簡易檢索 / 詳目顯示

研究生: 陳梓斌
Chen, Tzu-Pin
論文名稱: 異質接面雙極性電晶體射極突出部結構與表面硫化披覆之研究
Investigation of Emitter Ledge Structure and Surface Sulfur Passivation on Heterojunction Bipolar Transistors (HBTs)
指導教授: 劉文超
Liu, W.C
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 43
中文關鍵詞: 異質接面雙極性電晶體
外文關鍵詞: HBT
相關次數: 點閱:63下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 異質接面雙極性電晶體,由於具有高速操作及高電流驅動能力,近幾年來已被廣泛的應用在數位及微波積體電路上。在本論文中,我們利用低壓有機金屬化學汽相沉積法成長及研製砷化鎵/磷化銦鎵材料系列之異質接面雙極性電晶體。接著使用兩階段鈍化層(突出部射極與表面硫化鈍化層)進行元件基極表面之處理,並進一步探討其對元件特性之影響。在論文中所探討之元件經過兩階段鈍化層處理之後,因表面複合電流和表面態位密度有效的減少,而展現出良好的元件特性,如高電流增益、低漏電流、低補償電壓、及優異的微波特性。此外,在高溫的環境下,具有兩階段鈍化層之元件具有較佳的溫度穩定度。實驗上,所研製的元件具有良好的直流、微波及高溫操作特性。這些優點顯示元件非常適合應用於高速和低消耗功率電路中。

    Recently, due to the excellent current driving capability and microwave performances, Heterojunction bipolar transistors (HBTs) have extensively employed on digital and analogy applications. In this thesis, three GaAs/InGaP-based heterojunction bipolar transistors (HBTs), grown by a low-pressure metal organic chemical vapor deposition (LP-MOCVD) system, have been fabricated and investigated. In addition, the influences of two-step passivation (emitter ledge and sulfur passivation) technique on studied HBTs are also studied. With the aid of two-step passivation, the studied devices proposed in this work reveal higher dc current gain, lower leakage current, lower offset voltage, and superior microwave performances. Moreover, as the temperature is increased, the device with two-step passivation will exhibit more stable temperature-dependent performances. Experimentally, the studied devices show good DC and microwave characteristics and high temperature operation capability. These advantages suggest that the proposed devices are suitable for high-speed and low-power and communication systems.

    Abstract (Chinese).………………………………………………….………i Abstract (English) Figure Captions Chapter 1. Introduction......1 Chapter 2. InGaP/GaAs Heterojunction Bipolar Transistors (HBTs) with Emitter Ledge Structure and Surface Sulfur Passivation 2.1. Introduction......5 2.2.Device fabrication......6 2.3. The mechanism of emitter ledge passivation sulfur treatment......8 2.4. Experimental results and discussion.......10 2.5. Summary......18 Chapter 3. Influences of Emitter Ledge Structure and Surface Sulfur Passivation on the Temperature-Dependent Characteristics of Heterojunction Bipolar Transistors (HBTs) 3.1. Introduction......20 3.2. Device fabrication......21 3.3. Experimental results and discussion......22 3.4. Summary......29 Chapter 4. Conclusion and Prospects 4.1. Conclusion......30 4.2. Prospect......31 References Figures

    [1] W. Schockley, U. S. Patent No. 2 569 347 (Filed June 26, 1948, Issued September 25, 1951)
    [2] H. Kroemer, “Theory of wide-gap emitter for transistors”, Proc. IRE, vol. 45, pp. 1535-1536, 1957.
    [3] H. Kanbe, J. C. Vlcek, and C. G. Fonstad, “(In, Ga)As/InP n-p-n heterojunction bipolar transistors grown by liqued phase epitaxy with high dc current gain”, IEEE Electron Device Lett., vol. 5, pp. 175-175, 1984.
    [4] M. J. Mondry and H. Kroemer, “Heterojunction bipolar transistor using a (Ga,In)P emitter on a GaAsbase, grown by molecular beam epitaxy”, IEEE Electron Device Lett., vol. 6, pp. 175-177, 1985.
