, M. H. Shih, C. H. Wang, M. Y. Kuo, Y. C. Yang, C. C. Lin, and H. C. Kuo, “The influence of the thermal effect on CdSe/ZnS quantum dots in light-emitting diodes,” J. Lightwave Technol., vol. 30, pp. 2256−2261, 2012.
    [22] N. Tomczak, D. Janczewski, M. Y. Han, and G. J. Vancso, “Designer polymer–quantum dot architectures,” Prog. Polym. Sci., vol. 34, pp. 393−430, 2009.
    [23] S. Kim, T. Kim, M. Kang, S. K. Kwak, T. W. Yoo, L. S. Park, I. Yang, S. Hwang, J. E. Lee, S. K. Kim, and S. W. Kim, “Highly luminescent InP/GaP/ZnS nanocrystals and their application to white light-emitting diodes,” J. Am. Chem. Soc., vol. 134, pp. 3804−3809, 2012.
    [24] V. Cremers, R. L. Puurunen, and J. Dendooven, “Conformality in atomic layer deposition: current status overview of analysis and modelling,” Appl. Phys. Rev., vol. 6, pp. 021302-1−021302-43, 2019.
    [25] P. French, G. Krijnen, and F. Roozeboom, “Precision in harsh environments,” Microsyst. Nanoeng., vol. 2, pp. 16048-1−16048-12, 2016.
    [26] D. Munoz-Rojas, T. Maindron, A. Esteve, E. Piallat, J. C. S. Kools, and J. M. Decams, “Speeding up the unique assets of atomic layer deposition,” Mater. Today., vol. 12, pp. 96−120, 2019.
    [27] S. M. George, “Atomic layer deposition: an overview,” Chem. Rev., vol. 110, pp. 111−131, 2010.

    第二章
    [1] E. F. Schubert, “Light-emitting diodes (2nd ed.),” Cambridge University Press, 2006.
    [2] H. Gilbert, “Introduction to light emitting diode technology, and applications (1st ed.),” Auerbach Publications, 2008.
    [3] J. Li, J. Wang, X. Yi, Z. Liu, T. Wei, J. Yan, and B. Xue, “III-Nitrides light emitting diodes: technology and applications (1st ed.),” Springer Nature, 2020.
    [4] H. F. Matare, “Light-emitting devices, part I: methods,” Adv. Electron. Electron Phys., vol. 42, pp. 179−279, 1976.
    [5] H. F. Matare, “Light-emitting devices, part II: device design and applications,” Adv. Electron. Electron Phys., vol. 45, pp. 39−201, 1978.
    [6] F. W. Wise, “Lead salt quantum dots: The limit of strong quantum confinement,” Acc. Chem. Res., vol. 33, pp. 773−780, 2000.
    [7] A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Sci., vol. 271, pp. 933−937, 1996.
    [8] N. V. Derbenyova, A. A. Konakov, and V. A. Burdov, “Recombination, multiplication, and transfer of electron-hole pairs in silicon nanocrystals: Effects of quantum confinement, doping, and surface chemistry,” J. Lumin., vol. 233, pp. 117904-1−117904-11, 2021.
    [9] L. Dal Negro, M. Cazzanelli, L. Pavesi, S. Ossicini, D. Pacifici, G. Franzo, F. Priolo, and F. Iacona, “Dynamics of stimulated emission in silicon nanocrystals,” Appl. Phys. Lett., vol. 82, pp. 4636−4638, 2003.
    [10] A. Meldrum, A. Hryciw, A. N. MacDonald, C. Blois, K. Marsh, J. Wang, and Q. Li, “Photoluminescence in the silicon-oxygen system,” J. Vac. Sci. Technol. A., vol. 24, pp. 713-1−713-5, 2006.
    [11] N. Zikalala, S. Parani, O. S. Oluwafemi, “Facile aqueous synthesis of ZnInS quantum dots and its application for selective detection of Co2+ ions,” Nanotechnology, vol. 32, pp. 295503-1−295503-9, 2021.
    [12] M. H. Nayfeh, S. Rao, N. Barry, J. Therrien, G. Belomoin, and A. Smith, “Observation of laser oscillation in aggregates of ultrasmall silicon nanoparticles,” Appl. Phys. Lett., vol. 80, pp. 121−123, 2002.
    [13] M. R. Karim, M. Balaban, and H. Unlu, “Strain effects on the band gap and diameter of CdSe core and CdSe/ZnS core/shell quantum dots at any temperature,” Adv. Mater. Sci. Eng., vol. 2019, pp. 3764395-1−3764395-11, 2019.