    [5] J. Xu and M. Shur, “A tunneling emitter bipolar transistor”, IEEE Electron Device Lett., vol. 7, pp. 416-418, 1986.
    [6] F. E. Najjar, D. C. Rasulescu, Y. K. Chen, G. W. Wicks, P. J. Tasker, and L. F. Easman, “DC characterization of the AlGaAs/GaAs tunneling emitter bipolar tranistor”, Appl. Phys Lett., vol. 50, pp. 1915-1917, 1987.
    [7] A. F. J Levi, R. N. Nottenburg, Y. K. Chen, and J. E. Cunningham, “AlAs/GaAs tunnel emitter bipolar transistor”, Appl. Phys. Lett., vol. 54, pp. 2250-2252, 1989.
    [8] W. S. Lour, “High-gain, low offset voltage, and zero potential spike by InGaP/GaAs δ-doped single heterojunction bipolar transistor (δ-SHBT)”, IEEE Trans. Electron Devices, vol. 44, pp. 346-348, 1997.
    [9] W. B. Chen, Y. K. Su, C. L. Lin, H. C. Wang, S. M. Chen, J. Y. Su, and M. C. Wu, “Fabrication of InGaP/Al0.98Ga0.02As/GaAs oxide-confined collector-up heterojunction bipolar transistors”, IEEE Electron Device Lett., Vol. 24, pp. 619-621, 2003.
    [10] A. W. Hanson, S. A. Stockman, and G. E. Stillman, “Comparison of In0.5Ga0.5P/GaAs single- and double-heterojunction bipolar transistors with a carbon-doped base”, IEEE Electron Device Lett., vol. 14, pp. 25-28, 1993.
    [11] C. R. Bolognesi, M. M. W. Dvorak, P. Yeo, X. G. Xu, and S. P. Watkins, “InP/GaAsSb/InP double HBTs: a new alternative for InP-based DHBTs”, IEEE Trans. Electron Devices, vol. 48, pp. 2631-2639, 2001.
    [12] B. P. Yan, C. C. Hsu, X. Q. Wang, and E. S. Yang, “Low turn-on voltage InGaP/GaAsSb/GaAs double HBTs grown by MOCVD”, IEEE Electron Device Lett., vol. 23, pp. 170-172, 2002.
    [13] W. P. Neo and H. Wang, “Temperature dependence of the electron impact ionization in InGaP-GaAs-InGaP DHBTs”, IEEE Trans. Electron Devices, vol. 51, pp. 304-310, 2004.
    [14] V. E. Houtsma, J. Chen, J. Frackoviak, T. Hu, R. F. Kopf, R. R. Reyes, A. Tate, Y. Yang, N. G. Weimann, and Y. K. Chen, “Self-heating of submicrometer InP-InGaAs DHBTs”, IEEE Electron Device Lett., vol. 25, pp. 357-359, 2004.
    [15] S. S. Lu and C. C. Wu, “High-current-gain small-offset-voltage In0.49Ga0.51 P/GaAs tunneling emitter bipolar transistors grown by gas source molecular beam epitaxy”, IEEE Electron Device Lett., vol. 13, pp. 468-470, 1992.
    [16] C. Y. Chen, S. Y. Cheng, W. H. Chiou, H. M. Chuang, and W. C. Liu, “A novel InP/InGaAs TEBT for ultralow current operations”, IEEE Electron Device Lett., vol. 24, pp. 126-128, 2003.
    [17] C. Y. Chen, S. Y. Cheng, W. H. Chiou, H. M. Chuang, R. C. Liu, C. H. Yen, J. Y. Chen, C. C. Cheng, and W. C. Liu, “DC Characterization of an InP-InGaAs Tunneling Emitter Bipolar Transistor (TEBT)”, IEEE Trans. Electron Devices, vol. 50, pp. 874-879, 2003.
    [18] K. Mochizuki, R. J. Welty, P. M. Asbeck, C. R. Lutz, R. E. Welser, S. J. Whitney, and N. Pan, “GaInP/GaAs collector-up tunneling-collector heterojunction bipolar transistors (C-up TC-HBTs): optimization of fabrication process and epitaxial layer structure for high-efficiency high-power amplifiers”, IEEE Trans. Electron Devices, vol. 47, pp. 2277-2283, 2000.
    [19] R. J. Welty, K. Mochizuki, C. R. Lutz, R. E. Welser, and P. M. Asbeck, “Design and performance of tunnel collector HBTs for microwave power amplifiers”, IEEE Trans. Electron Devices, vol. 50, pp. 894-900, 2003.
    [20] S. Y. Cheng, “Comprehensive study of InGaP/AlGaAs/GaAs heterojunction bipolar transistor with a continuous conduction-band structure”, Semicond. Sci. Technol., vol. 17, pp. 701-707, 2002.
    [21] S. Y. Cheng, C. Y. Chen, J. Y. Chen, H. M. Chuang, C. H. Yen, and W. C Liu, “Comprehensive study of InGaP–AlxGa1–xAs–GaAs composite-emitter heterojunction bipolar transistors with different thickness of AlxGa1–xAs graded layers”, J. Vac. Sci. & Technol., vol. B22, no.4, pp. 1699-1704, 2004.
    [22] J. Y. Chen, S. Y. Cheng, C. Y. Chen, K. M. Lee, C. H. Yen, S. Y. Fu, S. F. Tsai, and W. C. Liu, “Characteristics of an InP–InGaAs–InGaAsP HBT”, IEEE Trans. Electron Devices, vol. 51, pp. 1935-1938, 2004.
    [23] J. Y. Chen, D. F. Guo, S. Y. Cheng, K. M. Lee, C. Y. Chen, H. M. Chuang, S. I. Fu, and W. C. Liu, “A new InP-InGaAs HBT with a superlattice-collector structure”, IEEE Electron Device Lett., vol. 25, pp. 244-246, 2004.
    [24] W. S. Lour, W. L. Chang, Y. M. Shih, and W. C. Liu, “New self-aligned T-gate InGaP/GaAs field-effect transistors grown by LP-MOCVD”, IEEE Electron Device Lett., vol. 20, pp. 304-306, 1999.
    [25] W. C. Hsu; Y. J. Chen; C. S. Lee; T. B. Wang; Y. S. Lin; and C. L. Wu, “High-temperature thermal stability performance in d-doped In0.425Al0.575As-In0.65Ga0.35As metamorphic HEMT”, IEEE Electron Device Lett., vol. 26, pp. 59-61, 2005.
    [26] C. H. Oxley and M. J. Uren, “Measurements of unity gain cutoff frequency and saturation velocity of a GaN HEMT transistor”, IEEE Trans. Electron Devices, vol. 52, pp. 165-169, 2005.
    [27] S. D. Mertens, J. A. DelAlamo, T. Suemitsu, and T. Enoki, “Hydrogen Sensitivity of InP HEMTs with WSiN-Based Gate Stack”, IEEE Trans. Electron Devices, vol. 52, pp. 305-310, 2005.
    [28] C. S. Choi, H. S. Kang, W. Y. Choi, D. H. Kim, and K. S. Seo, “Phototransistors based on InP HEMTs and their applications to millimeter-wave radio-on-fiber systems”, IEEE Trans. Microwave Theory and Techniques, vol. 53, pp. 256-263, 2005.
    [29] P. Fay, K. Stevens, J. Elliot, and N. Pan, “Gate length scaling in high performance InGaP/InGaAs/GaAs pHEMTs”, IEEE Electron Device Lett., vol. 21, pp. 141-143, 2000.
    [30] C. J. Wei, Y. A. Tkachenko, and D. Bartle, “A new model for enhancement-mode power pHEMT”, IEEE Trans. Microwave Theory and Techniques, vol. 50, pp. 57-61, 2002.
    [31] J. H. Tsai, “A novel InGaP/InGaAs/GaAs double d-doped pHEMT with camel-like gate structure”, IEEE Electron Device Lett., vol. 24, pp. 1-3, 2003.
    [32] R. Menozzi, “Off-state breakdown of GaAs PHEMTs: review and new data”, IEEE Trans. Device and Materials Reliablity, vol. 4, pp. 54-62, 2004.
    [33] Y. C. Chou, R. Grundbacher, D. Leung, R. Lai, P. H. Liu, and Q. Kan, “Physical identification of gate metal interdiffusion in GaAs PHEMTs”, IEEE Electron Device Lett., vol. 25, pp. 64-66, 2004.
    [34] Y. C. Chou, D. Leung, R. Grundbacher, R. Lai, P. H. Liu, Q. Kan, M. Biedenbender, D. Eng, and A. Oki, “The effect of gate metal interdiffusion on reliability performance in GaAs PHEMTs”, IEEE Electron Device Lett., vol. 25, pp. 351-353, 2004.
    [35] M. Zaknoune, M. Ardouin, Y. Cordier, S. Bollaert, B. Bonte, and D. Theron, “60-GHz high power performance In0.35Al0.65As-In0.35Ga0.65As metamorphic HEMTs on GaAs”, IEEE Electron Device Lett., vol. 24, pp. 724-726, 2003.
    [36] B. H. Lee, D. An, M. K. Lee, B. O. Lim, S. D. Kim, and J. K. Rhee, “Two-stage broadband high-gain W-band amplifier using 0.1-mm metamorphic HEMT technology”, IEEE Electron Device Lett., vol. 25, pp. 766-768, 2004.
    [37] Y. J. Chen, W. C. Hsu, C. S. Lee, T. B. Wang, C. H. Tseng, J. C. Huang, D. H. Huang, and C. L. Wu, “Gate-alloy-related kink effect for metamorphic high-electron-mobility transistors”, Appl. Phys. Lett., vol. 85(21), pp. 5087-5089, 2004.
    [38] Y. C. Lien, E. Y. Chang, H. C. Chang, L. H. Chu, G. W. Huang, H. M. Lee, C. S. Lee, S. H. Chen, P. T. Shen, and C. Y. Chang, “Low-noise metamorphic HEMTs with reflowed 0.1mm T-gate”, IEEE Electron Device Lett., vol. 25, pp. 348-350, 2004.
    [39] C. K. Lin, W. K. Wang, Y. J. Chan, and H. K. Chiou, “BCB-bridged distributed wideband SPST switch using 0.25mm In0.5Al0.5As-In0.5Ga0.5As metamorphic HEMTs”, IEEE Trans. Electron Devices, vol. 52, pp. 1-5, 2005.
    [40] D. S. Wuu, W. K. Wang, W. C. Shih, R. H. Horng, C. E. Lee, W. Y. Lin, and J. S. Fang, “Enhanced output power of near-ultraviolet InGaN-GaN LEDs grown on patterned sapphire substrates”, IEEE Photonics Technology Lett., vol. 17, pp. 288-290, 2005.
    [41] J. O. Song, D. S. Leem, S. K. Joon, Y. Park, S. W. Chae, and T. Y. Seong, “Improvement of the luminous intensity of light-emitting diodes by using highly transparent Ag-indium tin oxide p-type ohmic contacts”, IEEE Photonics Technology Lett., vol. 17, pp. 291-293, 2005.
    [42] D. Vasileska and S. S. Ahmed, “Narrow-width SOI devices: the role of quantum-mechanical size quantization effect and unintentional doping on the device operation”, IEEE Trans. Electron Devices, vol. 52, pp. 227-236, 2005.
    [43] Hsu, Y. P., Chang, S. J., Su, Y. K., Chen, S. C., Tsai, J. M., Lai, W. C., Kuo, C. H., and Chang, C. S., "InGaN-GaN MQW LEDs with Si treatment," IEEE Photonics Technology Letters, vol. 17, no. 8, pp. 1620-1622, 2005.
    [44] Chang, S. J., Wei, S. C., Su, Y. K., Chuang, R. W., Chen, S. M., and Li, W. L., "Nitride-based, LEDs with MQW active region's grown by different temperature profiles," IEEE Photonics Technology Letters, vol. 17, no. 9, pp. 1806-1808, 2005.
    [45] Wang, C. K., Ko, T. K., Chang, C. S., Chang, S. J., Su, Y. K., Wen, T. C., Kuo, C. H., and Chiou, Y. Z., "The thickness effect of p-AlGaN blocking layer in UV-A bandpass photodetectors," IEEE Photonics Technology Letters, vol. 17, no. 10, pp. 2161-2163, 2005.
    [46] J. H. Yoo, C. Nack, G. H. Yang, and I. S. Park, “Stabilizing LD power in a wide temperature range for optical burst-mode communications by means of optical filter”, IEEE Photonics Technology Lett., vol. 12, pp. 843-845, 2000.
    [47] W. Birk, I. Arvanitidis, P. G. Jonsson, and A. Medvedev, “Physical modeling and control of dynamic foaming in an LD-converter process”, IEEE Trans. Industry Applications, vol. 37, pp. 1067-1073, 2001.
    [48] S. S. Lu and C. C. Huang, “High-current-gain Ga0.51In0.49P/GaAs GaInP/GaAs heterojunction bipolar transistor grown by gas-source molecular beam epitaxy”, IEEE Electron Device Lett., vol. 13, pp. 214-216, 1992.
    [49] U. Eriksson, P. Evaldsson, and K. Streubel, “Fabrication of a 1.55 VCSEL and an InGaAsP-InP HBT from a common epitaxial structure”, IEEE Photon. Technol. Lett., Vol. 11, p. 403, 1999.
    [50] H. Wang, K. W. Chang, L. T. Tran, J. C. Cowles, T. R. Block, E.W. Lin, G.S. Dow, A. K. Oki, D. C. Streit, B. R Allen, “Low phase noise millimeter wave frequency sources using InP-based HBT MMIC technology”, IEEE J. Solid State Circuits, Vol. 31, p. 1419, 1996.
    [51] P. Freeman, Z. Xiangkun, I. Vurgaftman, J. Singh, P. Bhattacharya, “Optical control of 14GHz MMIC oscillators based on InAlAs/InGaAs HBTs with monolithically integrated optical waveguides”, IEEE Trans. Electron Devices, Vol. 43, p. 373, 1996.
    [52] B. J. Skromme, C. J. Sandroff, E. Tablonovitch, and T. Gmitter, “Effects of passivation ionic films on the photoluminescence properties of GaAs”, Appl. Phys. Lett., vol. 51, pp. 2022-2024, 1987.
    [53] E. Yablonovitch, R. Bhat, C. E. Zah, T. J. Gmitter, and M. A. Koza, “Nearly ideal InP/In0.53Ga0.47As heterojunction regrowth on chemically prepared In0.53Ga0.47As surfaces”, Appl. Phys. Lett., vol. 60, pp. 371-373, 1992.
    [54] R. Lyer, R. R. Chang, and D. L. Lile, “Sulfur as a surface passivation for InP”, Appl. Phys. Lett., vol. 53, pp. 134-136, 1988.
    [55] R. Driad, Z. H. Lu, S. Charbonneau, W. R. McKinnon, S. Laframoboise, P. J. Poole, and S. P. McAlister, “Passivation of InGaAs surfaces and InGaAs/InP heterojunction bipolar transistors by sulfur treatment”, Appl. Phys. Lett., vol. 73, pp. 665-667, 1998.
    [56] D. F. Guo, “Characteristics of a triple-well heterostructure-emitter bipolar transistor (TWHEBT)”, Solid-State Electron, vol. 41, pp. 501-506, 1997.
    [57] Jung-Hui Tsai, “Application of AlGaAs/GaAs/InGaAs heterostructure emitter for resonant tunneling transistor “, Appl. Phys. Lett., vol. 75, No. 17, pp. 2668-2670, 1999.
    [58] S. Y. Cheng, “Analysis of improved DC and AC performances of an InGaP/GaAs heterojunction bipolar transistor with a graded AlxGa1-xAs layer at emitter/base heterojunction”, Solid-State Electronics, vol. 48, pp. 1087-1094, 2004.
    [59] N. Hayama and K. Honjo, “Emitter size effect on current gain in fully self-aligned AlGaAs/GaAs HBTs with AlGaAs surface passivation layer”, IEEE Electron Decvice Lett., 11,388(1990).
    [60] Y. S. Lin, Y. H. Wu, W. C. Hsu, J. S. Su, S. D. Ho, and W. Lin, “An improved In0.5Ga0.5P/GaAs double heterojunction-emitter bipolar transistors using emitter edge-thinning technique”, Jpn. J. Appl. Phys., vol. 36, pp. 2007-2009, 1997.
    [61] W. S. Lour and J. L. Hsieh, “Effects of passivation-layer thickness and current gain enhancement of InGaP/GaAs δ-doped single heterojunction bipolar transistors using an InGaP passivation layer”, Semicond. Sci. Technol., vol. 13, pp. 847-851, 1998.
    [62] C. Y. Chen, S. I Fu, S. Y. Cheng, C. Y. Chang, C. H. Tsai, C. H. Yen, S. F. Tsai, R. C. Liu, and W. C. Liu, “Influences of surface sulfur treatments on the temperature-dependent characteristics of HBTs”, IEEE Trans. Electron Devices, vol. 51, pp. 1963-1971, 2004.
    [63] S. W. Tan, H. R. Chen, M. Y. Chu, W. T. Chen, A. H. Lin, M. K. Hsu, T. S. Lin, and W. S. Lour, “Comparisons between InGaP/GaAs heterojunction bipolar transistor with a sulfur- and InGaP-passivated base surface”, Superlattices & Microstructures, vol. 37, pp. 401-409, 2005.
    [64] S.W. Tan, H.R. Chen, W.T. Chen, M.Y. Chu, W.S. Lour, “Sulfur-and InGaP-Passivated Heterojunction Bipolar Transistors”, Junction Technology, IWJT, pp. 228-231, 2004.
    [65] J. Masum, T.J. Hall, “Degradation of AlGaAs/GaAs and InGaP/GaAs heterojunction bipolar transistors under high current stress”, Semicond. Sci. Technol. 12 (1997) 1202-1209.
    [66] W. Liu, E.Beam, T. Henderson, and S. –K Fan, “Extrinsic base surface passivation in GaInP/GaAs heterojunction bipolar transistors”, IEEE Electron Device Lett., 14,301 (1993).
    [67] H.-H. Lin and S.-C.Lee, ”super-gain AlGaAs/GaAs/GaAs heterojunction bipolar transistors using an emitter edge-thinning design”, Appl.Phys.Lett., 47,839(1985).
    [68] C.S .Kyono, S.C. Binari, and K. Ikossi-Anastasiou, “Gain enhancement in InAlAs/InGaAs heterojunction bipolar transistors using an emitter ledge”, J. Appl. Phys., 76, 1954(1994).
    [69] D. Costa, M.N. Tutt, A. Khatibzadeh, and D. Pavlidis, “Tradeoff between 1/f noise and microwave performance in AlGaAs heterojunction bipolar transistors”, IEEE Trans. Electron Devices, 41, 1347 (1994).
    [70] M.T. Fresina, PH.D.thesis, University of Illionis (1996).
    [71] M. Sugiyama, S. Maeyama, Y. Watanabe, S. Tsukamoto, N. Koguchi, Appl. Surf. Sci., “Ga-S-Ga Bridge-bond Formation on in-situ S-treated GaAs (001) Surface Observed by Synchrotron Radiation Photoemission Spectroscopy, X-ray Absorption Near Edge Structure, and X-ray Standing Waves”, vol. 130-132, pp. 436-440, 1998.
    [72] H. Oigawa, J. F. Fan, Y. Nannichi, H. Sugahara, M. Oshima, “Universal passivation effect of (NH4)2SX treatment on the surface of III-V compound semiconductors”, Jpn. J. Appl. Phys., vol. 30, pp. 322-325, 1991.
    [73] A. Callegari, P. D. Hoh, D. A. Buchanan, and D. Lacey, “Unpinned Gallium Oxide/GaAs Interface by hydrogen and Nitrogen Surface Plasma Treatment”, Appl. Phys. Lett., 54, pp. 332-334, 1989.
    [74] C. J. Sandroff, M. S. Hegde, L. A. Farrow, C. C. Chang, and J. P. Harbison, “Electronic passivation of GaAs surfaces through the formation of arsenic-sulfur bonds”, Appl. Phys. Lett., vol. 54, pp. 362-364, 1989.
    [75] Z. Jin, S. Neumann, W. Prost, and F. –J. Tegude, “Surface Recombination Mechanism in Graded-Base InGaAs-InP”, IEEE Trans. Electron Devices, vol. 51, pp. 1044-1045, 2004.
    [76] Y. F. Yang, C. C. Hsu, and E. S. Yang, “Surface recombination current in InGaP/GaAs heterojunction-emitter bipolar transistors”, IEEE Trans. Electron Devices, vol. 41, pp. 643-647, 1994.
    [77] W. Liu, “Handbook of III-V Heterojunction Bipolar transistors”, John Wiley & Sons, New York, pp.142-152, 1998.
    [78] C. Y. Chen, W. C. Wang, W. H. Chiou, C. K. Wang, H. M. Chuang, S. Y Cheng, and W. C. Liu, “A comparative study of GaAs- and InP-based superlattice emitter resonant tunneling bipolar transistors (SE-RTBT's)”, Solid-State Electron., vol. 46, no. 9, pp. 1289-1294, 2002.
    [79] C. Y. Chen, W. H. Chiou, C. H. Yen, H. M. Chuang, J. Y. Chen, C. C. Cheng, and W. C. Liu, “Study on dc characteristics of an interesting InP/InGaAs tunneling-emitter bipolar transistor with double heterostructures”, J. Vac. Sci. & Technol., vol. 21, pp. 82-86, 2003.
    [80] H. M. Chuang, C. K. Wang, K. W. Lin, W. H. Chiou, C. Y. Chen, and W. C. Liu, “Comparative study on DC characteristics of In0.49Ga0.51P-channel heterostructure field-effect transistors with different gate metals”, Semicond. Sci. Technol., vol. 18, pp. 319-324, 2003.
    [81] P. H. Lai, C.W. Chen, C.I. Kao, S.I. Fu, Y. Y. Tsai, C. W. Hung, C. H. Yen, H. M. C, S. Y. C, and W.C. Liu, “Influences of Sulfur Passivation on Temperature-Dependent Characteristics of an AlGaAs/InGaAs/GaAs PHEMT,” IEEE Trans. Electron Devices, 53, 1 (2006).
    [82] Y. S. Lin, D. H. Huang, W. C. Hsu, K. H. Su, and T. B.Wang, “Enhancing the current gain in InP/InGaAs double heterojunction bipolar transistors using emitter edge thinning”, Semicond. Sci.Technol. 21 (2006), 303-305.
    [83] T. Henderson, “Modeling gallium arsenide heterojunction bipolar transistor ledge variations for insight into device reliability”, Microelectronics Reliability, vol. 42, pp. 1011-1020, 2002.
    [84] C. E. Huang, C. P. Lee, H. C. Liang, and R. T. Huang, “Critical spacing between emitter and base in InGaP heterojunction bipolar transistors (HBTs)”, IEEE Electron Device Lett., vol. 23, pp. 576-578, 2002.
    [85] S. Y. Cheng, S. I. Fu, K. Y. Chu, P. H. Lai, L. Y. Chen, W. C. Liu, and M. H. Chiang, “An improved DC and microwave performance of heterojunction bipolar transistors by full sulfur passivation”, J. Vac. Sci. & Technol. B, vol. 24, pp. 669-674, 2006.
    [86] M. G. Adlerstein and J. M. Gering, “Current induced degradation in GaAs HBT’s”, IEEE Trans. Electron Devices, vol. 47, pp. 434-439, 2000.
    [87] H. K. Yow, P. A. Houston, C. M. Sidney Ng, C. Button, and J. S. Roberts, “High-temperature DC characteristics of AlxGa0.52-xIn0.48P/GaAs heterojunction bipolar transistors grown by metal organic vapor phase epitaxy”, IEEE Trans. Electron Devices, vol. 43, pp.2-7, 1996.
    [88] K. Ikossi-Anastasiou, A. Ezis, K. R. Evans, and C. E. Stutz, “Low-temperature characterization of high-current-gain graded-emitter AlGaAs/GaAs narrow-base heterojunction bipolar transistor”, IEEE Electron Device Lett., vol. 13, pp. 414-417, 1992.
    [89] C. K. Song and P. J. Choi, “Effects of InGaP heteropassivation on reliability of GaAs HBTs”, Microelectronics Reliability, vol. 39, pp. 1817-1822, 1999.
    [90] W. C. Liu and W. S. Lour, “Influence of the potential spike on heterostructure-emitter bipolar transistor”, J. Appl. Phys., vol. 69, no. 2, pp. 1063-1066, 1991.
    [91] W. C. Liu and W. S. Lour, “Applications of transition-emitter superlattice to biploar transistor”, Jpn. J. Appl. Phys., vol. 30, no. 4A, pp. L561-563, 1991.
    [92] W. C. Liu and W. S. Lour, “A new functional, resonant-tunneling bipolar transistor with a superlattice emitter”, J. Appl. Phys., vol. 70, no. 1, pp. 485-489, 1991.
    [93] W. C. Liu, Y. S. Lee, and D. F. Guo, “A new resonant-tunneling bipolar transistor with triple-well emitter structure”, Solid-State Electron., vol. 34, no. 12, pp. 1457-1459, 1991.
    [94] M. Y. Ghannam and R. P. Mertens, “Surface recombination current with a nonideality factor greater than 2”, IEEE Electron Device Lett., vol. 10, pp.242-244, 1989.
    [95] M. T. Fresina, Q. J. Hartmann, G. E. Stillman, “Selective self-aligned emitter ledge formation for heterojunction bipolar transistors”, IEEE Electron Device Lett., vol. 17, pp. 555-556, 1996.
    [96] M. Hafizi, “Submicron, fully self-aligned HBT with an emitter geometry of 0.3μm”, IEEE Trans. Electron Device Lett., vol. 18, pp. 358-360, 1997.
    [97] Schumacher, L. G. Shantherama, J. R. Hayes, R. Bhat, R. Esagui, and M. Koza, “High-speed self-aligned InP/InGaAs double heterojunction bipolar transistor with high current driving capability”, IEE Electronics Lett., vol. 24, pp. 1293-1294, 1998.
    [98] M. Hafizi, D. C. Streit, L. T. Tran, K. W. Kobayashi, D. K. Umemodo, A. K. Oki, and S. K. Wang, “Experimental study of AlGaAs/GaAs HBT device design for power application”, IEEE Electron Device Lett., vol.12, No.11, pp.581-583, 1991.
    [99] T. R. Chen, P. C. Chen, C. Gee, and N. B. Chaim, “A high-speed InGaAsP/InP DFB laser with an air-bridge contact configuration”, IEEE Photon. Technol. Lett., vol. 5, No.1, pp. 1-3, 1993.
    [100] T. Fresina, D. A. Ahmari, P. J. Maries, Q. J. Hartmann, M. Feng, and G. E. Stillman, “High-speed, low noise InGaP/GaAs heterojunction bipolar transistors”, IEEE Electron Device Lett., vol.16, No.12, pp.540-541, 1995.
    [101] F. Li, G. Post, Y. Nissim, a. Falcou, C. Courbet, S. Sanchez, and A. Scavennec, “A backside via holes etching technology for indium phosphide MMIC's”, International conference on Microwave and Millimeter wave technology proceedings, pp.64-67, 2000.

    下載圖示 校內:2007-06-29公開
    校外:2008-06-29公開
    QR CODE