    [14] X. Y. Yang, D. W. Zhao, K. S. Leck, S. T. Tan, Y. X. Tang, J. L. Zhao, H. V. Demir, and X. W. Sun, “Full visible range covering InP/ZnS nanocrystals with high photometric performance and their application to white quantum dot light-emitting diodes,” Adv. Mater., vol. 24, pp. 4180−4185, 2012.
    [15] J. H. Kim, and H. Yang, “All-solution-processed, multilayered CuInS2/ZnS colloidal quantum-dot-based electroluminescent device,” Opt. Lett., vol. 39, pp. 5002−5005, 2014.
    [16] J. M. Caruge, J. E. Halpert, V. Wood, V. Bulović, and M. G. Bawendi, “Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers,” Nature Photon., vol. 2, pp. 247−250, 2008.
    [17] J. Y. Pan, C. T. Wei, L. X. Wang, J. Y. Zhuang, Q. Q. Huang, W. M. Su, Z. Cui, A. Nathan, W. Lei, and J. Chen, “Boosting the efficiency of inverted quantum dot light‐emitting diodes by balancing charge densities and suppressing exciton quenching through band alignment,” Nanoscale., vol. 10, pp. 592−602, 2018.
    [18] Y. N. Zhang, Y. S. Liu, M. M. Yan, Y. Wei, Q. L. Zhang, and Y. Zhang, “Efficient quantum‐dot light‐emitting diodes employing thermally activated delayed fluorescence emitters as exciton harvesters,” ACS. Appl. Mater. Interfaces., vol. 10, pp. 7435−7441, 2018.
    [19] M. A. Cotta, “Quantum dots and their applications: what lies ahead?” ACS Appl. Nano. Mater., vol. 3, pp. 4920−4924, 2020.
    [20] R W. Sabnis, “Color filter technology for liquid crystal displays,” Display, vol. 20, pp. 119−129, 1999.
    [21] H. M. Lin, S. Y. Wu, F. C. Chang, and Y. C. Yen, “Photo-polymerization of photocurable resins containing polyhedral oligomeric silsesquioxane methacrylate,” Mater. Chem. Phys., vol. 131, pp. 393−399, 2011.
    [22] W. T. Cheng, and W. T. Yeh, “Preparation and characterization of free radical photopolymer with carbon black nano-particle,” J. Photopolym. Sci. Technol., vol. 19, pp. 685−698, 2006.
    [23] A. Atkinson, “Transport processes during the growth of oxide films at elevated temperature,” Rev. Mod. Phys., vol. 57, pp. 437−470, 1985.
    [24] T. Kudo, Y. Nozaki, Y. Nanjo, H. Yamaguchi, K. Nagao, H. Okazaki, and G. Pawlowski, “Pigmented photoresist for black matrix,” J. Photopolym. Sci. Technol., vol. 9, pp. 121−130, 1996.
    [25] H. S. Koo, P. C. Pan, T. Kawai, M. Chen, F. M. Wu, Y. T. Liu, and S. J. Chang, “Physical chromaticity of colorant resist of color filter prepared by inkjet printing technology,” Appl. Phys. Lett., vol. 88, pp. 111908-1−111908-4, 2006.
    [26] L. S. Schadler, S. C. Giannaris, and P. M. Ajayan, “Load transfer in carbon nanotube epoxy composites,” Appl. Phys. Lett., vol. 73, pp. 3842−3844, 1998.
    [27] H. J. Choi, M. S. Kim, D. Ahn, S. Y. Yeo, and S. Lee, “Electrical percolation threshold of carbon black in a polymer matrix and its application to antistatic fibre,” Sci. Rep., vol. 9, pp. 6338-1−6338-12, 2019.
    [28] S. W. Chiou, C. P. Lee, C. K. Huang, and C. W. Chen, “Wide angle distributed Bragg reflectors for 590 nm amber AlGaInP light-emitting diodes,” J. Appl. Phys., vol. 87, pp. 2052−2054, 2000.
    [29] J. R. Oh, S. H. Cho, H. K. Park, J. H. Oh, Y. H. Lee, and Y. R. Do, “Full down-conversion of amber-emitting phosphor-converted light-emitting diodes with powder phosphors and a long-wave pass filter,” Opt. Express, vol. 18, pp. 11063−11072, 2010.
    [30] H. Sugawara, K. Itaya, and G. Hatakoshi, “Hybrid-type InGaAlP/GaAs distributed bragg reflectors for InGaAlP light-emitting-diodes,” Jpn. J. Appl. Phys., vol. 33, pp. 6195−6198, 1994.
    [31] G. S. Chen, B. Y. Wei, C. T. Lee, and H. Y. Lee, “Monolithic red/green/blue micro-LEDs with HBR and DBR structures,” IEEE Photon. Technol. Lett., vol. 30, pp. 262−265, 2018.

    無法下載圖示 校內:2026-10-20公開
    校外:2026-10-20公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE